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Controlling thermodynamics of a quantum heat engine with modulated amplitude drivings
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External driving of bath temperatures with a phase difference of a nonequilibrium quantum engine leads to the
emergence of geometric effects on the thermodynamics. In this work we modulate the amplitude of the external
driving protocols by introducing envelope functions and study the role of geometric effects on the flux, noise,
and efficiency of a four-level driven quantum heat engine coupled with two thermal baths and a unimodal cavity.
We observe that having a finite width of the modulation envelope introduces an additional control knob for
studying the thermodynamics in the adiabatic limit. The optimization of the flux as well as the noise with respect
to thermally induced quantum coherences becomes possible in the presence of geometric effects, which hitherto
has not been possible with sinusoidal driving without an envelope. We also report the deviation of the slope and
generation of an intercept in the standard expression for efficiency at maximum power as a function of Carnot
efficiency in the presence of geometric effects under the amplitude modulation. Further, a recently developed
universal bound on the efficiency obtained from the thermodynamic uncertainty relation is shown not to hold
when a small width of the modulation envelope along with a large value of cavity temperature is maintained.
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I. INTRODUCTION

Quantum heat engines (QHEs) have come a long way
from the theoretically predicted Schulz-duBois engine [1] to
experimentally realizable engines. Notable examples include
Rb-based cold atomic setup [2], Li-based Fermi gas [3], di-
amond based N-vacancy centers [4], Paul-trapped Yb and
Ca ion setups [5,6], and utilizing a proton’s nuclear spin
dissolved in 13C-labeled CHCl3 [7]. For the role of coher-
ences in the quantum thermodynamic and transport properties,
establishing the validity of nonequilibrium fluctuation theo-
rems, thermodynamic uncertainity relationships (TURs) are
now being investigated experimentally and compared with the
results obtained from several theoretically established mod-
els [8–12]. Most of the theories are based on Markovian
master equations and have seemed to agree pretty well with
experimental observations [10,13]. The success of such mas-
ter equations in understanding several steady-state properties
of QHEs led to the widespread use of another class of master
equations that theoretically predict dynamics of quantum sys-
tems where system parameters are modulated in time, usually
called driven dynamics [14–16]. Toy models based on QHEs
are often a common choice to study driven dynamics using
adiabatic master equations [14,17]. In such driven systems,
periodic or nonperiodic modulation of a system parameter
(like energy, reservoir temperature, etc.) in an adiabatic fash-
ion [18–23] has led to the theoretical prediction of exotic
properties such as creating new phases of matter and loss
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of tunneling. These are usually corroborated using Floquet
theory coupled to adiabatic master equations [23–27]. Fur-
ther, adiabatic master equations developed by modulating two
system parameters have been shown to break nonequilibrium
fluctuation theorems and TUR because of the emergence of
geometric phaselike quantities [19,28–31]. Although driven
QHEs (dQHEs) have not yet been experimentally realized,
driven molecular junctions (the theory of which is akin to
QHEs) have been experimentally studied where geometric
phaselike effects were proven to exhibit nonstandard influence
on transport properties as predicted by adiabatic master equa-
tions [32,33]. With such current experimental realization of
QHEs and driven molecular junctions as well as observation
of Floquet dynamics in driven spin systems using N-vacancy
centers [34], it is not far off that driven QHE dynamics pre-
dicted by adiabatic master equations can be soon compared
with experimental results.

There are several ways of driving the internal parame-
ters of a dQHE. A particular example includes a stepwise
sweep of the temperatures of the thermal reservoirs [35]. Such
periodic driving protocols have led to the development of
a quantum version of TUR signifying a trade-off between
entropy production rate and signal-to-noise ratio [35]. Inter-
estingly, over the past couple of years, several TUR have
been developed in quantum engines [36–39]. In a previous
study we have shown that such a trade-off is invalid in the
presence of continuous driving of the temperatures of the two
baths in a sinusoidal manner [29]. Violations of TUR due
to nonsteady-state coherences have also been reported [40].
We have also shown how other thermodynamic quantities of
a popular QHE model such as flux, noise, efficiency, power,
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FIG. 1. Schematic plot of an amplitude-modulated driven four-
level QHE. Two degenerate states |1〉 and |2〉 are coupled with
higher energy states |a〉 and |b〉 through respective thermal baths.
The state |a〉 is higher in energy than the state |b〉. Hot and cold bath
temperatures are labeled as Th(t ) and Tc(t ), respectively. States |a〉
and |b〉 are also coupled with a unimodal cavity. During the transition
from |a〉 to |b〉 one photon is produced in the cavity with an energy
equal to the energy difference between these states, which we treat
as work done by the system denoted by W . Temperature amplitude
shaping modifies the induced geometric phase � shown in the upper
inset.

etc., are influenced by such drivings [29,41]. Notably, we
showed that the universal linear slope of 1/2 in the standard
efficiency at maximum power (EMP) as a function of Carnot
efficiency (ηc) no longer holds when there is a finite phase
difference between the two continuous driving protocols [29].
A natural question is how the thermodynamic quantities
would behave when the continuous driving is replaced by an
amplitude-modulated driving (similar to a single-cycle pulse).
Such pulse-induced dynamics have been studied previously in
two-level thermal machines [42]. To keep things simple, we
first focus on the adiabatic limit, where there are no sudden
modulation- or pulse-induced dynamics in the engine, i.e., the
driving timescale is well separated from the engine-evolution
timescale. By considering two types of envelope functions,
Gaussian and Lorentzian, we note some interesting obser-
vations and compare the results obtained with the known
continuous sinusoidal driving, which is the limiting case with
large envelope width.

This paper is organized as follows. In Sec. II we briefly
introduce the model and discuss the basic underlying princi-
ples. In Sec. III we present our results and offer a discussion
followed by the concluding remarks in Sec. IV.

II. AMPLITUDE-MODULATED DRIVEN
QUANTUM HEAT ENGINE

We consider a four-level temperature driven quantum heat
engine coupled with two thermal baths and a unimodal cavity
(Fig. 1). This model has been studied in several works [29,43–
46]. The theoretical framework has already been developed
and discussed [29,41], and we refer to the Appendix for nec-
essary details. The engine operates in such a way that two
thermal baths at temperatures Th(t ) and Tc(t ) are adiabati-
cally driven externally. The driving protocol is cyclic whose

amplitude is being modulated in time thus shaping the enve-
lope, which we refer to as amplitude modulation. We choose
the following driving protocols:

Tc(t )=Tc0 + Ai(t ) sin(ωt ), (1)

Th(t )=Th0 + Ai(t ) sin(ωt + φ), (2)

where Ai is expressed as

AS (t )=A0, (3)

AG(t )=A0 exp

(
−(4 ln 2)

t2

t2
e

)
, (4)

AL(t )=A0
[te/2]2

t2 + [te/2]2
, (5)

with i ∈ (S, G, L). Here te is termed as envelope duration and
Ai(t ) is the envelope type such that the subscript i represents
the type of envelope: constant, Gaussian, or Lorentzian. Note
that te represents the time window of the envelope function
where the amplitude modulation is being carried out and is
mathematically defined as the full width at half maximum
(FWHM) for both Gaussian and Lorentzian envelopes. A0,
ω, and φ are amplitude, frequency, and phase difference be-
tween the driving protocols, respectively. The time period of
the two-parameter cyclic modulation is defined as tp = 2π/ω

which generates the geometric effects during the entire driving
protocol [29]. It is within this time period that we control the
envelope with te. Since the geometric contribution increases
linearly with the driving frequency we choose to keep tp con-
stant throughout. However, te turns out to be a more interesting
parameter, and its effect is addressed below in detail. Here
the cold (hot) bath temperature oscillates around Tc0(Th0).
Bath temperatures are periodically driven in time such that
the Th(t ) > Tc(t ) condition is maintained throughout. Note
that the geometric contributions get explicitly added to the
engine’s thermodynamic properties due to the periodic driving
of the reservoir temperatures. It is finite only when the driving
protocols are phase different (which is introduced as a phase
difference φ) [41]. Although we can observe driven dynamics
when φ = 0, geometric contributions change the driven dy-
namics if and only if φ �= 0. In this QHE, the exact analytical
nature of the relationship between geometric effects and φ

is not known, and so we resort to numerics to gain insights
into its role on the thermodynamics. Throughout the text,
whenever we refer to the phrase in the presence of geometric
contributions, we mean φ �= 0 in the driving protocols. The
central quantity of interest in this work is the effect of geo-
metric contributions on the thermodynamics of the QHE. The
work done by the engine W is quantified as energy flow (in
the form of photon) into the cavity during the transition from
|a〉 to |b〉. The hot and cold reservoirs induce coherence in
the reduced system density matrix, and they are denoted as ph

and pc, respectively [47]. Through the amplitude modulation
in the driving protocols, the additional parameter FWHM (or
envelope duration), te, allows us to control the overall geomet-
ric contributions to the thermodynamics of the QHE. In the
next sections, we focus on the thermodynamic quantities as a
function of the control parameters, viz., envelope duration, te,
and the hot bath-induced coherence parameter, ph.
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FIG. 2. Graphical representation of the dynamic (a, b) and
geometric (c, d) fluxes as a function of ph (left) for different te

values (tmin
e = tp, tmax

e = 25tp) and as a function of te (right) for
different ph values (pmin

h = 0, pmax
h = 1) for a Gaussian envelope

AG(t ). (a) Dynamic flux jd is optimized with ph at various te. te

increases from bottom to top. (b) jd as a function of a dimensionless
envelope duration, te/tp (see text for interpretation). (c) Optimization
of geometric flux jg at finite envelope widths. te decreases from
bottom to top. Inset shows dashed line where optimization is not
possible for the sinusoidal driving. (d) Decrease in jg with te. Arrows
in (b) and (d) indicate fluxes for a sinusoidal driving for maximum
(yellow) and minimum (black) ph values, and p∗

h is the optimized
ph for dynamic flux. Here Tc0 = 1.0, Th0 = 1.67, Tl = 2, E1 = E2 =
0.1, Eb = 0.4, Ea = 1.5, A0 = 0.01, ω = 2500, pc = 0.3, r =
0.1, g = 40, τ = 0.01, and φ = π/2. Atomic units are used
throughout.

III. RESULTS AND DISCUSSION

A. Flux and noise

The net photon flux exchanged between the engine and
cavity is a fluctuating quantity. Both the flux ( j) and the
noise or fluctuations (n) in photon exchange are measurable
quantities and are composed of additive dynamic (subscript
d) and geometric parts (subscript g) given by [41]

j = jd + jg, (6)

n = nd + ng. (7)

The quantities jd ( jg) are the first-order dynamic (geomet-
ric) cumulants, and nd (ng) are the second-order dynamic
(geometric) cumulants which can be obtained directly
from a cumulant-generating function described in the Ap-
pendix [Eq. (A3) and Eq. (A4)]. Figures 2 and 3 display
the behavior of the flux and the noise, respectively, for the
Gaussian envelope AG(t ) [Eq. (4)] as a function of the hot
bath-induced coherence ph and envelope duration te in the unit
of driving period tp. It is interesting to notice the two extremal
limits of the envelope functions, AG(t ): (1) it reduces to a
Dirac delta function, A0δ(t ) when te → 0 and (2) in the other
limit, te → ∞, it transforms into sinusoidal driving, AS (t )
[Eq. (3)].

FIG. 3. Dynamic (a, b) and geometric (c, d) noise for the driving
with Gaussian envelope AG(t ). The same color code is used as in
Fig. 2. Green dashed lines are for the AS (t ) envelope. (a) Optimiza-
tion of the dynamic noise nd as a function of hot bath coherence ph

for different values of te. Note that the envelope shape and duration
has no effect on the optimization of the dynamic noise. (b) nd as
a function of envelope duration te for different values of ph. From
the blue to the yellow curves, ph increases from ph = p∗

h to ph = 1,
and in the inset from black to blue ph increases from ph = 0 to
ph = p∗

h. (c) Optimization of the geometric noise ng as a function of
ph for different values of te. Note that, although the geometric noise
is negative, the total noise (sum of geometric and dynamic noise)
is always positive, preserving the definition of the second cumulant.
(d) Behavior of ng with te for different values of ph. In (b) and (d),
black and yellow arrows represent the noise for the AS (t ) envelope
for ph = 0 and ph = 1, respectively.

In Fig. 2(a) jd is plotted as a function of ph for increasing te
(bottom to top), and in Fig. 2(b) jd is plotted against te for the
range 0 � ph � 1. For all te values, jd is optimizable with ph,
and the optimized ph (p∗

h) is independent of te. jd increases
with te rapidly and then saturates to the sinusoidal driving
[green dashed line in Fig. 2(a) with the arrows representing
two different ph values in Fig. 2(b)]. In Fig. 2(b) one clearly
sees that the saturation threshold (the minimum value of te for
the saturation) does not depend on ph.

In Figs. 2(c) and 2(d), the geometric flux jg is evaluated
for the full range of ph and te. As a function of ph, jg shows
a remarkably different behavior than jd , where we see opti-
mization of the flux when te is smaller than a critical value.
This is in contrast to what we observed earlier for sinusoidal
driving, where we reported that optimization was not possible
in the case of jg as a function of ph [29]. But upon envelope
modulation, the optimization is possible below a critical te
value. Contrary to the dynamic flux optimization, the optimal
value of hot bath-induced coherence, p∗

h, at which we see
the optimized geometric flux, is dependent on te. Further, jg
decreases as te increases and eventually approaches sinusoidal
driving [green dashed line in Fig. 2(c) and arrows for the two
different ph values in Fig. 2(d)], which is complementary to
the behavior of jd .

The dynamic (nd ) and geometric (ng) noise are displayed
in Fig. 3 spanning the full range of ph and tp. In Fig. 3(a) we
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FIG. 4. Variation of the optimal value of hot bath coherence p∗
h,

as a function of envelope duration te in the unit of tp for (a) flux
and (b) noise. Total (dynamic + geometric) contributions are plotted
along with the dynamic contribution (green diamond points) for three
different envelopes: sinusoidal [green circles, Eq. (3)], Gaussian
[blue circles, Eq. (4)], and Lorentzian [red circles, Eq. (5)]. Dynamic
contribution does not depend on the envelope shape.

have shown that nd is optimizable as a function of ph for all
values of te. Interestingly, we observe that the optimization of
flux and noise occurs at the same value of p∗

h, p∗
h = 0.3 for

the considered parameters. Further, the noise does not change
with te and remains constant as the sinusoidal driving [green
dashed line in Fig. 3(a) and arrows in Fig. 3(b)]. This behavior
is also reflected in Fig. 3(b), where nd for all values of ph is
shown to be independent of te. In Fig. 3(c) the geometric noise
is calculated with respect to ph (te increases from bottom to
top). As te is decreased, ng starts exhibiting an optimizable
character. This behavior is similar to that of jg. The difference
is that, where jg decreases, nd increases with te, as shown in
Fig. 3(d). In Fig. 3(d) we see that ng sharply increases at lower
values of te and saturates to the value obtained from sinusoidal
driving [green dashed line in Fig. 3(c) and arrows in Fig. 3(d)]
at different evaluated values of ph.

In Fig. 4 we show the dependence of the envelope duration
te on the optimal coherence p∗

h for the dynamic and total (dy-
namic + geometric) flux ( j) as well as noise (n). In Fig. 4(a)
the line at p∗

h = 0.3 (green diamonds) represents the jd value
and highlights the independence of p∗

h on the envelope shape
and duration te. The line at p∗

h = 0 (green circles) represents
the total flux when there is a sinusoidal driving. In the latter
case, the total flux is dominated by the geometric contribution,
and the optimized values of flux occur at ph = 0, as known
previously [29]. In the presence of modulated drivings (both
Gaussian and Lorentzian), unlike the sinusoidal driving, the
value of p∗

h smoothly decreases from a large value as we
keep increasing te depending on the shape of the envelope. In
Fig. 4(b) for the dynamic noise (green diamonds) the optimal
value of p∗

h is independent of envelope shape and duration and
p∗

h does not depend on te for the sinusoidal driving (similar
to what was observed for the flux). The p∗

h value is, however,
larger in the presence of amplitude modulation (Lorentzian
or Gaussian) and gradually meets the sinusoidal driving as te
increases again depending on the shape of the envelope.

B. Efficiency and uncertainty relationship

The work done by the engine is the stimulated emission of
photons into a unimodal cavity coupled to the higher energy

FIG. 5. (a) Efficiency at maximum power η∗ for dynamic (blue
to yellow lines) and total (black to orange lines) contributions as a
function of envelope duration te for increasing Carnot efficiency ηc

from bottom to top (ηmin
c = 0.04 and ηmax

c = 0.15). Black and yellow
arrows represent the values of η∗ for the AS (t ) envelope [Eq. (3)] for
minimum and maximum values of considered ηc, respectively. (b) η∗

as function of ηc for different values of te (black to yellow lines te

increases). Green dashed line is for the AS (t ) envelope [Eq. (3)]. Red
line is obeying the standard equation η∗ = ηc/2 [Eq. (11)]. Green
diamond and blue cross points represent dynamic part of the AS (t )
[Eq. (3)] and AG(t ) [Eq. (4)] envelopes, respectively. (c) Slopes for
the lines in panel (b). Green diamond points represent the dynamic
contribution (does not depend on the envelope shape). Green, blue,
and red circles are for total (dynamic + geometric) contributions for
the AS (t ) [Eq. (3)], AG(t ) [Eq. (4)], and AL (t ) [Eq. (5)] envelopes,
respectively. (d) Same as panel (c) but intercepts for the lines in
panel (b).

states of the engine which is given by

W =Ea − Eb + 1

tp
ln

(1 + nl )

nl

∫ tp

0
dt ′Tc(t ′). (8)

nl is the cavity Bose-Einstein occupation factor expressed as
nl = 1/{exp[(Ea − Eb)/Tl ] − 1} with Tl being the tempera-
ture of the cavity [44]. The power can be expressed as

P=W ( jd + jg)=W j. (9)

The efficiency of the system can be written as η = W/

(Ea − E1). From the time integral in the definition of W ,
Eq. (8), it can be seen that η depends on both te and tp.
However, there is no geometric contribution on η, and hence
we do not look into it. We instead choose to focus on the
more interesting quantity, η∗ (EMP), since the dependence of
te, tp and the geometric effects are directly observable through
the two-parameter driving protocol in the definition of power
in Eq. (9). η∗ can be obtained by optimizing η with respect
to an engine parameter (here we choose Eb). The efficiency
at maximum power (EMP) depends on both tp and te. Due
to the chosen nature of the driving protocol, tp is rendered
fixed. Since the envelope duration, te, is a control parameter,
addressing its role on EMP is more important, and we choose
to numerically investigate its effect on η∗. In Fig. 5(a) we
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show the behavior of η∗ with respect to te for the range
0.05 < ηc < 0.15 (bottom to top). The total η∗ (with both
dynamic and geometric contributions) is maximum (> 0.3)
when the envelope duration is minimum (te = tp). η∗ non-
linearly decreases as te increases and eventually saturates to
the value obtained from sinusoidal drivings at large te. The
lower set of curves (parallel lines) correspond to η∗ values,
when there are no geometric contributions (evaluated by using
φ = 0). In this scenario, η∗ does not depend on te anymore,
since jg = 0 resulting in flat lines.

A popular analytical expression for η∗, called the Curzon-
Ahlborn efficiency at maximum power, can be written in terms
of the Carnot efficiency, ηc, given by

η∗ = 1 −
√

1 − ηc (10)

= 1

2
ηc, near equilibrium. (11)

We evaluate η∗ as a function of te of the modulated driving
and compare the results with Eq. (11). The linear coefficient,
1/2 in Eq. (11), has been claimed to be universal [48,49],
which we showed was violated in the presence of geometric
effects [29] with sinusoidal drivings. In Fig. 5(b), we show
that η∗ linearly increases with ηc, but the slope is 1/2 only
when geometric contributions are absent (this holds for dy-
namic, green diamond, and blue cross points). Further, te has
no effect on the slope under the same conditions. However,
in the presence of geometric effects, this slope of 1/2 is
not maintained anymore. Note that η∗ < ηc is true only for
a nondriven engine. In our case, the two-parameter driving
protocol creates extra geometric pumping allowing η∗ > ηc.
Moreover, introduction of amplitude modulation even allows
η∗ 	 ηc as can be seen in Fig. 5(b). The behavior of the slope
and intercept in the presence of geometric effects is shown
graphically in Figs. 5(c) and 5(d), respectively. The slope
decreases, reaches a minimum, and then gradually increases
and saturates at the respective values obtained for sinusoidal
case, for both Gaussian and Lorentzian drivings. Note that, as
per Eq. (11), there is no intercept in η∗ as a function of ηc. In
the presence of geometric effects, an intercept is introduced
in the standard expression because of the driven dynamics.
This intercept nonlinearly decreases with te and approaches
the value obtained from sinusoidal drivings.

Efficiency, being one of the most characteristic quantities
of engines, is often intensively investigated to gain deeper
thermodynamic insights. During the last two years, with re-
spect to QHE, several interesting bounds on efficiency have
been proposed [36], especially derived from TUR [36]. One
of such bounds on the efficiency of QHEs is given by [35]

γ /η � 1, with γ =
ηcP

Tc
̇ + P
, (12)

where 
̇ represents the rate of entropy production and has
been claimed to be a direct result of TUR in quantum
systems [38]. The average entropy production is given by

̇ = jA, where A is the thermodynamic affinity [50]. Us-
ing an established TUR of the type An/ j � 2kB [50], it is
straightforward to recast Eq. (12) to (kB → 1)

γ /η � 1, with γ =
ηcP

P + TcA j
. (13)

It is natural to see the validity of Eq. (13) in the presence of ge-
ometric effects as well as other engine parameters. Although
other TURs have been proposed, these involve evaluation of
constancies and power fluctuations [36–39] and cannot be
addressed within the currently employed formalism, and we
leave it as a future prospect.

In our engine the thermodynamic affinity is known and

is given by A = ln ñl
∫ tp

0 dt ′[1+nc (t ′ )]nh (t ′ )
nl

∫ tp
0 dt ′nc (t ′ )[1+nh (t ′ )]

[41]. We numerically

evaluate γ and η in Eq. (13) and plot γ /η as a function of
envelope duration, te, in Fig. 6, evaluated at different cavity
temperatures Tl and coherence values ph. In Figs. 6(a), 6(c),
and 6(e), there are no geometric contributions (only dynamic,
φ = 0), and the inequality γ /η > 1 is always maintained
irrespective of any engine parameters. From the insets, we
show that γ /η changes its order with respect to ph as Tl in-
creases [Figs. 6(a)–6(e)]. Most interestingly, in the presence of
geometric contribution [Figs. 6(b), 6(d), and 6(f)], by suitably
selecting Tl and te we report a region where the inequality (13)
does not hold. This happens at very small values of te and
large values of Tl where we observe that γ /η < 1. As te
increases, the driving approaches the value obtained from
sinusoidal drivings where the inequality is recovered. There-
fore, the inequality condition is broken only in the presence of
geometric effects introduced due to amplitude modulation. If
the amplitude modulation is absent, the inequality holds.

IV. CONCLUSION

In this work, we chose to drive the two temperatures of
the thermal reservoirs of a quantum heat engine with pro-
tocols where the driving amplitude is being modulated in
the adiabatic limit introducing envelope functions. With such
amplitude modulation, we reported the optimization of the
geometric flux with respect to quantum coherences for a fi-
nite envelope duration, which is otherwise not possible with
simple sinusoidal drivings. Further, we also optimized the
dynamic as well as the geometric noise, and this optimiza-
tion is independent of envelope duration for the former one,
whereas for the latter one the optimization point is envelope
duration dependent. The optimal value of coherence decreases
as the envelope duration is increased depending on the shape
of the envelope. Another interesting thermodynamics quan-
tity, the efficiency at maximum power (EMP), decreases
nonlinearly with the envelope duration. In the presence of
both geometric effects and modulated driving with envelope,
the slope and intercept rise, which deviate from the standard
linear expression for EMP in terms of Carnot efficiency in
an intricate manner depending on the shape and duration of
the envelope. Further, universal bounds on efficiency based on
uncertainty relationships do not hold when geometric effects
are employed via amplitude modulation with shorter envelope
duration and larger cavity temperatures.
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FIG. 6. γ /η for dynamic (top) and total (bottom) contributions as a function of envelope duration te for (a, b) Tl = 1.2, (c, d) Tl = 2, and
(e, f) Tl = 2.7, in the range 0 � ph � 1.

APPENDIX: METHOD OF FULL COUNTING STATISTICS

The full theoretical description of the QHE and the
associated formalism can be found in many earlier
works [29,41,43,45,46]. Here we present only the necessary
details and omit the existing reports to avoid repetition. The
QHE is composed of two degenerate quantum states |1〉
and |2〉, with the same symmetry (therefore with a forbid-
den transition between them) and coupled to two thermal
baths. Two energy states |a〉 and |b〉 belonging to different
symmetry and therefore with allowed transition are coupled
to the hot and the cold bath, respectively. The state |a〉 is
higher in energy than the state |b〉. |1〉, |2〉, |b〉, and |a〉
states correspond to the energies of E1, E2, Eb, and Ea,
respectively. States |a〉 and |b〉 are also coupled to a uni-
modal cavity, and the strength of the coupling is denoted by
g. The total Hamiltonian is written as ĤT = Ĥ0 + V̂sb + V̂sc,
where

Ĥ0 =
∑

ν=1,2,a,b

Eν |ν〉〈ν| +
∑
k∈h,c

εkâ†
k âk + εl â

†
l âl ,

V̂sb =
∑

k ∈ h,c

∑
i=1,2

∑
x=a,b

rik âk|x〉〈i| + H.c,

V̂sc = gâ†
l |b〉〈a| + H.c. (A1)

In the above equation, Eν , εk , and εl are the energy of the
system’s νth level, kth mode of the thermal reservoirs, and
unimodal cavity, respectively. rik is the system-reservoir cou-
pling of the ith state with the kth mode of the reservoirs.
Thermal baths are modeled as harmonic modes with â†(â)
being the bosonic creation (annihilation) operators. There is
a heat flow from the hot bath to the cold bath in a nonlinear
fashion. Also, there is a radiative decay channel originating
from the transition |a〉 → |b〉.

À propos of the theoretical full counting statistical (FCS)
formalism in the Liouville space, presented in our earlier
works [29,41], a reduced density vector in the Liouville
space is composed of four coupled populations and a coher-
ence given by |ρ(λ, t )〉 = {ρ11, ρ22, ρaa, ρbb, Re(ρ12)}, with
i = 1, 2, a, b, which denotes the system’s many-body states
and Re(ρ12) is the thermally induced coherence between
states |1〉 and |2〉. An adiabatic Markovian quantum master
equation approach combined with a standard generating func-
tion technique allows us to evaluate the statistics of photons
exchanged between the engine and the cavity as per the equa-
tion ρ̇(λ, t )〉 = L̆(λ, t )|ρ(λ, t )〉, where λ is a field that counts
the number of photons exchanged between the system and the
cavity. L̆(λ, t ) is the adiabatic effective evolution Liouvillian
superoperator within the Markov approximation, given by

L̆(λ, t )=

⎛
⎜⎜⎜⎝

n1(t ) 0 r1hñh(t ) r1cñc(t ) y(t )
0 n2(t ) r2hñh(t ) r2cñc(t ) y(t )

r1hnh(t ) r2hnh(t ) −g2ñl − 2rhñh(t ) g2nle−λ 2rh phnh(t )
r1cnc(t ) r2cnc(t ) g2ñleλ −g2nl − 2rcñc(t ) 2rc pcnc(t )

y(t )
2

y(t )
2 rh phñh(t ) rc pcñc(t ) −n(t )

⎞
⎟⎟⎟⎠. (A2)
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In the above equation ni(t ) = −[ricnc(t ) + rihnh(t )]
with i = 1, 2, rc = r1c + r2c, rh = r1h + r2h, y(t ) =
−rcnc(t )pc − rhnh(t )ph, ñc(t ) = nc(t ) + 1, n(t ) = (r1h +
r2h)nh(t )/2 + (r1c + r2c)nc(t )/2 + τ , ñh(t ) = nh(t ) + 1,
ñl = 1 + nl , and τ is an environmental dephasing parameter.
In this study we have considered equal system-reservoir
coupling denoted by r. The explicit form of nc(t ) and nh(t )
can be expressed as nc(t ) = 1/{exp[(Eb − E1)/kBTc(t )] − 1},
nh(t ) = 1/{exp[(Ea − E1)/kBTh(t )] − 1}. ph and pc are
the quantum coherence control parameters associated
with the hot and cold baths, respectively. These
quantify the orientation of the transition dipoles
during heat absorption (emission) from (to) the
hot (cold) bath.

The statistics of q (number of photons exchanged
between the system and the cavity) is obtained from
moment-generating function, which is expressed as G(λ, t ) =∑

q eλqP(q, t ) where P(q, t ) is the probability distribution
function corresponding to q net photons in the cavity
within a measurement window, t . Within the currently em-
ployed FCS formalism, it can be shown that Ġ(λ, t ) =
〈1̆|L̆(λ, t )|ρ(λ, t )〉 with 〈1̆| = {1, 1, 1, 1, 0} [51,52]. With the
help of Eq. (A2), one can obtain geometric contributions from
the scaled cumulant-generating function given by S(λ) =
limt→∞(1/t ) ln[〈1̆| exp[L̆(λ, t )t]|ρ(λ, t )〉]. S(λ) is separa-
ble into dynamic and geometric parts additively, S(λ, t ) =

Sd (λ, t ) + Sg(λ, t ):

Sd (λ) = 1

tp

∫ tp

0
dt ′ζo(λ, t ′), (A3)

Sg(λ) = − 1

tp

∫ tp

0
〈Lo(λ, t )|Ṙo(λ, t )〉 dt . (A4)

In the above equation, Sd (λ) and Sg(λ) represent the dynamic
and geometric cumulant-generating functions, respectively.
|Ro(λ, t )〉 and 〈Lo(λ, t )| are the instantaneous right and left
eigenvectors of L̆(λ, t ) with an instantaneous long-time dom-
inating eigenvalue, ζo(λ, t ). Note that analytical expressions
for both Sd (λ) and Sg(λ) cannot be derived for four-level
dQHE. The cumulant-generating function is analytically
known only for two-level systems [31,33] within the Markov
limits. In systems with a large number of states, analyti-
cal expressions have not been reported since the geometric
contributions involve calculation of both the left and right
eigenvectors of the Hamiltonian. The nth-order fluctuations
[cumulants of S(λ)] can be calculated as

C(i)
d = ∂ i

λSd (λ)|λ=0, (A5)

C(i)
g = ∂ i

λSg(λ)|λ=0. (A6)

When i = 1, we get the dynamic (geometric) flux, jd ( jg), and
when i = 2, we obtain the dynamic (geometric) noise, nd (ng),
which are numerically evaluated.
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