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Semianalytical solutions of Ising-like and Potts-like magnetic polymers on the Bethe lattice
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We study magnetic polymers, defined as self-avoiding walks where each monomer i carries a “spin” si and
interacts with its first neighbor monomers, let us say j, via a coupling constant J (si, s j ). Ising-like [si = ±1,
with J (si, s j ) = εsis j] and Potts-like [si = 1, . . . , q, with J (si, s j ) = ε(si )δ(si, s j )] models are investigated. Some
particular cases of these systems have recently been studied in the continuum and on regular lattices and
are related to interesting applications. Here, we solve these models on Bethe lattices of branching number σ ,
focusing on the ferromagnetic case in zero external magnetic field. In most cases, the phase diagrams present a
nonpolymerized (NP) and two polymerized phases: a paramagnetic (PP) and a ferromagnetic (FP) one. However,
quite different thermodynamic properties are found depending on q in the Potts-like polymers and on whether
one uses the Ising or Potts coupling in the two-state systems. For instance, for the standard Potts model [where
ε(1) = · · · = ε(q)] with q = 2, beyond the θ -point (where the critical and discontinuous NP-PP transition lines
meet), a second tricritical point connecting a critical and a discontinuous transition line between the PP-FP
phases is found in the system. A triple point where the NP-PP, NP-FP, and PP-FP first-order transition lines meet
is also present in the phase diagram. For q � 3 the PP-FP transition is always discontinuous, and the scenario
with the triple and θ points appears for q � 6. Interestingly, for q � 7, as well as for the Ising-like model the
θ point becomes metastable and the critical NP-PP transition line ends at a critical end point (CEP), where
it meets the NP-FP and PP-FP coexistence lines. Importantly, these results indicate that when q � 6 the spin
ordering transition is preceded by the polymer collapse transition, whereas for q � 7 and in the Ising case these
transitions happen together at the CEPs. Some interesting nonstandard Potts models are also studied, such as the
lattice version of the model for epigenetic marks in the chromatin introduced by Michieletto et al. [Phys. Rev.
X 6, 041047 (2016)]. In addition, the solution of the dilute Ising and dilute Potts models on the Bethe lattice are
also presented here, since they are important to understand the PP-FP transitions.
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I. INTRODUCTION

Simple model systems have played a major role in the
development of the modern theory of equilibrium phase
transitions and critical phenomena [1–3]. Beyond usually pro-
viding deep insight on the real systems they are intended to
describe, the study of such models is justified also by the
universality observed near criticality. In this context, the most
paradigmatic example is certainly the Ising model [4]. Intro-
duced as a model for an anisotropic magnet—with “spins”
si = ±1 placed on the sites of a given lattice, where each pair
(i, j) of nearest-neighbor (NN) spins has an energy −εsis j—
its critical properties are related to those of order-disorder
transitions in binary alloys, gas-liquid critical phenomena,
phase separation in liquid mixtures and a variety of other
examples. Several generalizations of the Ising model have
appeared in the course of time, among which the Potts model
[5] is of particular interest here. In this model, each lattice
site can be found in one of q states and each pair of NN sites
in the same state, contributes an energy −ε to the system.
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This model is related to a number of experimental and model
systems [6], being, e.g., mapped onto the Ising model for
q = 2. The three-state (related, e.g., to the famous Baxter’s
hard-hexagon model [7,8]) and the four-state Potts universal-
ity classes have been also widely investigated. For q � 5 the
order-disorder transition in the system is discontinuous [6].

Dilute polymers are another example of a very important
system which can be modeled (in a coarse-grained approach)
by simple lattice models [9,10]. In fact, the critical prop-
erties of polymer chains have been widely studied through
self-avoiding walks (SAWs). By including an attractive in-
teraction between NN monomers nonconsecutive along these
walks, one obtains the interacting SAW (ISAW) model [11],
which is a paradigmatic model for studying the polymer col-
lapse transition. Due to the entropy-energy dispute, at high
temperatures (and/or in a good solvent) the polymer stays
in a coil configuration, whereas at low temperatures (and/or
in a poor solvent) it assumes a globular shape [12,13]. At
a θ temperature (and/or in a θ solvent) the system under-
goes a coil-globule transition and, as demonstrated by De
Gennes [14,15], the θ -point is a tricritical point, with the
coil phase being a critical condition. Alternatives to the
ISAW model, considering on-site interactions, may also dis-
play a continuous collapse transition, examples including the
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vertex ISAW (VISAW) model [16] (whose critical exponents
in two-dimensions are different from those for the ISAW
model [17]), interacting self-avoiding trails [18] (whose
nature and universality class of the collapse transition in two-
dimensions is still a subject of debate [19]), among others
[21–23]. Modified ISAW models, considering, e.g., interac-
tions up to second neighbors [24] or bond-bond interactions
[25] have been also analyzed.

Here, we are interested in another type of polymer model
where each monomer of a SAW carries a “spin” and interacts
with its NN monomers (including the bonded ones) through
a magnetic coupling. Three versions of this system have been
considered in the literature: (i) the case where dynamic spins
are placed on static SAWs [26]; (ii) the opposite situation,
where the spin configuration is “frozen” along a dynamic
chain [27]; and (iii) the most general and interesting case,
where both the spins and polymer conformations may change,
giving rise to magnetic polymers [28–30]. We remark that
such polymers are very appealing, since flexible magnetic
materials can be useful in a large number of applications [31].

The ferromagnetic Ising-like magnetic polymers were
firstly studied by Garel et al. [28], via mean-field calculations
and Monte Carlo (MC) simulations on the cubic lattice, where
evidence for a first-order collapse transition, occurring con-
comitantly with the paramagnetic-to-ferromagnetic transition,
was found for zero and small external magnetic field (h),
whereas for large h the continuous θ transition was recovered.
In a recent work, Foster and Majumdar [29] reported new MC
simulations for this model confirming the first-order nature
of the transition for h = 0, but casting doubt on the scenario
for h �= 0. For the Ising-like model with h = 0 on the square
lattice, a continuous collapse transition (once again happening
together with the magnetic transition) was found in Ref. [29].
A similar result was independently obtained by Faizullina
et al. [30]. Interestingly, these MC studies on the square lattice
indicate that some critical exponents agree with the Ising ones
while others are close to those of the θ universality class
[29,30]. As an aside, we notice that a bond-fluctuating version
of the Ising-like polymers has also been investigated by Luo
and collaborators [32].

In the case of Potts-like magnetic polymers, the Hamil-
tonian of the combined n-vector model and the q-state Potts
model was proposed long ago (and studied in the limit of
n → 0 and q → 1 via renormalization group calculations) as
a model for vulcanisation [33]. More recently, the q = 3 case
in the continuum space was used by Michieletto et al. [34] to
investigate the effect of the spreading of epigenetic marks on
the chromatin folding. By considering one of the three states
as nonmagnetic (or unmarked) and attractive interactions be-
tween pairs of marked monomers with the same “color,” a
first-order transition between an epigenetically disordered coil
phase and an epigenetically coherent chromatin globule was
found in Ref. [34].

In this paper, we solve the Ising-like and Potts-like mag-
netic polymers on Bethe lattices with branching number σ ,
considering ferromagnetic interactions and zero external mag-
netic field. The (mean-field) grand-canonical phase diagrams
present a series of interesting results, not anticipated in pre-
vious studies of these systems. To name a few, the θ -point,
a second tricritical point (related to the magnetic transition)

FIG. 1. Illustration of a q = 4 Potts-like polymer with eight
monomers on the square lattice. The different numbers (and colors)
denote the four possible states for each monomer. The thicker (red)
lines represent the bonds connecting consecutive monomers in the
walk. The dotted lines indicate the nonconsecutive nearest-neighbor
monomers. The statistical weight of this configuration is z8ω1ω3.

and a triple point is found for the two-state Potts polymers,
whereas in the Ising case the θ -point becomes metastable,
the triple point disappears and the collapse transition takes
place (together with the magnetic transition) at a critical end
point (CEP). A similar scenario is found for Potts systems
with q � 7. For q � 6, however, the spin ordering transition
occurs separately of the polymer collapse transition. The ther-
modynamic properties of the lattice version of the model for
epigenetic marks [34], of some other magnetic polymers with
nonmagnetic monomers, as well as of the dilute Ising and
dilute Potts models on the Bethe lattice are also investigated.

The outline of this paper is as follows. In Sec. II we
define the magnetic polymer models and devise their solu-
tion on the Bethe lattice. A comparison between the classical
ISAW model and the q = 1 Potts-like polymers is presented
in Sec. III. Ising-like and q = 2 Potts-like polymers are dis-
cussed in Sec. IV, while results for the Potts-like models
with q � 3 are presented in Sec. V. Section VI brings results
for some interesting Potts-like polymers with nonmagnetic
monomers, including the lattice version of the model for
epigenetic marks discussed above. Our final discussions and
conclusions are summarized in Sec. VII. Some details on the
exact calculation of the θ -points are given in Appendix A.
Appendix B presents the solutions of the dilute Ising and
dilute Potts models on the BL.

II. MODELS AND THEIR SOLUTION
ON THE BETHE LATTICE

A. Models

Polymers in dilute solutions are usually modeled as self-
avoiding walks (SAWs), i.e., a sequence of N monomers
(placed on the sites of a given lattice of spacing a) connected
by N − 1 bonds (of length a, placed on the lattice edges) in
a way that each site is visited by at most one monomer. See
Fig. 1. Considering that each monomer i carries a “spin” (or
“color”) si = 1, . . . , q and interacts with a nearest-neighbor
(NN) monomer j (including those consecutive along the
chain) through a coupling constant J (si, s j ) = ε(si )δ(si, s j ),
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FIG. 2. Symmetric Cayley tree with branching number σ = 3
and three generations, starting from a central site.

where δ(si, s j ) is the Kronecker δ function, one obtains Potts-
like magnetic polymers. The Ising-like model is given by q =
2, ε(1) = ε(2) = ε and J (si, s j ) = ε[2δ(si, s j ) − 1]. There-
fore, the grand-canonical energy of a given walk �N reads

H�N = −
∑
〈i, j〉

J (si, s j ) − μN, (1)

where μ is the chemical potential and the sum runs over
all pairs of NN monomers, regardless of being bonded or
not. Note that we are assuming here that there is no external
magnetic field applied in the system. Moreover, following pre-
vious works on magnetic polymers on regular lattices [28–30],
only the ferromagnetic case, corresponding to ε(si ) � 0, will
be analyzed here. Hereafter, we will work with the monomer
fugacity z = eμ/kBT and the weights ωs = eε(s)/kBT , so that the
partition function of the Potts-like systems can be written as

Y (P) =
∑

N

∑
�N

∑
{s1,...,sN }

zNω
M1,1

1 ω
M2,2

2 · · ·ωMq,q
q , (2)

where the second sum is carried over all SAW’s of size N ,
while the third one runs over all spin configurations for a
given SAW. The exponents Mj, j (�N ; {s1, . . . , sN }), for j =
1, . . . , q, denote the total number of pairs of NN monomers
of type ( j, j). Although we are defining the model with a
generalized Potts coupling, in most cases we will investigate
the standard model, where ω1 = · · · = ωq = ω.

For the Ising-like model one has

Y (I ) =
∑

N

∑
�N

∑
{s1,...,sN }

zNωM, (3)

where M = M1,1 + M2,2 − M1,2, with M1,2 being the total
number of NN monomers with different spins.

B. Bethe lattice solution

A Cayley tree is a connected graph, without loops, where
all vertices (sites) have the same coordination number σ + 1,
with exception of the boundary ones, which have coordination
1. Hence, a symmetric Cayley tree can be built by connecting
σ + 1 edges to a central site and then successively adding σ

edges to each boundary site of the previous generation (see
Fig. 2). The Bethe lattice (BL) is the core of the infinite Cayley
tree [8,35].

FIG. 3. Possible configurations for the root sites for q-state Potts-
like polymers on the BL. Following the notation in Fig. 1, different
numbers (and colors) represent the different Potts states, while the
thicker (red) lines denote polymer bonds. The leftmost configuration
(g0) corresponds to an empty root site.

In order to solve a given model on the BL, we may write
down recursion relations for partial partition functions (ppf’s),
considering the process of building a subtree with M + 1
generations by connecting σ subtrees, with M generations
each, to a root site of a rooted edge. As is shown in Fig. 3,
for the models considered here this site can be empty (cor-
responding to ppf g0), occupied by a monomer with spin s
without a bond in the rooted edge (ppf’s g1,s) or occupied by
a monomer with spin s with a bond in the rooted edge (ppf’s
g2,s, with s = 1, . . . , q). So, there exist 2q + 1 configurations
for the root and related ppf’s for the Potts-like polymers,
and five of them in the Ising-like case. It is instructive to
divide these ppf’s into two sets: those without a bond in the
rooted edge SU = {g0, g1,1, g1,2, . . . , g1,q} and those with a
bond SB = {g2,1, . . . , g2,q}. As it is always done in solutions
of polymer models on the BL (see, e.g., Refs. [20,23,36–38]
and references therein), we will consider that the chains start
and end at the boundary of the tree. Therefore, to ensure the
polymer continuity on the BL, at a root site of type g2,s, one
of the σ attaching subtrees has to be a ppf from the set SB, and
the other (σ − 1) from SU . The recursion relation for a ppf
g2,s is given thus by a sum of terms of type gn

0gσ−1−n
1 g2, where

n = 0, . . . , σ − 1 and all combinations of spin states have to
be considered in the g1’s and g2, each term with its appropriate
statistical weight [see Eqs. (4)]. In a similar fashion, at a root
site of type g1,s will necessarily attach two subtrees with ppf’s
from the set SB and (σ − 2) from SU . Moreover, for an empty
root site (of type g0) only contributions from SU are allowed.
In this way, the recursion relations for the Potts-like polymers
read

g′
0 =

(
g0 +

q∑
i=1

g1,i

)σ

, (4a)

g′
1,s = zs

(
σ

2

)(
g0 +

q∑
i=1

ωδ(s,i)
s g1,i

)σ−2( q∑
j=1

ωδ(s, j)
s g2, j

)2

,

(4b)

and

g′
2,s = zsσ

(
g0 +

q∑
i=1

ωδ(s,i)
s g1,i

)σ−1( q∑
j=1

ωδ(s, j)
s g2, j

)
, (4c)

where s = 1, . . . , q and the primed (unprimed) g’s represent
ppf’s in generation M + 1 (M). Although we are assigning,
for later convenience, different fugacities zs for the monomers
according to their spin s, at the end we will always work with
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the same fugacity z = z1 = · · · = zq. Note that the weights ωs

accompanying g1,i (g2, j) in these equations account for inter-
chain (intrachain) interactions between nonbonded (bonded)
monomers. In fact, in contrast with regular lattices, non-
bonded monomers of a given chain can not interact with each
other in the BL, due to the absence of loops in the tree.
This means that the collapse of ISAW-like polymer models
(of which the magnetic systems analyzed here are just one
example) placed on the BL results from a collective behavior
of multiple chains, instead of a collapse of individual chains,
as usually observed in regular lattices.

Since the recursion relations for the ppf’s diverge in the
thermodynamic limit (M → ∞), we have to work with ra-
tios of them, which will be defined here as R1,s = g1,s

g0
and

R2,s = g2,s

g0
. We are thus left with 2q recursion relations (RRs)

for these ratios, being

R′
1,s = zs

(
σ

2

)(
1 + ∑q

k=1 ωδ(s,k)
s R1,k

)σ−2(∑q
i=1 ωδ(s,i)

s R2,i
)2(

1 + ∑q
j=1 R1, j

)σ

(5a)

and

R′
2,s = zsσ

(
1 + ∑q

k=1 ωδ(s,k)
s R1,k

)σ−1( ∑q
i=1 ωδ(s,i)

s R2,i
)

(
1 + ∑q

j=1 R1, j
)σ ,

(5b)

for s = 1, . . . , q. These RRs converge as M → ∞ and their
physical (i.e., real and nonnegative) fixed points determine
the thermodynamic phases of the model for given σ and q.
The stability of these phases is analyzed through the leading
eigenvalue, �, of the jacobian matrix. This is a 2q × 2q ma-
trix with entries J�a,�b = ∂R�a

∂R�b
, where �a ≡ (k, s) and �b ≡ (k′, s′),

for k, k′ = 1, 2 and s, s′ = 1, . . . , q. A given phase is stable
(unstable) in regions of the parameter space where |�| � 1
(|�| > 1). The condition |�| = 1 determines the spinodal of
the phase.

Similarly to the RRs for the ppf’s, we may obtain the par-
tition function of the system on the BL by attaching (σ + 1)
subtrees with M → ∞ generations to a central site. This gives

Y (P) = gσ+1
0 y(P), (6)

for the Potts-like polymers, where

y(P) =
(

1 +
q∑

k=1

R1,k

)σ+1

+
(

σ + 1

2

)

×
q∑

s=1

zs

(
1 +

q∑
j=1

ωδ(s, j)
s R1, j

)σ−1( q∑
i=1

ωδ(s,i)
s R2,i

)2

.

(7)

The solution of the Ising-like model follows the same lines
above, with the recursion relations for the ppf’s and their
ratios being given by expressions analogous to Eqs. (4) and
(5), respectively, for q = 2, with ωδ(s,k)

s replaced by ω2δ(s,k)−1.
In the same fashion, the partition function in the Ising case is
Y (I ) = gσ+1

0 y(I ), where y(I ) is given by Eq. (7) with q = 2 and
ωδ(s,k)

s → ω2δ(s,k)−1. It is worth noticing that the existence of
vacant sites in the polymeric systems breaks the equivalence

between the Ising and the q = 2 Potts models, which is the
reason for discussing both solutions here.

Once one has the partition function y(X ) at hand, for X = P
or I , the density of monomers with spin s in a given phase is
given by

ρs = zs

y(X )

∂y(X )

∂zs

∣∣∣∣
zs=z

, (8)

from which the total density ρ = ρ1 + · · · + ρq, and the
fraction ns = ρs/ρ of monomers with spin s can be calcu-
lated. Then, the order parameter for the paramagnetic-to-
ferromagnetic transition can be defined as

m = q max(n1, n2, . . . , nq ) − 1

q − 1
. (9)

As demonstrated in several works (see, e.g., Refs. [39]),
the reduced bulk free energy per site on the BL is

φb = −1

2
ln

(
YM+1

Y σ
M

)
, (10)

for M → ∞. For the systems considered here, this yields

φb = −1

2

[
σ (σ + 1) ln

(
1 +

q∑
j=1

R1, j

)
− (σ − 1) ln y

]
.

(11)
Whenever two phases (let us say A and B) coexist, their
coexistence points, lines, or surfaces are determined by the
condition φ

(A)
b = φ

(B)
b .

As usually observed in the grand-canonical analysis of
polymer models, a nonpolymerized (NP) phase exists in
magnetic polymers for small fugacities z. In fact, a simple
inspection of Eqs. (5) makes it clear that these RRs have
a fixed point solution where Rk,s = 0 for all k = 1, 2 and
s = 1, . . . , q. This indeed corresponds to the NP phase, since
this yields ρ

(NP)
1 = · · · = ρ (NP)

q = 0 and φ
(NP)
b = 0. Thanks to

the simplicity of this fixed point, it is easy to determine its
stability region for the Ising-like (I) and standard Potts-like
(P) models, being

z(I ) � ω

σ (ω2 + 1)
and z(P) � 1

σ (ω + q − 1)
, (12)

respectively, where the equalities define the spinodals of the
NP phase in each case.

For large z and/or ω the systems are polymerized and, be-
cause of their magnetic character, one finds two different poly-
merized phases: a disordered paramagnetic (PP) and an or-
dered ferromagnetic (FP) phase. The former one is character-
ized by a fixed point solution of type Ri,1 = Ri,2 = · · · = Ri,q,
for i = 1, 2, such that n(PP)

1 = · · · = n(PP)
q = 1/q and, then,

m = 0. In the FP phase a symmetry breaking is observed
in the RRs, with one of the spin states (let us say, s = 1)
dominating over the others, such that Ri,1 > Ri,2 = · · · = Ri,q.
This leads to n(FP)

1 > n(FP)
2 = · · · = n(FP)

q , yielding m > 0 in
the FP phase.

Since Eqs. (5) reduce to only two RRs in the PP phase, it
is straightforward to obtain their solutions using a software
such as the Mathematica, but the expressions are too large
to be given here. For general σ and q, we find a critical line
separating this phase from the NP one, for small values of
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ω, as discussed in more detail in the following sections. This
critical line ends at a tricritical point, which for the standard
Potts-like polymers is located at (see Appendix A)

zθ = σ − 1

qσ 2
and ωθ = σ + q − 1

σ − 1
. (13)

This point can be identified as the θ point, where the
coil-globule transition takes place in classical models for θ -
polymers (as, e.g., the ISAW model), since the PP phase has
the same characteristics of the polymerized phase in such
models. For the Ising-like polymers, we obtain

zθ = σ − 1

2σ 2
and ωθ = σ + √

2σ − 1

σ − 1
, (14)

where zθ is identical to the one for the q = 2 Potts in Eq. (13).
The results for ωθ [and those for the spinodals of the NP
phase in Eq. (12)], however, make it clear that the Ising-like
polymers are not related to the q = 2 Potts-like model through
a simple redefinition of ω. As it will be demonstrated in
Sec. IV, this leads to quite different critical properties for these
two-state models.

III. RESULTS FOR q = 1 POTTS-LIKE POLYMERS
(THE NONMAGNETIC CASE)

For q = 1 all monomers are identical, so that the system is
nonmagnetic and becomes very similar to the classical ISAW
model [11,40,41]. The only difference between these models
is the absence of interactions between bonded monomers in
the ISAW, which are present in the q = 1 Potts case. Note that
Eqs. (5) reduce to only two RRs when q = 1 and the PP and
FP phases become a single polymerized (P) phase in this case.
Therefore, this system depends on only two thermodynamic
parameters z = z1 and ω = ω1, besides σ . The NP phase is
stable for z � 1/(ωσ ) [see Eq. (12)] and this stability limit
coincides with the one for the P phase for ω � σ/(σ − 1),
giving rise to a critical P-NP transition line at zc = 1/(ωσ ).
However, for ω > σ/(σ − 1) there is a region of coexistence
between these phases and they are separated by a first-order
transition line that meets the critical one at the θ point: zθ =
1/(ωθσ ) and ωθ = σ/(σ − 1) [see Eq. (13)]. These results
are summarized in Fig. 4 for a BL with σ = 3. This phase
diagram is qualitatively the same found in the literature for the
ISAW model on the BL [36–38], which is also shown in Fig. 4
for comparison. The main difference between them is that the
critical NP-P line becomes ω-independent in the ISAW case,
happening at zc = 1/σ [36–38]. In fact, the BL solution for
the ISAW model is obtained by making ω

δ(s,i)
1 R2,1 → R2,1 in

Eqs. (5) for q = 1, so that both models are connected via a
simple mapping: ωz(q=1Potts) → z(ISAW).

IV. RESULTS FOR ISING-LIKE AND q = 2
POTTS-LIKE POLYMERS

Let us now analyze the simplest magnetic case, where each
monomer i can be found in only two states (si = 1, 2), as
recently considered for the Ising-like model on the square and
cubic lattices in Refs. [28–30]. Following these works, we will
investigate here only the standard case, where ω1 = ω2 = ω.

0 0.1 0.2 0.3 0.4z
1

2

3

4

ω

NP

P

q = 1 Potts ISAW

FIG. 4. Phase diagrams for the ISAW (right) and the q = 1
Potts-like polymers (left lines). The continuous and discontinuous
transition lines, separating the NP and P phases, are denoted by
solid and dashed lines, respectively. The square dots represent the
θ -points. These results are for a BL with σ = 3, and similar ones are
obtained for larger σ .

Therefore, we are left again with two thermodynamic vari-
ables: z = z1 = z2 and ω.

As discussed in Sec. II, in this case the magnetic polymers
present three stable phases: a nonpolymerized (NP), a para-
magnetic polymerized (PP) and a ferromagnetic polymerized
(FP) phase. For small ω the spinodal of the PP phase coin-
cides with the one for the NP phase [Eq. (12)], giving rise
to critical NP-PP transition lines. These lines are expected
to end at the θ -points [displayed in Eqs. (13) and (14), for
the Potts- and Ising-like models, respectively], above which a
first-order transition line is expected between the NP and PP
phases.

This is exactly the scenario found for the q = 2 Potts
model, as demonstrated in the phase diagram of Fig. 5(a), for
σ = 3. In this diagram, we find also a second tricritical point
related to the order-disorder transition (of spins) between the
PP and FP phases. Namely, for large z these polymerized
phases are separated by a critical line that ends at a tricritical
(TC) point, below which the PP-FP transition becomes dis-
continuous. These behaviors are confirmed in Fig. 5(c), where
the magnetization m is shown as a function of ω, near the
PP-FP transition region, for a value of z below and another
one above the TC point. The coordinates of this TC point, for
3 � σ � 5, are displayed in Table I, where one sees that both
zTC and ωTC decreases as the lattice coordination augments.
For large ω, we find also a NP-FP coexistence in the system
and the associated first-order transition line meets the NP-PP
and PP-FP ones at a triple (tp) point [see Fig. 5(a)]. The loci of
the triple points, for 3 � σ � 5, are summarized in Table II.
Importantly, these results reveal that the polymer collapse
transition and the magnetic transition do not happen together
in the q = 2 Potts-like polymers.

Figure 5(b) shows the phase diagram for the Ising-like
polymers, for σ = 3. Similarly to the q = 2 Potts case, the
NP-FP transition is discontinuous, and the PP-FP phases are
separated by a critical (for large z) and a first-order (for
small z) transition line, meeting at a TC point. The coordinates
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TABLE I. Coordinates (zTC, ωTC) of the tricritical points for the PP-FP transition in the magnetic polymers and (z̄TC, ω̄TC) for the
paramagnetic-to-ferromagnetic transition in the dilute models. In both cases, the results are for the standard q = 2 Potts (P) and the Ising
(I) model defined on BLs of branching number σ . The loci (zCEP, ωCEP) of the critical-end-points found for the Ising-like polymers are also
shown.

σ z(P)
TC ω

(P)
TC z̄(P)

TC ω̄
(P)
TC z(I )

TC ω
(I )
TC z̄(I )

TC ω̄
(I )
TC zCEP ωCEP

3 0.09764 2.48794 0.11111 3.33333 0.17507 1.84095 0.12647 2.97108 0.12617 2.18421
4 0.08756 1.98476 0.14238 2.40742 0.15460 1.57530 0.15597 2.19948 0.10428 1.84225
5 0.08227 1.71431 0.16383 2.00000 0.13769 1.43526 0.17433 1.85890 0.08840 1.65803

of these TC points are also depicted in Table I, where one
may observe that, for a given σ , zTC (ωTC) is larger (smaller)
in the Ising case, i.e., z(I )

TC > z(P)
TC and ω

(I )
TC < ω

(P)
TC . The main

difference between these models is however in the ω val-
ues for the θ points, since ω

(I )
θ is considerably larger than

ω
(P)
θ [see Eqs. (13) and (14)]. For example, ω

(P)
θ = 2, while

ω
(I )
θ ≈ 2.618 for σ = 3. This is indeed expected, since in the

Ising-like case there exists a repulsion between NN monomers
with different spins, so that a larger ω is required to yield
a θ collapse. As a consequence of this, the θ point becomes
metastable in the Ising-like system, with the stable part of the
critical NP-PP line ending at a CEP, where it meets the NP-FP
and PP-FP coexistence lines [see Fig. 5(b)]. The coordinates
(zCEP, ωCEP) of these CEPs for 3 � σ � 5 are displayed in
Table I.

As will be discussed in more detail in Sec. VII, this means
that the polymer collapse and magnetic ordering transition
happen together at the CEP. We notice also that while the NP
and PP phases have vanishing density and magnetization at
the CEP, these quantities are nonnull for the FP phase there.
For instance, ρCEP = 0.78675 and mCEP = 0.97180 for σ = 3
and ρCEP = 0.81759 and mCEP = 0.97802 for σ = 5 in the

TABLE II. Triple (tp) points for q-state Potts-like polymers on
BLs of branching number σ . The numerical values for the exact
results for the θ points [Eq. (13)] are also shown, for comparison.

q zt p ωt p zθ ωθ

σ = 3
2 0.0879 2.59345 0.111111 2.00000
3 0.0635 3.10228 0.074074 2.50000
4 0.0505 3.50965 0.055555 3.00000
5 0.0421 3.86570 0.044444 3.50000
6 0.0362 4.18830 0.037037 4.00000

σ = 4
2 0.07645 2.06779 0.093750 1.66666
3 0.05513 2.39359 0.062500 2.00000
4 0.04367 2.65018 0.046875 2.33333
5 0.03624 2.87157 0.037500 2.66666
6 0.03096 3.07008 0.031250 3.00000

σ = 5
2 0.06650 1.80330 0.080000 1.50000
3 0.04788 2.04056 0.053333 1.75000
4 0.03779 2.22532 0.040000 2.00000
5 0.03123 2.38326 0.032000 2.25000
6 0.02658 2.52376 0.026666 2.50000

FP phase. Thereby, in a canonical analysis of this system,
these quantities shall present a discontinuity at the collapse–
magnetic transition, in consonance with the simulation results
for the Ising-like polymers on the cubic lattice [28,29].

To understand the tricritical scenario above for the mag-
netic transitions (between the PP and FP phases), let us start
noticing that in the z → ∞ limit, when the lattice is fully
occupied by monomers, the polymeric character of the sys-
tem is completely lost. Namely, one recovers the usual (or
pure) Ising and Potts models, with spins on all lattice sites,
whose solutions on the BL display a critical point at ω(P)

c =
(σ + 1)/(σ − 1) for the q = 2 Potts and at ω(I )

c =
√

ω
(P)
c in

the Ising case (see, e.g., Ref. [8] and also the Appendix B).
By decreasing z, vacancies start appearing in the system and
the magnetic polymers become similar to the annealed site-
dilute magnetic models—i.e., Ising and Potts lattice gases. As
discussed in detail, e.g., by Qian et al. [42], the dilute q = 2
Potts model is closely related to the spin-1 Blume-Capel [43]
model, where the crystal field, �, acts as the chemical poten-
tial of the vacancies. Therefore, for small � (corresponding to
large z in our system) a critical line is expected, which ends at
a tricritical point.

Since we are not aware of studies of the annealed dilute
Ising or Potts models on the BL, to confirm the reasoning
above, we have solved these models in Appendix B, asso-
ciating a fugacity z̄ to each site occupied by a magnetic ion
and a weight ω̄ to each pair of NN sites with identical spins.
(In the Ising case, NN sites with different spins also have a
weight ω̄−1.) The resulting phase diagrams are depicted in
Fig. 8, where the disordered and ordered phases are indeed
separated by a critical line that meets a first-order transition
line at tricritical points for both the Ising and q = 2 Potts
models. The coordinates (z̄TC, ω̄TC) of these points are also
displayed in Table I, for 3 � σ � 5. Although ω̄

(P)
TC > ω̄

(I )
TC,

as expected, we do not have a simple relation between these
values, because the mapping ω̄(I ) →

√
ω̄(P) does not work

in the dilute case. Note also that ω̄
(P)
TC is considerably larger

than ω
(P)
TC , though their difference decreases as σ increases.

A similar behavior is observed also in the Ising case. Such
differences are indeed expected, since for small fugacities the
typical spatial configurations of the magnetic polymers and
the site-dilute models shall become considerably different.
For instance, in the polymers each monomer necessarily has
at least two NN ones, while lone monomers can be found
in the lattice gases. This certainly explains why ωTC < ω̄TC,
i.e., why the ordering occurs for a smaller interaction energy
and/or a higher temperature in the polymeric system.
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FIG. 5. Phase diagrams for (a) standard q = 2 Potts-like and
(b) Ising-like magnetic polymers on a BL of branching number
σ = 3. The solid and dashed lines denote continuous and discontin-
uous transitions lines, respectively. The triple (tp) point, the critical
end point (CEP), as well as the tricritical (TC and θ ) points are all
indicated. (c) Magnetization m versus ω for the q = 2 Potts system,
for z = 0.09 (blue dashed) and z = 0.10 (solid red line), where the
discontinuous and continuous PP-FP transition lines are crossed,
respectively.

V. RESULTS FOR POTTS-LIKE POLYMERS WITH q � 3

Next, we investigate q-state Potts-like polymers, for 3 �
q � 10. Once again, we will focus on the standard model,
analyzing the phase behavior in the z-ω space.

0 0.04 0.08 0.12 0.16 0.2z
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PP

θ

tp

(a)
q = 3 Potts

0 0.04 0.08 0.12z
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4

5

6

ω
NP

FP

PP

CEP

(b)
q = 7 Potts

FIG. 6. Phase diagrams for standard Potts polymers with (a)
q = 3 and (b) q = 7, on a BL of branching number σ = 3. The solid
and dashed lines represent continuous and discontinuous transition
lines, respectively. The triple (tp) point, the θ point and the CEP are
all indicated.

Let us start recalling that mean-field approaches for the
(pure) standard Potts model furnish a discontinuous order-
disorder transition already for q � 3 [6], and this is indeed the
case in the BL solution of this model [44,45]. As demonstrated
in Appendix B, by diluting the model (i.e., by decreasing z̄)
a first-order transition line is found separating the ordered
and disordered phases, for all q � 3. Therefore, following
the discussion from the previous section, a PP-FP first-order
transition line is expected also in the magnetic polymers.
This is indeed confirmed in Figs. 6(a) and 6(b), which re-
spectively show the phase diagrams for q = 3 and q = 7, for
σ = 3.

Similarly to the behavior for q = 2 [displayed in Fig. 5(a)],
in the phase diagram of Fig. 6(a), for q = 3, one sees that
discontinuous PP-FP, NP-PP and NP-FP transition lines meet
at a triple point. Moreover, the critical and discontinuous
NP-PP lines are still connecting at a stable θ point. The very
same scenario of q = 3 is found for all q � 6. The numerically
estimated coordinates (zt p, ωt p) of the triple points are given in
Table II, where they are compared with the numerical values
for the exact results for the θ points, given by Eq. (13). Since
ωt p > ωθ , these results are demonstrating that, by increasing
the coupling energy ε or decreasing the temperature T , the
polymer first collapse (at the θ point) and then, in a different
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TABLE III. Critical end points (CEPs), where the critical NP-
PP transition lines end, for q-state Potts-like polymers on BLs of
branching number σ .

σ = 3 σ = 5

q zCEP ωCEP zCEP ωCEP

7 0.0317 4.48690 0.02312 2.65054
8 0.2833 4.76390 0.02048 2.76497
9 0.0255 5.02160 0.01840 2.86966
10 0.0233 5.26362 0.01671 2.96650

point (i.e., at the triple point), it undergoes the magnetic tran-
sition, for all q � 6.

As it is clearly observed in Table II, both zt p and zθ de-
creases, while ωt p and ωθ increases, for a given σ , as q grows.
However, ωθ increases faster than ωt p, in a way that for q � 7
the θ point becomes metastable. Namely, for such large q′s,
the discontinuous NP-FP and PP-FP lines meet at the critical
NP-PP line. Hence, the stable part of this critical line ends
at a CEP. The resulting phase diagram for q = 7 and σ = 3
is depicted in Fig. 6(b), and similar ones are found for larger
q′s and σ ′s. The coordinates of the CEPs—for σ = 3 and 5,
and q up to 10—are displayed in Table III, where one sees
that ωCEP (zCEP) is an increasing (decreasing) function of q.
Thus, similarly to the Ising-like system, the q � 7 Potts-like
polymers become both collapsed and magnetically ordered at
a CEP.

VI. RESULTS FOR MAGNETIC POLYMERS
WITH NONMAGNETIC MONOMERS

A. “Two-state” systems

As discussed in the Introduction, Michieletto et al. [34]
have studied a model for the chromatin folding coupled to the
dynamics of epigenetic marks spreading, consisting of bead-
and-spring chains where each bead carries a “color” (or mark)
s, with s = 1, 2, or 3. The truncated Lennard-Jones potential
(and cutoffs) considered there was such that a self-attraction
exists between pairs of beads (si, s j) whenever si = s j = 1 or
si = s j = 2, with the same energy in both cases, whereas only
a steric repulsion exists otherwise.

Motivated by these works, we investigate here three-state
Potts polymers with ω1 = ω2 = ω and ω3 = 1, which can be
seen as a lattice version for the model above [34]. Note that
this model corresponds to q = 2 Potts-like polymers where
nonmagnetic (i.e., “uncolored” or unmarked) monomers are
also present along the chain, having the same fugacity of the
other ones. In fact, its phase diagram (not shown) is qualita-
tively identical to the one in Fig. 5(a) for the standard q = 2
Potts-like model. However, when the nonmagnetic monomers
are present, the transition points occur for a smaller z and a
larger ω. For σ = 5, for example, the θ point is at (zθ , ωθ ) =
(0.05546, 1.83826), the TC point in the magnetic transition at
(zTC, ωTC) = (0.07225, 1.81766), and the triple (tp) point at
(zt p, ωt p) = (0.05327, 1.95190). This scenario is in contrast
with the simulation results from Refs. [34], where evidence
of a simultaneous collapse and magnetic first-order transition
was found. A possible explanation for this difference is the

fact that the continuum model is being considered on the
lattice.

To confirm that the inclusion of nonmagnetic monomers
in two-state magnetic polymers does not alter their qual-
itative thermodynamic behavior, we have studied also the
Ising-like model with such “impurities.” Namely, we consid-
ered again a q = 3 system where only monomers in states
s = 1, 2 may interact among them, according to the Ising
coupling. The phase diagram found in this case is quali-
tatively the same as the one for the Ising-like polymers,
as depicted in Fig. 5(b), and for σ = 5, for example, one
finds (zCEP, ωCEP) = (0.06789, 1.84910) and (zTC, ωTC) =
(0.22364, 1.51052). So, once again, the presence of nonmag-
netic monomers yields an increase in the ω-coordinates of
these transition points when compared with those for the
standard model.

B. “One-state” systems

It is interesting to analyze also situations where only
monomers in a single state (let us say, s = 1) interact with
each other, provided that they are in NN sites. In this case
there is no competition between two or more interacting
states, which would lead to a symmetry breaking among
them, yielding two stable polymerized (para- and ferromag-
netic) phases in the system. In fact, as seen in Sec. III,
a single polymerized phase is present in this model when
nonmagnetic monomers are absent. However, by introducing
such monomers in the polymer chain their competition with
the interacting monomers gives rise to two types of stable
polymerized phases: a high-density (HD) one, where the poly-
mer density, ρ, as well as the fraction, n1, of interacting
monomers is large; and a low-density (LD) phase, where ρ

and n1 are smaller. These polymerized phases coexist in a
small region of the parameter space, with the coexistence line
ending at a CP, above which they become indistinguishable.
Figure 7(a) shows the values of z versus ρ along this coex-
istence line for the nonstandard q = 3 Potts-like system with
ω2 = ω3 = 1 and ω1 � 1, corresponding thus to a situation
where monomers in states s = 2, 3 are nonmagnetic. This
makes it clear how different are these densities not so far
from the critical point, justifying the naming of the related
phases.

The phase diagram for this model, in space (z, ω1), for
σ = 5, is depicted in Fig. 7(b). There, one sees that while the
NP-LD transition is continuous, the NP-HD one is discontinu-
ous, similarly to the LD-HD transition. These three transition
lines meet at a CEP, where the stable part of the NP-LD
critical line ends. The LD-HD coexistence line starts at the
CEP and ends at a CP, as also seen in Fig. 7(a). Curiously,
these two points are very close in the phase diagram, being lo-
cated at (zCEP, ωCEP) = (0.05980, 1.85667) and (zCP, ωCP) =
(0.06337, 1.80322) for σ = 5. Hence, there exists only a very
limited region of the parameter space where the LD phase
is the most stable one. As an aside, we notice that phases
appearing only in narrow interval of parameters have already
been found in some solutions of polymers models on treelike
lattices [46,47], but it seems do not exist any relation between
them and the LD phase.

024130-8



SEMIANALYTICAL SOLUTIONS OF ISING-LIKE AND … PHYSICAL REVIEW E 106, 024130 (2022)

0 0.2 0.4 0.6 0.8
ρ

0.059

0.06

0.061

0.062

0.063

0.064

z

LD HD

CP

CEP

(a)

0.056 0.058 0.06 0.062 0.064 0.066z

1.4

1.6

1.8

2.0

ω
1

NP

LD

HD

CPCEP

(b)

FIG. 7. (a) Fugacity, z, versus density, ρ, along the LD-HD co-
existence line of nonstandard q = 3 Potts-like polymers with ω2 =
ω3 = 1 on a BL of branching number σ = 5. (b) Phase diagram for
the same model in variables ω1 versus z. The solid and dashed lines
represent continuous and discontinuous transition lines, respectively.
The CP and the CEP are both indicated.

We investigate also the q = 2 version of the nonstandard
Potts-like model above, where ω2 = 1 and ω1 � 1, such that
monomers in state s = 2 are nonmagnetic. As expected, the
phase diagram found for this system is qualitatively analo-
gous to the one in Fig. 7(b), but now one has (zCEP, ωCEP) =
(0.08543, 1.59535) and (zCP, ωCP) = (0.08558, 1.59242) for
σ = 5. Namely, the coexistence region between the LD and
HD phases becomes even narrower. We remark that this sys-
tem is closely related to the dynamic HP model recently
studied by Faizullina and Burovski [48], consisting of SAWs
on the square lattice composed by hydrophobic (H) and po-
lar (P) monomers which can dynamically convert into one
another. Pairs of NN monomers nonconsecutive along the
chain of type P-P and H-P do not interact, whereas a self-
attraction exists between the H-H ones. Hence, by identifying
the state s = 1 with H and s = 2 with P, the only differ-
ence between the model considered here and the dynamic
HP one [48] is the absence of interaction between bonded
monomers in the last model. This may explain why a con-
tinuous θ -like collapse transition was found in Ref. [48],
while here it occurs at a CEP, indicating that it should be
discontinuous.

VII. FINAL DISCUSSIONS AND CONCLUSION

We have presented the grand-canonical solution of sev-
eral interesting models on the Bethe lattice (BL), including
the standard ferromagnetic Ising-like and Potts-like magnetic
polymers, modified versions of these systems where nonin-
teracting monomers are mixed with the interacting ones, as
well as the annealed site-dilute Ising and Potts models. These
systems were investigated on BLs with different coordination
numbers (σ + 1), but no qualitative change was observed in
their thermodynamic behavior with σ for the values analyzed.

For the dilute Ising and dilute q = 2 Potts model we found
a critical line, for large fugacity (z̄) of magnetic ions, and a
first-order transition line, for small z̄, separating the para- and
ferromagnetic phases, both lines meeting at a tricritical point.
This is in consonance with the behavior of these systems
on regular lattices (see, e.g., Ref. [42]). For the Potts model
with q � 3, the order-disorder transition is always discon-
tinuous on the BL. Substantially, the very same behavior is
observed for the transitions between the paramagnetic poly-
merized (PP) and ferromagnetic polymerized (FP) phases in
the magnetic polymers. In fact, when z̄ and the monomer
fugacity (z) in the polymers are both large—meaning that the
densities, ρ, of monomers or magnetic ions are also large—the
magnetic polymers shall not differ too much from the dilute
models. Since the PP-FP transitions occur for relatively large
ρ in the Potts-like case (typically for ρ � 0.6), this explains
the similarity with their counterpart in the dilute models.
For small z, however, the magnetic polymers are found in
a nonpolymerized phase, which does not exist in the dilute
models.

To compare our results for the magnetic polymers with
those from simulation studies in the canonical ensemble, we
notice that in such simulations a fixed-size polymer chain
and its surrounding sites (corresponding to the polymerized
phases in our grand-canonical diagrams) are placed inside,
and thus coexists with, an effectively infinite empty lattice
(corresponding to the NP phase here). Therefore, the canoni-
cal case is given by the NP-polymerized transitions obtained
here. (See, e.g., Ref. [23] for a more detailed discussion about
this.) This means that, along the critical NP-PP lines, one has
the coil phase, since the polymer density vanishes at these
lines. However, along the NP-PP and NP-FP coexistence lines
the polymer densities are nonvanishing, corresponding thus
to globule phases; the former (latter) one with disordered
(ordered) spins.

Therefore, for the Potts-like polymers with 2 � q � 6, a
continuous collapse transition takes place at the θ -point, be-
tween a coil and a globule phase which are both magnetically
disordered. The magnetic transition occurs at a different point;
namely, it happens at the triple point, which exists for a larger
interaction energy (ε) or a smaller temperature (T ). According
to our results, this second transition, between a para- and
a ferromagnetic globule phase, shall be discontinuous, since
both the magnetization and the polymer density present a
discontinuity at the triple point. To verify that this scenario is
not a feature of the BL, we have performed some preliminary
flatPERM simulations for the q = 2 Potts-like polymers on
the cubic lattice and evidence of a usual θ -like collapse, at
ε/kBT ≈ 0.46, was found. This indicates that the coil-globule
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and the magnetic transition do indeed not happen together.
We anticipate that accessing the latter transition, which would
occur inside the globule phase, is a difficult task with this type
of simulation. More details on such simulations, extended also
for other q′s, will be published elsewhere.

It is quite interesting that for Ising-like and Potts-like poly-
mers with q � 7 a very different canonical scenario is found.
In these systems, there is a direct transition from a param-
agnetic coil to a ferromagnetic globule phase at a CEP, so
that the collapse and magnetic transitions occur concomitantly
there. Moreover, since both the density and the magnetiza-
tion of the globule phase have nonvanishing values at the
CEP, the transition is discontinuous in these cases. This is
in agreement with the behavior observed in simulations of
the Ising-like model on the cubic lattice [28,29]. In fact, our
mean-field results are expected to be consistent with those for
regular lattices when their dimension is high. Since for the
Ising-like model on the square lattice evidence for a continu-
ous collapse–magnetic transition was found in Refs. [29,30],
with θ and Ising critical exponents, it seems that in the
grand-canonical ensemble one should have the critical PP-FP
line ending at or very close to the θ -point. Further grand-
canonical analysis of this system—e.g., with Monte Carlo
simulations, transfer matrix methods or generalized Husimi
lattices built with square clusters [49]—are worth to confirm
this.

We have verified also that the inclusion of nonmagnetic
monomers in the “two-state” models does not change their
thermodynamic behavior. Namely, for the q = 2 Potts-like
polymers with nonmagnetic monomers we find a θ -collapse
separated from a discontinuous magnetic transition, whereas
in the Ising-like system with nonmagnetic monomers both
transitions happen together and are discontinuous. A very
different phase behavior is found for the “one-state” model,
where nonmagnetic monomers are mixed with a single type
of interacting one. In this model, which is closely related
to a dynamic HP model for heteropolymers [48], the grand-
canonical diagram presents a low-density and a high-density
polymerized phase, which coexists in a small region of the
parameter space, with the coexistence line ending at a crit-
ical point. The canonical scenario suggested for this model
is analogous to the one for the Ising-like polymers, with a
discontinuous collapse–magnetic transition.
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APPENDIX A: DETERMINATION
OF THE θ POINTS

To obtain the exact coordinates of the θ points for the
magnetic polymers on the BL, we start recalling that in the PP
phase the recursion relations in Eqs. (5) reduce to only two
equations, regardless of q, because R1,1 = · · · = R1,q = R1

and R2,1 = · · · = R2,q = R2. Therefore, in the fixed point of

this phase, Eq. 5(b) becomes a σnt degree polynomial:

P(R1) = (1 + qR1)σ − xσ z[1 + xR1]σ−1

= (1 − xσ z) + σ [q − (σ − 1)x2z]R1 + O
(
R2

1

)
,

(A1a)

where

x = ω + q − 1. (A1b)

The real and positive roots of P(R1) define the physical
solutions for R1. Along the critical NP-PP line, there is only
one of such a roots for the PP phase and it is equal to the NP
solution there; namely, R1 = 0 along this line. Therefore, the
zeroth-order term of P(R1) vanishes in this critical condition.
In fact, this yields z = 1/(σx), which corresponds to the spin-
odal of the NP phase, as can be easily seen by comparing this
with Eq. (12).

At the tricritical condition the solutions become triply de-
generated, so that two roots of P(R1) become identical to the
NP one there. This means that both the zeroth-order and the
first-order terms of P(R1) vanish at the θ points.1 These terms
are explicitly given in Eq. (A1a) and after a simple algebra we
obtain the loci of the θ points for the Potts-like polymers, as
given in Eq. (13).

As pointed in Sec. II, the recursion relations for the Ising-
like polymers on the BL are given by expressions analogous to
Eqs. (5) with q = 2 and ω

δ(s, j)
s replaced by ω2δ(s, j)−1. Hence,

one still finding the polynomial (A1a) in this case, but with
x = ω + 1/ω. Thereby, following the same steps as above,
one readily arrives at the result in Eq. (14) for the θ points
in this case.

APPENDIX B: DILUTE ISING AND POTTS MODELS
ON THE BETHE LATTICE

Let us now consider the site-dilute Ising and Potts mod-
els in their annealed version—where the vacancies are free
to move and are in equilibrium with their surroundings—on
the BL, once again for ferromagnetic interactions and zero
external magnetic field. As above, each site can be empty
[partial partition function (ppf) g0] or occupied by a particle in
state s [ppf gs], and defining the ratios Rs = gs/g0, we obtain
q recursion relations (RRs) for them in the Potts case, being

R′
s = z̄

(
1 + ∑q

i=1 ω̄δ(s,i)Ri
)σ(

1 + ∑q
j=1 Rj

)σ , (B1)

with s = 1, . . . , q. Note that, similarly to the magnetic poly-
mers considered above, we are attributing a fugacity z̄ to each
site occupied by a magnetic ion and a weight ω̄ to each pair
of NN sites occupied with the same spin. The RRs for the
dilute Ising model are given by Eqs. (B1), with q = 2 and
ω̄δ(s,i) → ω̄2δ(s,i)−1. In contrast to the polymeric case, the RRs
in Eq. (B1), as well as those for the Ising case do not admit
an “empty lattice” solution [corresponding to Rs = 0 ∀ s],

1See, e.g., Ref. [36] for a similar discussion on this point for the
ISAW model.
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FIG. 8. Phase diagrams in variables z̄ − ω̄ for the (annealed) site
dilute Ising and q-state Potts models, for q = 2, 3, .., 10, on a BL
with branching number σ = 3. Continuous and discontinuous transi-
tion lines are represented by solid and broken lines, respectively. The
tricritical points for the Ising and q = 2 Potts models are denoted by
the green dots.

but they display the disordered [with R1 = · · · = Rq] and the
ordered [e.g., with R1 > R2 = · · · = Rq] fixed points, as ex-
pected. Following the same type of calculation discussed in
Sec. II, adapted to the present models, we may obtain the spin-
odals, densities, free energies and so on for these phases. For

the sake of conciseness, we will omit the related expressions
here, going directly to the results.

As an aside, we notice that the RRs for the nondilute
case (i.e., for the full lattice limit) can be obtained from
Eqs. (B1) (and related equations for the Ising case) by defining
Xs = Rs/z̄ and then taken the limit z̄ → ∞. Results for these
pure models on the BL have been reported by several authors
in the last decades [44,45,50–52]. The q = 2 Potts model
displays a continuous transition at ω̄(P)

c = (σ + 1)/(σ − 1)
[8,44], whereas for q � 3 a coexistence region exists between
the ordered and disordered phases, with a first-order tran-
sition taking place at ω̄∗ = (q − 2)/[(q − 1)(σ−1)/(σ+1) − 1]
[44,45]. This is consistent with the widely known fact that
mean-field approaches for the Potts model yield a first-order
transition for any q � 3 [6]. In the pure Ising model the

transition is continuous and located at ω̄(I )
c =

√
ω̄

(P)
c .

By including vacancies in the system, we find that the
critical point ω̄c, for the Ising or q = 2 Potts models, is the end
point of a critical line that extends to finite z̄. For small z̄, how-
ever, the transition becomes discontinuous and the coexistence
line meets the critical one at a tricritical point (see Fig. 8). The
coordinates of the tricritical points for some σ are displayed
in Table I of the main text. For the Potts model with q � 3, the
coexistence found for z̄ → ∞ continues existing for finite z̄,
giving rise to first-order transition lines, and the order-disorder
transition is always discontinuous in these cases. Figure 8
presents such transition lines for σ = 3 and similar ones are
found for larger σ .
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