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Perpendicular and parallel phase separation in two-species driven diffusive lattice gases
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We study three different lattice models in which two species of diffusing particles are driven in opposite
directions by an electric field. We focus on dynamical phase transitions that involve phase separation into
domains that may be parallel or perpendicular to a driving field. In all cases, the perpendicular state appears
for weak driving, consistent with previous work. For strong driving, we introduce two models that support the
parallel state. In one model, this state occurs because of the inclusion of dynamical rules that enhance lateral
diffusion during collisions; in the other, it is a result of a nearest-neighbor attractive or repulsive interaction
between particles of the same or opposite species. We discuss the connections between these results and the
behavior found in off-lattice systems, including laning and freezing by heating.
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I. INTRODUCTION

Nonequilibrium systems exhibit a wide variety of fas-
cinating phenomena. Examples are systems consisting of
self-propelled particles such as bacteria [1,2], flocks of birds
[3], and even human crowds [4]. Another class of nonequi-
librium systems are systems driven away from equilibrium
by external energy sources such as electric fields [5] or
temperature gradients [6]. Both types of nonequilibrium sys-
tems possess nonequilibrium steady states, distinguished from
equilibrium by breaking of detailed balance and time-reversal
symmetry [7–9].

Well-studied examples of such states include mixtures of
two species, driven in opposite directions, in two dimensions.
These might consist of passive particles like colloids [10–23]
or active agents like humans or ants [24–28]. Under such con-
ditions, the driven particles or active agents may follow each
other, avoiding collision with oppositely moving particles,
which is called laning [11]. Alternatively, the driving may
cause particles to block each other, similar to a traffic jam [13]
or—for alternating fields—one may observe moving bands
with high density [12]. In experiments of two-component
colloidal mixtures, both lane formation [11] and band forma-
tion [12] are observed.

To understand the laning phenomenon from a theoreti-
cal perspective, Brownian dynamics simulations have been
widely employed to study its properties [13–17,19,23,27–34].
While the simplest models only support laning [14,15,17,29–
32,35], they can be modified to support traffic jam behavior,
for example, by removing thermal noise [19,28] or using long-
range repulsive [13] or short-range attractive potentials [16].

Dynamical phase transitions and spontaneous symmetry
breaking have been found in some of these previously inves-
tigated systems [13,16,19,28]. By analogy with equilibrium
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systems, a natural hypothesis is that such transitions might be
described by universal theories of Landau-Ginzburg type. The
analysis of simple (lattice-based) models should then provide
insight (and quantitative predictions) for more complex off-
lattice systems. Among such lattice models, a driven diffusive
lattice gas with a single particle species was proposed by Katz,
Lebowitz, and Spohn (KLS) [5]: it exhibits phase separation
into domains oriented parallel to the driving field. This work
was then broadened to two species driven in opposite direc-
tions where phase separation perpendicular to the driving field
is supported [36–42]; see [43] for a review.

Depending on the situation, two-species off-lattice and on-
lattice models may support phase separation with domains
parallel to the field, or perpendicular to it (see the schematic
picture in Fig. 1). The parallel state is similar to laning (it cor-
responds to two macroscopic lanes) while the perpendicular
state resembles a traffic jam, where the two species tend to
block each other. Note that if lanes form with a finite width—
as is often observed in experiments and simulations—this
emergence does not require a phase transition or spontaneous
symmetry breaking. However, it is often difficult to establish
whether these finite lanes will persist as a nonequilibrium
steady state, or if they should eventually coarsen into macro-
scopic lanes; see, for example, [17].

Among the open questions in this area, there remain
some differences in the reported behavior of lattice and
off-lattice models. For example, lattice models that support
the perpendicular state of Fig. 1(b) were analyzed already
in the 1990s [36–42], but these models do not support
the parallel state observed in Brownian dynamics. On the
other hand, for Brownian dynamics simulations of oppo-
sitely driven particles with short-range repulsive interactions,
only the parallel state is observed [14,15,17,27,29–32,35],
and the perpendicular state is absent. It is also debated
whether the transition to the parallel state is a genuine phase
transition [15,17,31,32].

To better understand these differences in behavior between
on-lattice and off-lattice models, this work analyzes three
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FIG. 1. Three possible steady states for oppositely driven col-
loidal particles in two dimensions: disordered state, phase separation
perpendicular to the external field, and phase separation parallel
to the external field. Positive particles (moving along the external
field) are labeled red, and negative particles (moving opposite to the
external field) are labeled blue.

different lattice models that include two species of oppo-
sitely driven (oppositely charged) particles. The first model
is that of Schmittmann, Hwang, and Zia (SHZ) [36], which
supports disordered (homogeneous) and perpendicular states.
The other two models [an enhanced lateral diffusion (ELD)
model [17] and a modified two-species Katz, Lebowitz, and
Spohn (TKLS) model] support both parallel and perpendic-
ular states. This shows that the parallel state [14,17] can be
observed in lattice systems, although extra assumptions are
required when constructing such models.

We find that the parallel state is stabilized by a combination
of the driving field and an effective attraction or repulsion
between particles of the same or opposite charge. In the
enhanced lateral diffusion (ELD) model, the effective interac-
tions are generated by an enhanced diffusivity in the direction
perpendicular to the field, which occurs when oppositely mov-
ing particles collide. This mechanism was suggested in [17];
see also [44] for a setting with asymmetric lateral mobility
(“side-stepping”). Our implementation of ELD shares some
features with motility induced phase separation (MIPS) in
active matter [45]. In addition, we consider a two-species
generalization of the KLS model (TKLS), in which effec-
tive (nearest-neighbor) interactions between like and unlike
charges are included explicitly in the interaction energy. The
nonequilibrium steady states in these two models indicate that
the parallel phase is robust in systems with the appropriate,
effective interactions.

In addition to identifying the phases that appear in these
models, we analyze the transitions between them. This will in-
clude a discussion of finite-size scaling, metastability, and the
distributions of appropriate order parameters. We find a rich
phenomenology including both continuous and discontinuous
(first-order) transitions. In addition, the transition between the
parallel and perpendicular states in the ELD model appears to
take place by an intermediate phase with an unusual zig-zag
order.

The paper is organized as follows. Section II gives an
overview of the models that we consider, and the order pa-
rameters that we will use to analyze the phase transitions.
Section III analyzes the SHZ model, building on previous
work [36,39–41], with an expanded numerical characteriza-
tion of the phase transition itself. Then Sec. IV and Sec. V
introduce and analyze the ELD and TKLS models, respec-

tively. Finally, Sec. VI summarizes the main insights of the
work and the comparison with on- and off-lattice systems.

II. MODELS AND ORDER PARAMETERS

A. General definitions

The models that we consider are two-species driven dif-
fusive lattice gases. They consist of N hard particles on a
rectangular lattice of size L‖ × L⊥ with periodic boundary
conditions. All numerical results in this work are obtained for
square lattices, L⊥ = L‖ = L, but we maintain the possibility
of other aspect ratios in our theoretical discussion.

A constant external electric field E = E ŷ is applied in the
+y direction driving the two species in opposite direction. The
two species are indicated by the signs of their charges, + and
−, and are indicated by red and blue in Fig. 1, respectively.
The notation x = (x, y) indicates a lattice site, and we define
occupation variables n+

x and n−
x for the two species. The

charge on site x is therefore

σx = n+
x − n−

x . (1)

Each site can be occupied by at most one particle so n±
x has

possible values 0,1 and σx has possible values 0,±1. Hence,
it is natural to identify the lattice spacing with the particle
diameter.

Particles can move by two processes: either a particle on
site x can hop to a neighboring vacant site x + e with rate
WH(x, e, σx); or if two neighboring sites x, x + e are occu-
pied by particles of different species, then these particles can
swap places with rate WS(x, e, σx). Since all processes involve
neighboring sites then |e| = 1 in these rates. The rates may
also depend implicitly on the local environment of site x
and on the field E . For E = 0, all hop rates are the same
WH = 1, which fixes the unit of time. We implement these
dynamics using a Monte Carlo (MC) method; details are given
in Appendix A.

The number of particles of each species is conserved. The
total number of particles is N = ∑

x(n+
x + n−

x ) and the over-
all density is ρ = N/(L‖L⊥). We consider systems at charge
neutrality:

∑
x σx = 0.

B. Order parameters and spontaneous symmetry breaking

Throughout this paper, we will characterise nonequilib-
rium phase transitions. While these transitions share many
features with their equilibrium counterparts, they are not char-
acterized by an underlying Boltzmann distribution or free
energy. Instead, we characterize phase transitions in terms of
spontaneous breaking of symmetry: in this case, translational
symmetry of the lattice along either the x or y direction; recall
Fig. 1.

To characterize this, we follow [40,41] and define Fourier
transformed densities:

φ(k) = 1

L⊥L‖

∑
x

(1 − n+
x − n−

x )e−ik·x, (2)

ψ (k) = 1

L⊥L‖

∑
x

σxe−ik·x, (3)
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with k = 2π (n⊥/L⊥, n‖/L‖), for integers n⊥, n‖. Physically,
φ is the Fourier transform of the density of vacant sites and ψ

is the Fourier transform of the charge density, with complex
magnitudes

�(k) = |φ(k)|, �(k) = |ψ (k)|. (4)

The key point is that 〈φ(k)〉 = 0 in any translationally invari-
ant system, and 〈�(k)〉 = O(1/L) in large systems. However,
these values become nontrivial if symmetry is spontaneously
broken.

To see this, consider the configurations sketched in
Figs. 1(b) and 1(c) where the formation of high-density
regions breaks translational symmetry. To distinguish the sit-
uations shown in that figure, we consider two specific wave
vectors

k‖ = (2π/L⊥, 0), k⊥ = (0, 2π/L‖). (5)

These are the smallest accessible wave vectors in this system,
corresponding to (n⊥, n‖) = (1, 0) or (0,1). The notation is
chosen because the order parameter φ(k‖) now distinguishes
the parallel phase [Fig. 1(c)]. In these configurations, φ(k‖) is
a complex number whose argument depends on the position
of the dense region (along the y axis) and whose modulus
measures the difference in density between the dense and
dilute regions.

If the density difference between dense and dilute regions
remains of order unity as the system size increases, then the
modulus of φ(k‖) is also of order unity, but its argument
is random (because the position of the dense region is ran-
dom). Hence, taking an ensemble average, 〈φ(k‖)〉 = 0 but
〈�(k‖)〉 = O(1). On the other hand, for homogeneous phases
〈�(k‖)〉 = O(1/L).

This observation allows a precise definition of dynamical
phase transitions: one defines an order parameter as �‖,∞ =
limL→∞〈�(k‖)〉, which is positive in the ordered (symmetry-
broken) phase and zero in disordered (homogeneous) systems.
We determine the behavior of the order parameters with finite-
size scaling analysis throughout this paper.

We simulate finite systems with fixed particle numbers, and
the dynamical rules mean that every configuration is accessi-
ble from every other. Hence the systems are ergodic. Averages
are computed by extracting many configurations from long
dynamical trajectories. The early parts of the trajectories are
discarded, to ensure that the systems have converged to their
steady states. (See also the discussion of Fig. 5 below.)

For the ordered phase shown in Fig. 1(b), a similar argu-
ment holds with k⊥ instead of k‖. Similar arguments also hold
if the “density” order parameter φ is replaced by the “charge”
order parameter ψ . Whether we use φ or ψ as order parameter
depends on the detailed behavior of the inhomogeneous states,
which will be explained in the relevant sections.

C. Density and charge profiles for inhomogeneous states

For states where the symmetry is broken, we compute the
associated density and charge profiles. In long simulations,
the regions of high or low density can diffuse, so we recenter
the system at each time, to measure a meaningful profile,
following previous work [46]. Given a broken symmetry state
with characteristic wave vector k, define θ = arg(φ(k)). For
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FIG. 2. (a). Time series of configurations from a trajectory of the
SHZ model with E = 1, ρ = 0.4, and γ = 0.01 on a 50 × 50 lattice.
The model exhibits a phase transition between the disordered phase
and perpendicular phase. (b). Steady-state particle density ρ(y − y∗)
and charge density σ (y − y∗) profile along the driven direction, for
the same control parameters as (a). The average is computed from a
single long trajectory after the system has reached its steady state;
the averaging time is τ = 4 × 104. Vacancy density φ(k) is used to
recenter the density profiles (see Sec. II C).

the perpendicular state one takes k = k⊥; this means that the
center of the dilute region of the system has a position close to
(L⊥/2, y∗) with y∗ = Lθ/(2π ). We then compute the average
density as a function of the vertical coordinate y − y∗, which
is measured relative to the center of the dilute region. [See, for
example, Fig. 2(b) below.] A similar procedure is used for the
parallel state; see, for example, Fig. 13.

III. SHZ MODEL: CONTINUOUS AND DISCONTINUOUS
PHASE TRANSITIONS

A. Model definition

In the SHZ model, particle hop rates are determined by a
Metropolis formula [47]. Note that σxE · e is the work done
by the electric field for a hop along vector e by a particle
of species σx. There are no energetic interactions between
the particles, and the rates WH,WS depend only on (σx, e).
Specifically, we take

WSHZ,H(x, e, σx) = min(1, exp(σxE · e)). (6)

The corresponding swap rate is similar,

WSHZ,S(x, e, σx) = γ min(1, exp(2σxE · e)), (7)

where γ is a parameter that controls the relative rate of hops
and swaps, and the factor of 2 in the exponent appears be-
cause two oppositely charged particles are moving in opposite
directions, which doubles the work done. We take γ < 1, the
physical role of these swaps is discussed below. Note that this
γ differs from that of [40,41] by a factor of 2.

The combination of the dynamical rules (6) and (7) with the
periodic boundaries means that for E 	= 0, the steady state of
this system supports particle currents, the system is far from
equilibrium, and the dynamics do not obey the principle of
(global) detailed balance [43]. However, it is useful to note
that the model is consistent with a (weaker) principle of local
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detailed balance at temperature T = 1, that is,

WSHZ,H(x, e, σx)

WSHZ,H(x + e,−e, σx))
= exp(σxE · e). (8)

A similar relationship holds for swap moves. To see the rel-
evance of this condition: note that if the periodic boundaries
of the system are replaced by closed boundaries (hard walls),
then the field E can be written as a the gradient of a potential,
and (8) ensures global detailed balance, leading to an equi-
librium (Boltzmann-like) steady state without any currents.
In this sense, the local hopping rules (6, 7) are consistent
with the equilibrium dynamics of particles in an electric field.
If the principle of local detailed balance is broken (as will
happen later in the ELD model), the system can no longer
be transformed into an equilibrium system by changing the
boundary conditions.

Details of the implementation of the SHZ model are given
in Appendix A 1.

B. Phase diagram

For sufficiently large fields E and densities ρ, the SHZ
model exhibits spontaneous symmetry breaking [Fig. 2(a)]
and forms the perpendicular state shown in Fig. 1(b). This
phase transition has been extensively studied by Korniss
et al. [40,41]. In this section, we illustrate the main features
of this phase transition with numerical simulations, similar
to those of [41]. In particular, we demonstrate the finite-size
scaling behavior of the order parameters discussed above.
This gives us a baseline to compare the results of our other
two models with. As usual, phase transitions are well defined
in large systems: we consider finite-size scaling where both
L‖ and L⊥ are proportional to a finite-size scaling length
parameter L.

The physical origin of the perpendicular state [Fig. 1(b)]
is that oppositely charged particles are driven in opposite
directions and tend to impede each other. In particular, if a
negative particle blocks a positively charged one, then other
positive particles will tend to queue up behind the blocked
particle. If this effect is strong enough, a macroscopic traffic
jam can form. Such effects occur in various systems [48–53].

The structure of this traffic jam can be observed from the
steady-state density profiles of particles and charges as in
Fig. 2(b), whose computation was described in Sec. II C. It
is notable that the charge profile varies smoothly across the
dense region. There is no clearly defined interface between
red and blue domains. The interfaces between dense and dilute
regions are more clearly defined.

As shown in [41], it is natural to reparameterize the de-
pendence on E when discussing the disorder-perpendicular
transition in terms of

E = 2L‖ tanh (E/2). (9)

Note in particular that for large L‖, a finite value of E corre-
sponds to a very small value of E [which is O(1/L‖)]. The size
dependency in the transition can be rationalized by a mean
field analysis [39–41] and is also observed in other driven
diffusive systems [52,53].

Figure 3 shows a dynamical phase diagram of this model,
as a function of ρ, E . It shows disordered (homogeneous) and
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FIG. 3. Phase diagram of the SHZ model for various system
sizes with γ = 0.01, 0.1. The system consists of a disordered phase
and a perpendicular phase separated by a discontinuous (square) or
continuous (circle) transition.

perpendicular states, separated by a transition at E = Ec > 0.
The estimates of the phase boundaries in Fig. 3 are based
on maximization of the variance of the order parameter; see
below for further details. We run long simulations up to total
time τ = 6 × 108 and discard the data for time τ < 4 × 107

for each set of control parameters. We checked that this time is
long enough for the systems to converge to their steady states.

The phase diagram shows that the system is in the perpen-
dicular state for E > Ec(ρ, γ ), and disordered for smaller E .
The E factor provides good data collapse for systems with
different system sizes. However, the collapse is not so good for
systems with (L, γ ) = (20, 0.1): this is due to small system
sizes, together with the fact that one always has E � 2L‖ [due
to (9)]. The transition between disordered and perpendicular
states may be continuous or discontinuous, as already ex-
plained theoretically in [41]; similar behavior is also observed
in one dimension [52]. Specifically, the phase transition is
continuous for large ρ, and discontinuous for smaller ρ. The
change between these two behaviours occurs at a γ -dependent
value of ρ.

Before analyzing the phase transitions, we briefly discuss
the role of γ . It is clear from Fig. 2 that the traffic jam
involves regions of very high local density. Since particle hops
are almost impossible in such regions, swap moves play an
important physical role in maintaining the ability of particles
to move. In models without swaps, there is a complete arrest
of dynamics when the lattice is full; we view this as a lattice
artifact, which is avoided by swap moves. Nevertheless, we
focus on small γ = 0.01, 0.1, so that particle motion is slow in
very dense regions (even if they are not completely arrested).
It was shown in [41] that significantly larger γ destroys the
perpendicular state and restores the homogeneous system. (If
the presence of the other species does not slow particles down,
then the traffic-jam mechanism does not operate.)

The traffic jam is a pronounced band of high-density
oriented perpendicular to E, so a suitable order parameter
to measure these transitions is �(k⊥). In fact, the charge-
sensitive order parameter �(k⊥) has similar behavior (data not
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FIG. 4. (a) Order parameter �(k⊥) vs E . (b) Scaled variance S�(k⊥) vs E for the continuous transition with ρ = 0.8, γ = 0.01 for four
different system sizes in the SHZ model. (c) The probability distribution of the complex order parameter P(φ(k⊥)) across the continuous
transition region for ρ = 0.8, γ = 0.01, and L‖ = L⊥ = 20.

shown), because the different particle species are separated
within the high-density region. We focus here on the � order
parameter for simplicity.

C. Continuous transition

We now discuss the transition from disordered to perpen-
dicular states in more detail. We separate the cases where the
transition is continuous (larger ρ) and discontinuous (smaller
ρ).

The continuous transition is illustrated in Fig. 4. In par-
ticular, Fig. 4(a) shows the average of the order parameter
〈�(k⊥)〉 as the field E is varied for several different system
sizes. For small fields, we find 〈�(k⊥)〉 = O(1/L) as expected
in a homogeneous system. For larger fields, 〈�(k⊥)〉 increases
continuously from this near-zero value, and its value is inde-
pendent of L. This is a signature of the perpendicular state
shown in Fig. 4. To locate the position of the phase transition,
we compute the scaled variance of the order parameter

S�(k) = L‖L⊥[〈�(k)2〉 − 〈�(k)〉2], (10)

which is analogous to the structure factor of the fluid [54].
Evaluating this quantity at the very small wave vector k⊥,
gives a quantity analogous to the compressibility: it has a
large peak at the transition, which is a signature of diverging
fluctuations (critical behavior). When identifying the phase
boundary in Fig. 3, we take the point where S�(k⊥) is max-
imal, with an error bar corresponding to the separation of
adjacent data points in Fig. 4.

For an explicit demonstration of the spontaneous symmetry
breaking, Fig. 4(c) shows the probability distribution of the
complex order parameter P(φ(k⊥)). In the disordered phase,
the distribution of φ(k⊥) is a narrow peak centered at zero
with a variance O(1/L2). At the phase transition, this order
parameter spreads out continuously onto a circle: the phase
of this complex number reflects the position of the dense
region within the system (and is random) but its modulus
has a nonzero value. This is the behavior for the distribution
of a two-component order parameter in a classical Landau
theory of φ4 type, where the circle corresponds to the brim
of a “Mexican hat.” Since the order parameter is complex, the
symmetry breaking is of U (1) type similar to [55].

Since our simulations are very long, we see that the system
explores the full Goldstone mode in Fig. 4(c), the position
of the dense region fluctuates in time, and the phase of the
complex ordered changes accordingly. Still, the fact that �

changes scaling from O(1/L) to O(1) shows that a dynamical
phase transition is taking place.

D. Discontinuous transition

The discontinuous transition for low ρ is investigated in
Fig. 5. In particular, Fig. 5(a) shows the average order param-
eter 〈�(k⊥)〉, which clearly exhibits a jump discontinuity. At
first-order (discontinuous) phase transitions one may expect
hysteretic behavior, where the behavior of a system depends
on its initial condition. However, such finite lattice models are
ergodic, so we expect that sufficiently long trajectories will
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FIG. 5. (a) Order parameter �(k⊥) vs E for the discontinuous transition with ρ = 0.4, γ = 0.01 for four different system sizes in the SHZ
model. The inset shows that the results do not depend on the initial condition: results are shown for simulations starting in disordered (D) or
ordered perpendicular states (⊥), which show almost identical behavior. Each point is an independent simulation. Data are shown for L = 60.
(b) The probability distribution of order parameter P(�(k⊥)) at five different system sizes with ρ = 0.4, γ = 0.01, and E ≈ 25 (c) Time series
of the order parameter �(k⊥) corresponding to panel (b), for system size L‖ = L⊥ = 25. (d) The probability distribution of the complex order
parameter P(φ(k⊥)) across the discontinuous transition region for ρ = 0.4, γ = 0.01, and L‖ = L⊥ = 25.

eventually forget their initial conditions, allowing access to
a well-defined steady state. We checked that our simulations
are long enough to achieve this by running simulations with
both disordered and perpendicular initial conditions: our re-
sults for the order parameter are the same in both cases. The
order parameter shown in Fig. 5(a) shows this steady-state
behavior. (The inset shows that almost identical results are
obtained, independent of the initial condition, showing that
the simulations are long enough to eliminate hysteresis.)

To explore this discontinuous transition, we consider rela-
tively small systems and perform very long simulations (total
time τ = 5.8 × 106). We adjust the field to E ≈ 25 for ρ =
0.4 so that the system is at coexistence between the homo-
geneous state and the perpendicular state. Figure 5(b) shows
the probability distribution of the order parameter 〈�(k⊥)〉 at
phase boundary, and Fig. 5(c) shows a trajectory as the sys-
tem switches between two metastable states. The probability
distribution of the order parameter has two peaks (correspond-
ing to the two states), separated be a trough. As the system

size increases, the metastable states become increasingly well
defined and switches become increasingly rare. This is ac-
companied by a deepening of the trough in the probability
distribution of the order parameter. For large system sizes,
switches between the states become so rare that a reliable es-
timation of this probability distribution is not possible; hence
the data are shown only for L � 35.

The behavior of the complex order parameter φ(k⊥) is
illustrated in Fig. 5(d). As usual, the homogeneous phase is
characterized by a narrow distribution close to zero. Deep
in the phase-separated state, the order parameter distribution
forms a circle (the phase is random because the position of the
dense region is random, but the modulus is well defined and
nonzero). The characteristic signature of a first-order transi-
tion (at E = 27.5) is that the order parameter distribution has
two pieces: a sharp peak near zero (homogeneous state) as
well as a circle (perpendicular state). This corresponds to the
behavior of a two-component order parameter in a classical
Landau theory of φ6 type [56].
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Free Particle Encounter without ELD Encounter with ELD

External Field

Regular Hop Regular Swap

(a)

Blocked SwapBlocked Hop(b)

FIG. 6. (a) Illustration of ELD mechanism, following [17]. A
particle is driven along the field direction and is diffusive in the
lateral direction. Without ELD, two opposite types of particles block
each other when encountered. With ELD, two opposite types of
particles pass each other by diffusing about one diameter length in
the lateral direction. (b) A schematic diagram of the dynamics of
the ELD model. A particle has different rates if it is blocked in its
forward-moving direction by the opposite type of particle.

IV. ELD MODEL: PARALLEL AND PERPENDICULAR
PHASE SEPARATION

A. ELD model: Motivation and definition

We have seen that the SHZ model supports phase sep-
aration into the perpendicular state of Fig. 1(b). However,
in off-lattice models of oppositely driven particles [14,17],
laning tends to occur more often, similar to the parallel state
[Fig. 1(c)]. This difference indicates that lattice models fail to
capture some aspects of the off-lattice systems.

It has even been suggested that the rigidity of the square
lattice, combined with nearest neighbor hopping, is too re-
strictive for the laning effect (parallel state) to occur at
all [14,17]. In the rest of this paper, we will introduce two
square-lattice models where the parallel state does occur, the
first of which is the ELD model.

To explain why the parallel state was not observed in previ-
ous models, we make two observations. First, we emphasize a
key observation of Klymko et al. [17], that off-lattice particles
experience enhanced lateral diffusion (ELD) if they collide
with a particle of a different type; see Fig. 6(a). The effect is
reminiscent of some effects that occur in active matter—the
lateral motility of the particle depends strongly on its envi-
ronment [45]. In the ELD model proposed here, this effect
is included explicitly in the particle hopping rates, leading
to an inherently nonequilibrium model that violates the local
detailed balance formula (8), similar to active systems [44,57].

The second observation is related to the Péclet number of
a single driven particle in these models, defined as

Pe = vDσ

D0
, (11)

where vD is the drift velocity of the particle, σ = 1 the particle
size, and D0 the diffusion constant (measured at E = 0). For
the SHZ model, we have D0 = 1 and vD = 1 − e−E so that

PeSHZ = 1 − e−E . (12)

Hence, even if E is very large, the maximal Pe is unity,
see [58] for a similar issue in another lattice model. To observe
laning effects in off-lattice models, one typically requires
much larger Pe [14,17]. To encapsulate this, we design the
ELD model such that the electric field enables an additional
increase in the rate of forward hops.

Given these considerations, we define the ELD model as
follows. The rate of motion of a particle depends on whether
its driven direction along E is “blocked” by an oppositely
driven particle or not; see Fig. 6(b). Particles that are not
blocked have regular hops to adjacent empty sites with rate

WELD,RH(x, e, σx) = exp(σxE · e/2). (13)

These rates respect the local detailed balance relation (8), but
we note that if e is parallel to E then the forward rate may be
very large. This allows large Péclet numbers,

PeELD = 2 sinh(E/2), (14)

which are not bounded by unity, unlike the SHZ case.
Similar to the SHZ model, we have regular swaps if a

particle of the opposite type occupies a neighboring site. This
occurs with rate WELD,RS(x, e, σx) = γWELD,RH(x, e, σx). This
excludes neighbors along the driving direction, as those cases
will fall in the blocked dynamics.

For blocked particles, the hop rates are

WELD,BH(x, e, σx) = exp[g(e, E )/2], (15)

with

g(e, E ) =

⎧⎪⎨
⎪⎩

|E |, e = ±x̂

−|E |, e = −σxÊ

α|E |, e = σxÊ

, (16)

where Ê is a unit vector in direction of the electric field E
and α is a parameter of the model, whose physical meaning
will be discussed just below. The key point is that lateral hops
(e = ±x̂, perpendicular to E) are strongly enhanced when
particles are blocked. Similarly, we set WELD,BS(x, e, σx) =
γWELD,BH(x, e, σx) so that blocked swaps also experience
ELD. Detailed implementation of the ELD model is given in
Sec. A 2.

Finally, we discuss the parameter α. Note that the case
e = σxŷ never appears for blocked hops: such transitions are
always forbidden by the exclusion constraint. This means that
the parameter α is only relevant for swap moves: it governs
the likelihood of particles swapping along the field, which
promotes forward motion. Specifically, α sets the ratio of the
driving field promoting lateral mobility (lower α) or forwards
motion (higher α) in high-density regions. The dynamical
rules of the ELD model are summarized in Table I; see also
Fig. 6(b).

B. Overview and phase diagram

Figure 7(a) shows a time series of four configurations from
the ELD model starting from a disordered initial condition: the
system enters the parallel state that was sketched in Fig. 1(c).
The phase separation can be seen from the steady-state den-
sity profiles of particles and charges in Fig. 7(b), computed
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TABLE I. Dynamical transition rates of the ELD model (it is
assumed here that E > 0). The forward move direction is in the +y
direction for red particles and the −y direction for blue particles;
backward and sideways moves are defined similarly. The move types
are regular hop (RH), regular swap (RS), blocked hop (BH), and
blocked swap (BS); see Fig. 6(b). Recall that “blocked” particles are
those where the neighboring site in the forward direction is occupied
by a particle of the opposite species.

Move RH RS BH BS

Forward exp(E/2) γ exp(E/2) — γ exp(αE/2)
Backward exp(−E/2) γ exp(−E/2) exp(−E/2) γ exp(−E/2)
Sideways 1 γ exp(E/2) γ exp(E/2)

as in Sec. II C. The domains of red and blue particles are
well-defined, but there are significant fluctuations when the
domains are disrupted by particles of the minority phase.
Figure 8 shows the phase diagram for this model. Note that
the vertical axis is the field E and not the scaled field E , in
contrast to the corresponding Fig. 3 for the SHZ model. In
addition, parameter α is used as the horizontal axis, while we
fix the density at the representative value ρ = 0.8, similarly,
γ = 0.1. We run long simulations of τ = 4 × 107, and we
discard the first half of the trajectory to ensure convergence
to the steady state. The methods used to identify the phase
boundaries are described in Sec IV C and IV D.

We observe that the ELD model exhibits both parallel and
perpendicular states. The transition from disordered state to
perpendicular state occurs for E = O(1/L) as in the SHZ
model. The parallel state is observed for much larger E , of
order unity. (While we have not shown results for the SHZ
model with very large E , that model depends only on E
through the factor e−E ; once that quantity is close to zero, fur-
ther increases in E have little effect.) The ELD phase diagram

E

t = 0 t = 1000 t = 100000 t = 1000000(a)

0 10 20 30 40 50
x − x∗
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0.75
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ρ
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x
∗ )

ρ(x − x∗)
σ(x − x∗) −0.9

−0.6
−0.3
0.0
0.3
0.6
0.9

σ
(x

−
x
∗ )

(b)

FIG. 7. (a). Time series of configurations from a trajectory of
the ELD model with E = 12, ρ = 0.8, γ = 0.1, and α = 0.7 on a
50 × 50 lattice. The ELD model exhibits phase separation parallel to
the field. (b). Steady-state particle density ρ(x − x∗) and charge den-
sity σ (x − x∗) profile transverse to the driven direction. The control
parameters are the same as (a). The density profiles are computed
from a single long trajectory, after the system reaches steady state,
the averaging time was τ = 4 × 105. Charge density ψ (k) is used to
recenter the density profiles.
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FIG. 8. Phase diagram of the ELD model with ρ = 0.8, γ = 0.1
for various system sizes. The phase diagram consists of disordered
state, perpendicular state, and parallel state; between the parallel
and perpendicular is the “zig-zag” crossover regime. This regime is
indicated by the vertical error bars.

shows a large region of uncertainty, between the parallel and
perpendicular phases. This is due to strong finite-size effects
that occur close to the transition, associated with different
kinds of phase separation. The resulting “zig-zag” states are
discussed in Sec. IV D below.

Before discussing the phase transitions in detail, we briefly
discuss the dependence of the system on other model pa-
rameters. We restrict α � 1. (Larger α corresponds to an
unphysical regime where forward motion is enhanced when
particles are blocked.) Also, the ELD mechanism relies on
collisions between particles, so it operates most effectively
at high density, and the parallel state is suppressed in states
with much smaller ρ—we consider ρ = 0.8, which is repre-
sentative of the regime where the parallel state can be found.
Lastly, we recall that the parameter γ determines the relative
rate of swap moves. It is desirable that γ is small to enforce
the physical idea that particle mobility is slow in regions of
high density. However, very small values of γ can lead to slow
dynamics and inefficient simulations. Hence, we use γ = 0.1.

C. Transition between disordered and perpendicular state

For small E , the ELD model is similar to the SHZ model.
One observes a similar transition from the homogeneous state
to the perpendicular state for E = O(1), corresponding to E =
O(1/L). Figure 9 illustrates this behavior; it is a continuous
transition, similar to Figs. 4(a) and 4(b), and the data collapse
as a function of the same E parameter that was used in the SHZ
case. The corresponding phase boundary in Fig. 8 was iden-
tified via the peak in S� similar to the SHZ model. We also
confirmed that for lower densities, the disorder-perpendicular
transition becomes discontinuous (data not shown).
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FIG. 9. (a). Order parameter �(k⊥) vs E . (b). Scaled variance
of the order parameter S�(k⊥) vs E for the disordered-perpendicular
transition for four different system sizes in the ELD model with ρ =
0.8, γ = 0.1, and α = 0.7.

D. Transition between parallel and perpendicular states

Next, we consider the behavior of the ELD model at
larger E , and the transition between perpendicular and parallel
states. In Fig. 8 we see that a direct transition from disordered
to parallel state is not observed, as there is always an interme-
diate perpendicular state. To study the parallel state, we use
the order parameter �(k‖). This order parameter focuses on
ordering of the charges which separate in the parallel state.
[The density order parameter �(k‖) does not provide a clear
signal of this transition.] On the other hand, �(k⊥) is the
most suitable order parameter for the perpendicular state, in
which the charge ordering is weaker (at least for γ = 0.1, as
considered here).

Figure 10 shows the order parameters for parallel and
perpendicular phases across the transition. The parallel or-
der parameter �(k‖) shows a jump, after which it gradually
increases. Similar behavior was observed in experiments on
laning [12] with time-dependent electric fields. At the same
time, the perpendicular order parameter �(k⊥) decreases.

Here we briefly explain how we obtained the vertical error
bars in Fig. 8 for the perpendicular-parallel transition. We
identify the order parameter values at which the order pa-
rameter of our largest simulation box makes an abrupt jump
[the dotted lines shown in Fig. 10(a)]. We then use these order
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FIG. 10. (a) Order parameter �(k‖) vs E . (b) Order parameter
�(k⊥) vs E for the perpendicular-parallel transition for four different
system sizes in the ELD model with ρ = 0.8, γ = 0.1, and α = 0.2.
Hysteresis is not observed at this transition. The dotted lines in (a) in-
dicate the minimum and maximum order parameter values where the
system is still in the “zig-zag” state.

parameters values to identify the corresponding electric field
value, which bounds this transition regime for smaller system
sizes. We say that we have well-defined perpendicular and
parallel phases outside these two dotted lines. Between these
lines, we find a transition regime, which we call a “zig-zag”
state (Fig. 11).

In this regime, the perpendicular state no longer con-
sists of a straight band across the system. Instead it
bends, forming a characteristic zig-zag shape that becomes

E

E = 3 E = 6.5 E = 7.5 E = 12

FIG. 11. Steady-state behavior of the ELD model with differ-
ent electric field strengths at ρ = 0.8, γ = 0.1, and α = 0.7 on
a 50 × 50 lattice. As the electric field increases, the particle-hole
interface bends and the system enters a crossover regime between
the perpendicular-parallel transition. We call this steady state the
“zig-zag” state.

024129-9



YU, THIJSSEN, AND JACK PHYSICAL REVIEW E 106, 024129 (2022)

increasingly pronounced as E increases. Eventually, the shape
becomes unstable and breaks into a parallel state. Note
that some states with zig-zag bands were also observed
in experiments [10,12], but it is not clear if these repre-
sent nonequilibrium steady states or metastable (transient)
behavior.

We make two observations about this complex transition.
First, Figs. 8 and 10 both show that the zig-zag region gets
narrower with increasing system size. We suspect that the zig-
zag state is stabilized by finite-size effects so that only parallel
and perpendicular states will survive as L → ∞, although
further work would be required to confirm this beyond doubt.
Second, in contrast to the discontinuous transition of the SHZ
model (Fig. 5), we do not observe significant hysteresis in the
parallel-perpendicular transition of the ELD model, despite
the jump in the order parameter. On increasing E , the observed
behavior is more consistent with a linear instability of the
perpendicular state, i.e., forming the zig-zag, followed by a
second instability of the zig-zag, i.e., forming the parallel
state. More specifically, starting from the perpendicular state
with broken symmetry along the y direction, the first instabil-
ity corresponds to breaking of translational symmetry along
the x direction (zig-zag), and the second to restoration of
translational symmetry along the y direction (parallel state).

As a more general point, this transition is not a sponta-
neous symmetry breaking but rather a transition between two
symmetry-broken states. As such, it is not surprising that it
does not fit naturally into a classical Landau theory, in contrast
to the behavior of the SHZ model in Figs. 4 and 5, and should
be understood from a linear stability perspective.

E. Linear stability analysis

We briefly describe a schematic analysis of the instabilities
of the homogeneous state in this system. Based on [41], con-
sider a hydrodynamic theory where ρσ (x) is the local density
of particles with charge σ = ±. Also let ρT = ρ+ + ρ− be the
total density. This is normalized such that ρT = 1 corresponds
to a completely filled lattice. Then a simple theory for the SHZ
model is

∂ρσ

∂t
= −σε∇y[ρσ (1 − ρT)] + ∇2(Dρσ ), (17)

with ε = 2 tanh(E/2) and D a diffusion constant. This equa-
tion can be derived using a mean-field approximation [41].
It is possible to derive more accurate hydrodynamic descrip-
tions [59] but the mean-field approximation is sufficient to
capture the essential physics.

Now consider a perturbation about an inhomogeneous state

ρσ (x, t ) = (ρ/2) + Aσ (k)e−λt+ik·x, (18)

where k is the wave vector of the perturbation, and λ its
decay rate. Substituting (18) into (17), one finds an instability
(that is, λ < 0) for sufficiently large fields, at wave vector k⊥.
Specifically, the system is unstable if 2ρ > 1 and

ε > ε∗ = 2πD

L‖

√
1

(1 − ρ)(2ρ − 1)
. (19)

For 2ρ < 1, this simple theory predicts that homogeneous
state is always stable, The above linear stability calculation

is consistent with the qualitative results that the particles in
the SHZ model develop a macroscopic band perpendicular
to the external field. Quantitative agreement between theory
and simulation is not expected, because of the simplicity of
the theoretical description. In fact, it remains a challenging
problem to derive quantitatively accurate descriptions of the
hydrodynamic behavior of such models [59].

For a minimal description of ELD, note that diffusion of +
particles in the x direction is much larger in regions where the
density of the − particles is large. This effect may be captured
by an anisotropic theory similar to MIPS [45]. For example,

∂ρ+
∂t

= −ε∂y[ρ+(1 − ρT)] + ∇2
y [ρ+Dyy] + ∇2

x [ρ+Dxx(ρ−)],

∂ρ−
∂t

= +ε∂y[ρ−(1 − ρT)] + ∇2
y [ρ−Dyy] + ∇2

x [ρ−Dxx(ρ+)],

(20)

where Dyy is a constant diffusivity in the y direction, while the
diffusivity Dxx in the x direction depends on the concentration
of the other species; see [30,60] for a similar idea. For the
ELD model, it is natural that ε = 2 tanh(E/2), similar to (14).
The enhancement of lateral diffusion is exponential in E , and
this effect is pronounced when ρσ is large, so a crude estimate
for Dxx might be Dxx(ρσ ) ≈ D[1 + ρ2

σ cosh(E/2)].
Homogeneous states in this model still show an instability

to the perpendicular state, as in SHZ. However, there is also
a MIPS-type instability to a parallel state: using again (18), it
takes place when

2

ρ
<

|D′
xx(ρ/2)|

Dxx(ρ/2)
. (21)

The above linear stability analysis (details given in Ap-
pendix B) suggests that the instabilities do not depend on
the wave vector. Instabilities occur at all scales, and the in-
stabilities with large wave vectors grow faster than the ones
corresponding to small wave vectors. Such a feature is consis-
tent with the fact that particles first form multiple traffic lanes
parallel to the external field in a sufficiently large system.
Traffic lanes then coarsen into larger domains and eventually
phase separate parallel to external field.

In practice, it is clear from the phase diagram that the first
instability (on increasing E from zero) is to the perpendicular
state. This is also consistent with the linear stability analysis.
Equation (19) predicts that the transition to the perpendicular
state occurs for E = O(1/L). The MIPS instability requires
E = O(1). When this instability occurs, the MIPS mechanism
will operate in the dense region of the perpendicular state.
Almost all particles are blocked in that region, so lateral
diffusion will be strongly enhanced in that case. Indeed, the
instability to the zig-zag state shares many features with a
traditional linear MIPS instability (wave vector k‖ and the
formation of red-rich and blue-rich regions at the upward and
downward-pointing “tips” of the zig-zag).

F. Discussion: ELD model

We summarize the results presented so far. The behav-
ior of the ELD model can be rationalized by considering
two effects. For sufficiently large density, the perpendic-
ular phase-separated state appears at very small fields
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E = O(1/L), similar to the SHZ model discussed in Sec. III B.
Recalling (19), this transition can be rationalized as a linear
instability of the hydrodynamic equations: if the density in-
creases locally, then particles tend to be blocked. This reduces
the effectiveness of the field E in driving a current. Hence,
particles slow down in the high-density region, while particles
arrive quickly from the low-density region. This leads to a
“traffic jam,” stabilizing perpendicular states. In off-lattice
models, similar effects occur in “freezing by heating” mod-
els [13].

On the other hand, the parallel phase-separated state ap-
pears in the ELD model but not in the SHZ. For the ELD
model, blocked particles move quickly in the lateral direction:
blocking operates only between particles of different species.
This drives particles into regions where their own species pre-
dominate. This effect is analogous to MIPS [45], as indicated
by the (qualitative) stability analysis that leads to (21). It leads
to the parallel phase-separated state, which also appears in
(off-lattice) models of laning [14–17,19,22,27–32,35]. More-
over, the ELD effect is strongest in high-density regions,
where the blocking is most pronounced. This leads to an in-
terplay between parallel and perpendicular phase separation,
and the instability to parallel phase separation emerges inside
a high-density region that has already occurred via perpendic-
ular phase separation. It seems likely that this interplay is the
origin of the zig-zag state.

V. PHASE TRANSITIONS IN TKLS MODEL

A. Motivation and model definition

The enhanced lateral diffusion mechanism suggests that
the diffusion constant of a particle is large when it is sur-
rounded by oppositely moving particles and is small when
surrounded by the same type of particles. Such environment-
dependent diffusion can be thought of as an effective repulsion
between particles of opposite types. We analyze a model
where similar interactions are introduced directly (a variation
of the KLS model) to verify this observation. Specifically, we
introduce repulsive interactions between opposite types, and
also an attraction between particles of the same type.

The resulting model also supports both parallel and perpen-
dicular states. This indicates that a combination of effective
interactions and external driving is the origin of the behavior
observed in the ELD model, consistent with earlier ideas
about mechanisms for laning effects [17,61].

The original KLS model has a single particle species with
attractive interactions and external driving [5]. The model in-
troduced here is a two-species variant of this model, hence we
call it the two-species KLS (or TKLS) model. The interaction
energy of the TKLS model is

H = −J
∑
〈x,x′〉

σxσx′ , (22)

where J is the interaction strength and the sum runs over dis-
tinct pairs of neighboring lattice sites. There is no distinction
between blocked and unblocked particles: particles hop with
rate

WH,TKLS(x, e, σx) = min(1, exp[(σxE · e − �H )/T ]), (23)
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FIG. 12. Phase diagram of the TKLS model for various system
sizes with ρ = 0.5, γ = 0.05. Three states are observed: disordered
state, perpendicular state, and parallel state. The equilibrium transi-
tion (E = 0) occurs around Tc ≈ 0.7 ± 0.2.

where �H is the change in interaction energy H associated
with the hop and T is the temperature. Similarly, we take the
swap rate as

WS,TKLS(x, e, σx) = γ min(1, exp[(2σxE · e − �H )/T ]).
(24)

One recovers the SHZ model by setting T = 1 and J = 0.
In the following, we set J = 1. This does not lose any general-
ity as the dependence on the three parameters (T, J, E ) is fully
determined by the two ratios T/J and E/T . Note, however,
that the parameter E of the SHZ and ELD models corresponds
to E/T in the TKLS model, so it is useful to define the analog
of E in this model as

ETKLS = 2L‖ tanh (E/2T ). (25)

A similar model was studied in [62,63], but all interactions
were attractive in that case (and there were no swap moves).
In this case, the parallel phase was not observed. Connections
between the behavior of KLS and TKLS models are discussed
in Sec. V E.

B. Behavior and phase diagram

Figure 12 shows the TKLS phase diagram in the (T, E )
plane, for representative parameters γ = 0.05 and ρ = 0.5.
For E = 0, the general behavior of this system is known from
the Blume-Capel model [64,65]—the system is homogeneous
at high temperature, it phase separates at low temperature into
a state of three-phase coexistence (two phases that consist of
predominately red and blue phases, coexisting with a dilute
vapor). For ρ = 0.5 (as discussed here), this transition takes
place by crossing a binodal whose position we estimate as
T ≈ 0.7 ± 0.2.

As in other sections, we focus on nonequilibrium steady
states with E > 0. In this region, the phase behavior must
be deduced from long dynamical simulations. For low tem-
peratures and small E , simulations indicate a complicated
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FIG. 13. (a) Time series of configurations from a trajectory of
the TKLS model with E = 5, ρ = 0.5, γ = 0.05, and T = 0.7 on a
50 × 50 lattice. The system exhibits a phase transition between the
disordered phase and the parallel phase. After lanes are formed, a
coarsening over time is observed. (b) Steady-state particle density
ρ(x − x∗) and charge density σ (x − x∗) profile transverse to the
driven direction with same control parameters as in (a). The density
profiles are obtained by averaging over τ = 4 × 105 for a single
long trajectory, after the system has reached its steady state. Charge
density ψ (k) is used to recenter the density profiles.

interplay between equilibrium and nonequilibrium transitions.
At these densities, the equilibrium state of phase coexistence
usually has the particles in circular droplets that do not cross
the periodic boundaries, but transitions into morphologies
similar to Fig. 1 can already occur at equilibrium [66,67]. To
avoid the slow dynamics associated with transitions between
these morphologies (and noting that sampling can also be
frustrated by low acceptance rates when T is small), we focus
here on relatively high temperatures. For the values of E that
we do consider, the phase diagram shows both parallel and
perpendicular states, including transitions from the disordered
state to perpendicular state, and from the perpendicular state
to the parallel state. This general phenomenology is similar
to the ELD model, and we remark on the similarities when
discussing the transitions.

The following subsections will analyze the transitions. As
a preliminary for that analysis, Fig. 13(a) shows how the
system evolves from a disordered initial condition into the
parallel state. The steady-state profiles for the parallel state in
Fig. 13(b) resemble the profiles of the ELD model [Fig. 7(b)]
although the interfaces between the phases are better defined,
and there are fewer fluctuations of the minority particles
within the phases. The coarsening processes are also differ-
ent in the two models. In the TKLS model, a multidomain
parallel state forms initially, which then coarsens to full phase
separation. This is quite different from the analogous process
in the ELD model (Fig. 7), where the system initially forms
a state of perpendicular phase separation, which becomes
unstable and forms the parallel phase. Indeed, the following
analysis will show that while the steady states in the ELD and
TKLS models are similar, the transition between parallel and
perpendicular states is quite different.

(a)

(b)
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FIG. 14. (a) Order parameter �(k⊥) vs ETKLS. (b) Scaled
variance of the order parameter S�(k⊥) vs ETKLS for the disordered-
perpendicular for four different system sizes with ρ = 0.5, γ = 0.05,
and T = 5 in the TKLS model.

C. Transition between disordered and perpendicular states

We first analyze the transition from a disordered state to the
perpendicular state, upon increasing E from zero. We note the
disordered-perpendicular transition only happens with high
temperature, T � 1. Besides that, the transition from disor-
dered to perpendicular is very similar to the one that occurs
in ELD and SHZ models, as it takes places at E = O(1/L).
[See Fig. 14, which is analogous to Fig. 9 and Figs. 4(a)
and 4(b).]

D. Transition between parallel and perpendicular states

The transition between perpendicular and parallel states
in the TKLS model is quite different from the transition in
the ELD case. Results are shown in Fig. 15: the transition is
studied by reducing T at fixed field E . Figures 15(a) and 15(b)
show that the order parameters experience a discontinuous
jump at the transition. The insets show that almost identi-
cal results are obtained, independent of the initial condition,
showing that the simulations are long enough to eliminate
hysteresis. We obtained the histograms by running the simu-
lations up to τ = 12 × 1010 and discard the first 4 × 107. This
ensures the system switches multiple times between two states
and the area under two peaks converges.
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FIG. 15. (a) �(k‖) vs T . (b) �(k⊥) vs T for three different system sizes for E = 5, ρ = 0.5, and γ = 0.05 for the perpendicular-parallel
transition. The insets show that these results do not depend on the initial condition: results are shown for simulations starting in parallel (‖)
or perpendicular states (⊥), which show almost identical behavior. Each point is an independent simulation. Data are shown for L = 40. (c,
d) Probability distributions of the order parameters shown in panels (a) and (b) at four different system sizes. (e) Time series of the order
parameters shown in panels (a) and (b) for system size L‖ = L⊥ = 25.

From the behavior of the order parameters and their
probability distributions, we can conclude that the parallel-
perpendicular transition in the TKLS model is discontinuous,
similar to Fig. 5. We used the order parameters �(k‖) and
�(k⊥) to study this transition. In the parallel state, the
separation between two types of particles is clearly observed,
and �(k‖) reflects the charge fluctuation. On the other hand,
with low density (ρ < 0.5), two lanes formed by particles are
typically separated by large stripes with low density (Fig. 13),
and hence �(k‖) does not capture the transition. For the
perpendicular state, both �(k⊥) and �(k⊥) show similar be-
havior; we show only data for �(k⊥).

E. Discussion: TKLS model

The TKLS model supports both parallel and perpendicular
states as in the ELD model. However, unlike the ELD model,
the parallel state exists in the TKLS even for low Péclet
numbers. (The Péclet number of the TKLS model is less than
unity, similar to the SHZ model.) Hence, this illustrates that

large Péclet numbers are not necessary for the parallel state to
emerge. We have focused on relatively high temperatures and
large E where nonequilibrium effects control these states; at
lower temperatures and smaller fields, the phase separation
would be affected by properties of the equilibrium phases,
such as the surface tension between the phases of the Blume-
Capel model.

Our interpretation of the resulting phenomenology is that
the parallel and perpendicular states in the TKLS model
have similar physical origins to the ELD model. A traffic
jam effect is responsible for the perpendicular state, recall
Sec. IV F. Compared with the SHZ model, the parallel state
in the TKLS model is possible because of the attractive
interactions between particles of the same charge and re-
pulsive interactions between opposite charges. In the ELD
model, similar effective interactions arise from the dynam-
ical rules, similar to the mechanism for MIPS in active
matter [45]. However, the two models’ transitions between
perpendicular and parallel states have different characters;
the TKLS model has a hysteretic first-order transition, while
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TABLE II. Summary of features of the SHZ, ELD, and TKLS model.

SHZ model ELD model TKLS model

Control parameter E , ρ, γ E , ρ, γ , α E , ρ, γ , T
Relevant wave vector k⊥ k⊥, k‖ k⊥, k‖

Enhanced lateral diffusion (ELD) × √ ×
Nearest-neighbor interaction × × √

Disordered state
√ √ √

Perpendicular state
√ √ √

Parallel state × √ √

the ELD transition takes place via an intermediate zig-zag
state.

We also remark that increasing T in this model can drive a
transition from the parallel to the perpendicular state. This can
be interpreted as an example of “freezing by heating” [13],
where a low-current (frozen) state is stable at high tempera-
ture, while the low temperature (parallel) state is associated
with a higher current.

Finally, two connections are notable between the TKLS
and KLS models. It is obvious that the TKLS model reduces
to the KLS model if one removes all particles of a given color
(say, blue), to obtain a single-species model. However, it turns
out that for total density ρ = 1 (so there are no vacancies),
one again recovers KLS behavior where one color (say, blue)
in the TKLS model plays the role of a vacancy in the KLS
model. In mapping between these cases, the values of ρ, E
have to be renormalized, and all hop rates are rescaled by
γ (because all moves in the TKLS description correspond
to swaps). Since the KLS model supports only disordered
and parallel states (with no perpendicular state), this means
that the TKLS phase diagram of Fig. 12 (obtained at density
ρ = 0.5) should have a significant dependence on density. In
fact, this is natural because the “traffic jam” interpretation of
the perpendicular state requires a contrast between the dense
region where motion is slow, and a dilute region where motion
is fast. If there are not enough vacancies to support a sub-
stantial dilute region, the traffic-jam instability will no longer
operate. One possibility is that the transition from disordered
to perpendicular states exists for all densities, with a critical
field E∗ that diverges as ρ → 1, for example, E∗ ∼ 1/(1 − ρ).
Recalling that E � E/(2L‖), that would mean that the limits
of large L and ρ → 1 would not commute, so that ρ = 1 is a
singular point for the TKLS model. However, this question is
beyond the scope of this work.

VI. CONCLUSION AND OUTLOOK

We have analyzed three distinct models, which support
different kinds of inhomogeneous states (Fig. 1). The basic
properties of the models are summarized in Table II. This sec-
tion summarizes the implications of this work, the connections
with the literature, and future directions.

For the SHZ model, the general behavior and the form
of the phase diagram were already established in previous
work [40,41]. Still, the analysis in Figs. 4 and 5 character-
izes the associated phase transition in terms of its finite-size
scaling, the distribution of its order parameter, and the sponta-

neous breaking of an U (1) symmetry. This analysis serves as
a baseline for the other models considered, including that the
transition from disordered to perpendicular state takes place at
E = O(1/L). We also showed that this model does not support
a parallel state in contrast to the other models presented here.

The ELD model demonstrates that the parallel state is
possible in a square lattice model. This is achieved by a
large hopping rate along the field (which enables large Péclet
numbers) and by a strong enhancement of lateral diffusion
when oppositely moving particles block each other. Previous
work [14,17] suggested this state would not occur on square
lattices with nearest-neighbor interaction. We note, however,
that the presence of the parallel state in the ELD model re-
quires modeling assumptions that might be questionable in the
colloidal context. In particular, lateral diffusion does not obey
local detailed balance in the sense of (8). Rather, the model
serves as a proof of principle that such states can occur on
the lattice in the presence of an effective interaction between
particles of the same type caused by the enhanced lateral
mobility. Our finite-size scaling analysis provides strong ev-
idence that the transition between parallel and perpendicular
states is a dynamical phase transition (and not, for example, a
smooth crossover between two regimes).

As further evidence for this last hypothesis—that an
effective interaction leads to the parallel state—we ana-
lyzed the TKLS model, in which repulsion between the
opposite types appears explicitly in the energy H . This
model indeed supports both parallel and perpendicular states.
However, the transition into the parallel state differs from
the ELD case. In addition, we confirmed that the par-
allel state could also emerge for lower Péclet numbers.
A similar transition between states with parallel and per-
pendicular ordering is also observed in two-species lattice
models where all particles have attractive interactions (in-
dependent of species), and the two species have different
concentrations [62,63].

In the broader context, these results also raise a number
of questions. It is clear that models with particles hopping
between lattice sites cannot be interpreted as quantitatively
accurate models of colloidal particles moving in a solvent.
On the other hand, one might still hope that lattice models
capture the dominant collective behavior, including “univer-
sal” phenomena such as phase transitions. The extent to which
this holds is not clear in the current context. For example, the
perpendicular state has not been observed in simple Brownian
dynamics simulations, although its existence is “universal”
across the three lattice models considered here. This point
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was also raised by [15,17]: transient “traffic jams” are ob-
served in Brownian dynamics simulations, but they do not
span the whole system, and there is no spontaneous breaking
of translational symmetry. In the comparison between on- and
off-lattice models, a crucial aspect is that a single negatively
charged (downwards-moving) particle on the lattice can block
the upward motion of a large number of positively charged
ones. This is not possible in Brownian dynamics, where a
cluster of particles tends to drift with a velocity proportional
to its net charge [68].

Given the insights from this work about transitions into
the parallel state and their analysis via order parameters and
finite-size scaling, it would be interesting to revisit the behav-
ior of off-lattice (Brownian dynamics) models, to explore the
similarities and differences with those found here. Moreover,
it is not even clear to what extent Brownian dynamics is a
realistic description of a colloidal particle, where hydrody-
namic interactions are also present [69]. This again raises the
question of the extent to which simplified models can capture
universal properties of these nonequilibrium systems.

We end with a brief discussion of two issues that have been
raised by previous work. First, the behavior of this system
depends on the shape of the simulation box, particularly the
aspect ratio L⊥/L‖, which has been set to unity in this work. It
is expected that long (L‖ � L⊥) systems prefer perpendicular
states as a small fraction of particles can create traffic jams
and block the entire system. On the other hand, in wide (L‖ �
L⊥) systems, large fraction of particles are needed to achieve
jamming. In addition, when laning or parallel separation does
happen, wide systems prefer multiple lanes and nonequilib-
rium steady states are aspect ratio-dependent [70–72].

Our results for these lattice models are consistent with
a dynamical phase separation, as evidenced by the order
parameters � and � having nonzero limits as we increase
the system size and approach the limit L → ∞ (keeping al-
ways L‖ = L⊥). It is known for other lattice models [72] that
nonequilibrium steady states may be system shape dependent,
so different results might be obtained for different aspect
ratios.

In addition, comparing with Brownian dynamics studies,
Klymko et al. [17] found that the parallel state is stable:
starting from that state, opposite types of particles never mix
throughout their simulations. However, Glanz and Löwen [15]
claimed the correlation length of the system is finite in the
thermodynamic limit and hence that the system does not ex-
hibit a phase transition. More recent results [32] also indicate
there is no phase separation associated with laning, but that
correlations are algebraic.

Given the differences between lattice and off-lattice mod-
els, our results do not speak directly to the existence of phase
transitions in Brownian dynamics, but the results presented
here do indicate the possibility of parallel phase separation
induced by ELD, as argued in [17]. It might be that different
criteria for identifying phase transitions are yielding different
conclusions in [15,17,32]: in the absence of a free energy, it
would be useful to settle on the most appropriate criterion for
establishing (or disproving) the existence of such transitions.

A second open question is the process by which the system
evolves into its steady state. So far the studies of two-species
driven systems are mainly focused on steady-state behaviors,

and the time evolution of the system is little known in two
dimensions. For the approach to the steady state, we have
presented illustrative results in Figs. 2, 7, and 13. However,
all quantitative data were obtained in the steady state. A
detailed analysis of the time-dependent behavior would be
useful, especially given that some surprising results were
already obtained for the SHZ model [73–75] and the KLS
model [72,76,77].

The data underlying this be available shortly after [78].
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APPENDIX A: MC DYNAMICS

1. SHZ and TKLS models

In Monte Carlo (MC) simulations, the transition rate W be-
tween two configurations can be decomposed into two parts,
the proposal rate wprop and the acceptance probability pacc:

W = wprop × pacc. (A1)

Hence, we have the liberty to choose the proposal rate and
acceptance rate as long as their product remains the same,
and we exploit this to improve the efficiency of the simu-
lations. In practice, the proposal rate is further decomposed
as wprop = w0 pprop where w0 is the total rate of MC updates,
and pprop is the probability of proposing the specific update of
interest. In the continuous-time MC approach [79], this means
that for each MC update, the simulation time is updated by an
exponentially distributed random variable of mean (1/w0).

In a simple MC simulation [47], a uniform proposal rate
is sufficient. For example, in the SHZ and TKLS models, the
proposal probability is simply pprop = 1/(4N ), which corre-
sponds to first picking a random particle (1/N) and then a
random direction (1/4). We take w0 = 4N so that all moves
are proposed with unit rate. Then the acceptance probabilities
are simply the values of the rates, as given in Eqs. (6) and (7)
and Eqs. (23) and (24). It is necessary for this approach that
the values of all rates are less than unity.

The dynamics of the SHZ and TKLS model are then the
following:

(1) Initialize the system with a random configuration of N
particles and start simulation at t = 0.

(2) Increase the time t by an exponential random variable
with mean (1/w0), where w0 = 4N , as above.

(3) Select a random particle with probability 1/N and select
a random direction with probability 1/4.

(4) Accept the move with a probability that is equal to
the appropriate rate. [For SHZ, this is either Eq. (6) or (7),
depending on whether the target site is empty or occupied.]

(5) Repeat steps (2)–(4) until t � tmax and terminate the
simulation.

2. ELD model

In contrast to the SHZ and TKLS models described above,
the uniform proposal rate is not appropriate for ELD model,
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due to the large differences in rates between the blocked and
unblocked cases. Instead, we propose moves based on the
exponential rates given in Eqs. (13) and (15).

As described in Sec IV A, we have four sets of dynamical
rules: regular hop, regular swap, blocked hop, and blocked
swap. The dynamics are implemented in the following way.
For a given particle at site x, the regular hop rates are
given by WELD,RH(x, e, σx), with e = (1, 0), (−1, 0), (0, 1),
and (0,−1) for right, left, forward, and backward regular
hops, respectively. And the blocked hop rates are given by
WELD,BH(x, e, σx), as in Eqs. (13) and (15).

We first calculate the escape rate of the regular hop and
blocked hop:

μELD, RH =
∑

e

WELD,RH(x, e, σx),

μELD, BH =
∑

e

WELD,BH(x, e, σx). (A2)

Then define

μ = max (μELD, RH, μELD, BH). (A3)

The total rate of MC updates will be w0 = μN . We also define
the hop proposal probabilities:

pprop,RH(x, e, σx) = WELD,RH(x, e, σx)

μ
,

pprop,BH(x, e, σx) = WELD,BH(x, e, σx)

μ
. (A4)

The resulting simulation procedure is as follows:
(1) Initialize the system with a random configuration of N

particles and start simulation at t = 0.
(2) Increase the time t by an exponential random variable

with mean 1
μN , where N is number of particles in the system.

(3) Select a random particle with probability 1/N , and
check if the selected particle is blocked in its forward direction
by a particle of the opposite type.

(a) If the particle is not blocked, we propose a move in
direction e with regular proposal probability pprop,RH(x, e, σx).

(b) If the proposed particle is blocked, we propose
a move in direction e with blocked proposal probability
pprop,BH(x, e, σx).

(4) Accept the move with probability 1 or γ depending on
whether the move is a particle hop or particle swap. We note
for blocked particle, the blocked forward hop is forbidden.

(5) Repeat steps (2)–(4) until t � tmax and terminate the
simulation.

Note: The definition of μ together with (A4) ensures that
the larger of

∑
e pprop,RH and

∑
e pprop,BH is equal to unity. In

steps (3.a) and (3.b), there are always four choices for e, but
the sum of the probabilities for the four cases may be less than
unity. In this case, there is a finite probability that no move is
proposed at all, and step (4) is skipped.

APPENDIX B: LINEAR STABILITY CALCULATION
OF ELD MODEL

1. Perpendicular instability

In this Appendix, we give the derivation of the linear in-
stabilities presented in the ELD model (Sec IV E). A simple

theory for the SHZ model is given by Eq. (17). As in (18),
we consider a small perturbation δρ = (δρ+, δρ−), so that
Eq. (17) can be linearized. It takes the form δρ̇k = Lkδρk,
where Lk is a matrix that contains dynamical information. The
exponential decay rate of the perturbation is λ, which obeys
the eigenvalue equation

−λA(k) = LkA(k), (B1)

where A(k) = (A+(k), A−(k)) is the amplitude of the pertur-
bation and

Lk =
(
−D‖k‖2 − ε

(
1− 3

2ρ
)
ik⊥ ε

ρ

2 ik⊥
−ε

ρ

2 ik⊥ −D‖k‖2 + ε
(
1− 3

2ρ
)
ik⊥

)
,

(B2)

where ‖k‖2 = k2
⊥ + k2

‖ is the norm of wave vector k. The two
eigenvalues of the matrix −Lk are

λ±
k = D‖k‖2 ± εk⊥

√
(1 − ρ)(2ρ − 1), (B3)

and the condition for the homogeneous solution to be unstable
is that the lowest eigenvalue is negative. The onset of the
instability is given by the smallest wave vectors: in this case,
k = k⊥. The instability occurs only if ρ > (1/2), in which
case the system is unstable for

ε > ε∗ = 2πD

L‖

√
1

(1 − ρ)(2ρ − 1)
. (B4)

which is (19). With the eigenvalues we calculated above, we
can also obtain the eigenvectors when the instability happens.
Let v = (v+, v−) be the eigenvector so we have

Lkv = −λ−
k v, (B5)

as λ+ is always stable. The eigenvector v is

v =
(

1
e−iθ

)
, (B6)

where θ = arccos [(2/ρ) − 3] and 0 � θ � π . The instability
occurs via growth of regions where either ρ+ or ρ− is large,
and the relative phase θ determines the distance between
points where these two densities are maximal. For small ρ

[close to (1/2)] the two dense regions have positions close
to each other (small θ ), while for ρ ≈ 1 they are far apart
(θ ≈ π ).

2. Parallel instability

As discussed in Sec. IV E, the ELD model has an environ-
ment dependent diffusion in x direction, and this effect may be
captured by an anisotropic theory similar to MIPS [45] given
by Eq. (20). In that equation, Dyy is a constant diffusivity in
the y direction, while the diffusivity Dxx in the x direction de-
pends on the concentration of the of the other species. For the
parallel instability, we can linearize the hydrodynamic equa-
tion again and obtain a form similar to Eq. (B1) with matrix

Lk =
( −k2

⊥Dxx(ρ−) − ρ

2 D′
xx(ρ−)k2

⊥
− ρ

2 D′
xx(ρ+)k2

⊥ −k2
⊥Dxx(ρ+)

)
, (B7)

where we restricted to k = (k⊥, 0) to simplify our calculation.
(The parallel component does not affect the instability to
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laning.) Again, the condition for instability is given by the
existence of a negative eigenvalue: it takes place when

2

ρ
<

|D′
xx(ρ)|

Dxx(ρ)
, (B8)

which is (21). This analysis suggests that the instabilities do
not depend on the wave vector, and instabilities occur at all
scales, consistent with numerical simulation.

We can also obtain the eigenvectors v = (v+, v−) associ-
ated with the eigenvalues to be v = (1,−1) and v = (1, 1).
The case v = (1, 1) corresponds to D′

xx(ρ) < 0 and parti-
cles form a single cluster, which does not occur in our
system. The case v = (1,−1) corresponds to D′

xx(ρ) > 0.
Physically, it corresponds to the laning effect, where the
two types of particles phase separate, parallel to the external
field.
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