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A neural population responding to multiple appearances of a single object defines a manifold in the neural
response space. The ability to classify such manifolds is of interest, as object recognition and other computational
tasks require a response that is insensitive to variability within a manifold. Linear classification of object mani-
folds was previously studied for max-margin classifiers. Soft-margin classifiers are a larger class of algorithms
and provide an additional regularization parameter used in applications to optimize performance outside the
training set by balancing between making fewer training errors and learning more robust classifiers. Here we
develop a mean-field theory describing the behavior of soft-margin classifiers applied to object manifolds.
Analyzing manifolds with increasing complexity, from points through spheres to general manifolds, a mean-field
theory describes the expected value of the linear classifier’s norm, as well as the distribution of fields and slack
variables. By analyzing the robustness of the learned classification to noise, we can predict the probability
of classification errors and their dependence on regularization, demonstrating a finite optimal choice. The
theory describes a previously unknown phase transition, corresponding to the disappearance of a nontrivial
solution, thus providing a soft version of the well-known classification capacity of max-margin classifiers.
Furthermore, for high-dimensional manifolds of any shape, the theory prescribes how to define manifold radius
and dimension, two measurable geometric quantities that capture the aspects of manifold shape relevant to soft
classification.
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I. INTRODUCTION

Max-margin and soft-margin classification When perform-
ing linear classification, the naive approach would aim for
classifying all the training samples correctly with the largest
possible margin, an approach known as max-margin classifi-
cation [1,2]. An alternative approach, known as soft-margin
classification [3,4], is to allow for misclassification of some
of the samples, in order to increase the classification mar-
gin of most samples. Soft-margin classification is common
in applications, where the data are not necessarily linearly
separable. Furthermore, it allows for minimizing general-
ization error by optimizing a regularization parameter that
balances between classification errors on the training set and
achieving a larger margin. Both max-margin and soft-margin
classification problems are solved by Support Vector Machine
algorithms (SVMs).

Previous works on manifold classification The problem
of manifold classification arises in neuroscience and ma-
chine learning when a population of biological or artificial
neurons represents an object, and variability in object appear-
ance would define a manifold in the neural response space.
In invariant object recognition tasks, the response of output
neurons is determined by object identity alone, which is natu-
rally defined as performing manifold classification, i.e., using
target labels that are constant within manifolds. The ability to
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perform max-margin classification on manifolds of increased
complexity was analyzed in recent years. Building on the sem-
inal work of Gardner [5] which considered the classification
of points, recent works have extended theory to describe man-
ifolds of any shape [6,7] and to allow for certain correlations
between manifolds [8]. Those theoretical advances described
only max-margin classifiers, which are not common in appli-
cations. Here we close this gap by analyzing soft classification
of manifolds of increasing complexity, going from points,
through spheres, to general manifolds.

Previous works on soft classification theory Previous the-
oretical works on soft-margin classifiers have analyzed the
classification of finite numbers of training samples. Statistical
learning tools were used to provide bounds on the gener-
alization error and its asymptotic convergence toward the
error of the Bayes optimal classifier [9–11]. Such analysis is
used to compare different kernels and different regularization
schemes [9], and an analysis of the behavior of the error shows
how the choice of regularization can be used for improving
upon the bounds available for max-margin classifiers [10].
A statistical physics analysis of soft-margin classification in
a teacher-student setup described the learning curve, i.e., the
dependence of training and generalization error on the number
of samples (extending the max-margin analysis [12]). Such
analysis was done for the unrealizable case where the teacher
is more sophisticated than the student [13] and for realizable
cases with or without noise [14]. Here we avoid making
specific assumptions on the teacher and instead consider
soft classification performance when averaging over random
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choice of labels. A different statistical physics approach ana-
lyzed the asymptotic behavior of max-margin and soft-margin
classifiers [15]. It predicts classification error rates, assuming
a large number of high-dimensional samples are drawn from
a Gaussian mixture distribution.

The role of noise. When a soft-margin classifier is learned
on a training set and then evaluated on a held-out test set,
the classification errors achieved are called the training er-
ror and the test error, respectively. In general we expect the
training error to be minimized for the max-margin classifier
while the test error may be minimized at a finite value of
the soft classification regularization parameter, which needs
to be found empirically. Here we aim to analyze this setting
by considering a test set that is a noisy version of the training
set. This corresponds to noise resistance of the classifier, and
not to the notion of generalization error in machine learning
where it is assumed that the training and test set are sampled
from the same distribution.

II. RESULTS

A. Soft classification of points

Max-margin classification of points is discussed by [5];
here we extend this seminal work to soft classification. Given
P pairs {(xμ, yμ)}P

μ=1 of points xμ ∈ RN and labels yμ ∈ {±1},
soft classification is defined by a set of weights w ∈ RN and
slack variables �s ∈ RP such that the fields at the solution obey
for all μ ∈ [1, . . . , P]:

hμ = yμw · xμ � 1 − sμ. (1)

The bold notation for xμ and w indicates that they are vectors
in RN , whereas the arrow notation is used for other vec-
tors, such as �s. Given a regularization parameter c � 0 the
optimal classifier and slack variables are defined w∗, �s∗ =
arg minw,�s L(w, �s) for a Lagrangian

L = ‖w‖2/N + c‖�s‖2/N s.t. ∀μ hμ � 1 − sμ, (2)

and L∗ denotes the minimal value of L.
Replica theory From the Lagrangian the volume of solu-

tions V (L, c) for a given value of the loss L and a choice of
regularization c is given by

V (L, c) =
∫

dNw

∫
dP�sδ(‖w‖2 + c‖�s‖2 − NL) (3)

· · ·
P∏
μ

δ(yμw · xμ − hμ)�(hμ − 1 + sμ). (4)

The volume is defined for any positive L, c, but we are in-
terested in the problem parameters where it vanishes, which
is expected to happen only at the minimal value L∗. Thus
by analyzing the conditions where V → 0 we characterize
the optimal solution achieved by the optimization procedure,
without introducing an additional temperature variable as is
usually done (e.g., [12,16]). This allows us to describe not
only L∗ but also the expected norms of the weights ‖w‖
and slack variables ‖�s‖, and the relation between N and P
where the solution is achieved. For random labels �y ∈ {±1}P

and points xμ
i ∼ N (0, 1/N ) we calculate the volume through

replica identity:

[logV ]x,y = lim
n→0

[
V n − 1

n

]
x,y

. (5)

We solve this problem using a (replica symmetric) mean-field
theory, which is expected to be exact in the thermodynamic
limit N, P → ∞ with a finite ratio α = P/N . Replica symme-
try is to be expected for soft classification since the problem
is convex in both w and �s; hence the landscape does not
have local minima and the global minima are either unique
or form a convex set. In contrast, replica symmetry breaking
implies the existence of multiple unconnected minima [17].
Analyzing the case where V → 0 we obtain an expression
for the loss L in terms of two order parameters q and k (see
Appendix A 2; all notes are found in the Appendix):

L/q = k − 1

k
+ c

1 + ck
αα−1

0 (1/
√

q), (6)

where α−1
0 (κ ) = ∫ κ

−∞ Dt (κ − t )2 is Gardner’s points capac-
ity [5], q = ‖w‖2/N is the norm of the weight vector, and k
is an additional order parameter, discussed below. Note we
assumed here ‖xμ‖ = 1; if instead ‖xμ‖ = a, then q, c need
to be scaled by 1/a2.

Self-consistent equations We expect the solution to satisfy
saddle-point conditions 0 = ∂L

∂q = ∂L
∂k , yielding two self-

consistent equations for the order parameters q, k (see
Appendix A 3):

1 = (ck)2

(1 + ck)2 αα−1
0 (1/

√
q), (7)

1 − k = ck

(1 + ck)
αH (−1/

√
q) (8)

for H (x) = ∫∞
x

dt√
2π

e−x2/2 the Gaussian tail function.
The mean-field equations can be solved numerically for

any load α (Algorithm 1; all algorithms are found in the
Supplemental Material [18]); Figs. 1(a) and 1(b) show the
resulting values of q and k, respectively. We observe that k(α)
decreases monotonically from 1 at 0 [Fig. 1(b)], and similarly
‖�s‖ increases monotonically from 0 to 1 [Fig. 1(c)]. Those are
tightly related as from Eqs. (2), (6), and (7) we have that ck
describes the relative strength of the weights’ norm and the
slack norm at the optimization target [Eq. (2)]:

ck =
√

q
/
α〈s2〉. (9)

Thus the loss is dominated by the weights when ck is large
and by the slacks when it is small.

In contrast, q(α) is nonmonotonic, increasing from 0 to
a peak at a finite value, then decreasing [Fig. 1(a)]. This
is an indication of the trade-off between achieving a larger
margin (small q) and making only small errors (small ‖�s‖).
Figure S1 (all figures numbered with an S are found in the
Supplemental Material [18]) compares simulation results for
q with solutions of the self-consistent equations.

We now consider some interesting limits (see Ap-
pendix A 3). When α → 0 we have k → 1 and q → 0 so
that α−1

0 (1/
√

q) ≈ 1/q and thus k ≈ 1 − αc/(1 + c) and q ≈
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FIG. 1. Order parameters in soft classification of points. (a) The
optimal weights’ norm q1/2 (y axis) for different values of α (x axis)
and choices of the regularization variable c (color coded), including
the c → ∞ limit (dashed line). (b) The order parameter k (y axis) for
different values of α (x axis) and choices of c (color coded). (c) The
mean slack norm ‖�s‖2 (y axis) for different values of α (x axis) and
choices of c (color coded), including the c → ∞ limit (dashed line).

αc2/(1 + c)2. When α → ∞ we have k → 0 and q → 0 with
scaling k ≈ 1/cα, q ≈ 1/α. Both limits are marked in Fig. S1.

Infinite c limit When c → ∞ and α < 2 there is a solution
for w (of unconstrained norm) where �s = �0, so the Lagrangian

becomes that of max-margin classifiers:

L = min ‖w‖2 s.t. ∀μ hμ � 1. (10)

In this regime k is finite while ck diverges, so Eq. (7) recovers
the max-margin theory [5] and q diverges for α near 2. On
the other hand, for c → ∞ and α > 2 there is no solution
with �s = �0 so this term dominates the loss and the Lagrangian
becomes

L = min ‖�s‖2 s.t. ∀μ hμ � 1 − sμ. (11)

A mean-field solution of this Lagrangian involves two order
parameters q = ‖w‖2/N and K = limc→∞ ck, which follow
the self-consistent Eqs. (7) and (8) [where k on the left-hand-
side of Eq. (8) approaches 0; see Appendix A 3]. Thus in the
limit of c → ∞ the mean-field theory reduces to a simple
relation between q and α [dashed line in Fig. 1(a)]:

α =
{
α0(1/

√
q) α < 2

α−1
0 (1/

√
q)/H2(−1/

√
q) α > 2

. (12)

Field distribution The theory also provides the joint distri-
bution of h, s; their variance is due to the quenched variability
in the choice of the classification labels and the arrangement
of points (see Appendix A 4). The field distribution is a con-
catenation of truncated Gaussian variables, each representing
a different solution regime:

h ∼
{
N
(

ck
1+ck ,

q
(1+ck)2

)
h < 1

N (0, q) h � 1
. (13)

Fields h � 1 are the “interior” regime (i.e., of points beyond
the separating hyperplane), where s = 0, while fields h < 1
are the “touching” regime (i.e., of points touching the sepa-
rating hyperplane), where s > 0. This distribution is shown
for several choices of c and α in Fig. 2(a), and Fig. S2
compares theory to the empirical histogram from simula-
tions. The distribution of slack variables then follows from
s = max{1 − h, 0}.

Classification errors We now turn our focus to the classi-
fication errors achieved when performing soft classification.
The classification error on the training set is defined εtr =
P(h < 0) = P(s > 1), and from the field distribution we have

εtr = H (ck/
√

q) = H (1/
√

α〈s2〉). (14)

A comparison of the training error observed in simula-
tions with the theoretical predictions is given in Fig. S3.
As demonstrated in Figs. 2(b) and 2(d), the training error
is monotonically increasing with α and monotonically de-
creasing with c throughout. For α < 2 where max-margin
classifiers achieve no errors this is to be expected, but surpris-
ingly this is also the case for α � 2 [see classification error
for α � 2, c → ∞ in Fig. 2(b)].

Thus we turn to analyze classification error in the presence
of noise, where a finite c may be optimal. When Gaussian
noise N (0, σ 2/N ) is applied at each component of the input
vectors, a noise N (0, σ 2q) is added to the fields, so test error
with respect to such noise is give by εg = P(h + ησ

√
q < 0),

where η is a standard Gaussian, or equivalently:

εg = 〈H (h/σ
√

q)〉h. (15)
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FIG. 2. Field distribution and errors in soft classification of points. (a) Field distributions at different values of α (panels), with color
coded regime (orange: “touching” regime; green: “interior” regime; a dashed line at h = 1 indicates regime boundary), using c = 10. (b–c)
Classification error (y axis) for different values of α (x axis) and choices of c (color coded), including the c → ∞ limit [dashed line in (b)].
Each panel (b)–(c) shows the error at a different noise level σ 2 (indicated in title). (d) Classification error (y axis) for different choices of c (x
axis, log scale), for several values of α (color coded), levels of noise σ 2 (solid/dashed lines).

Equation (15) can be evaluated using the field distribution
[Eq. (13)]. The resulting levels of error exhibit nonmonotonic
dependence on both α and c [Figs. 2(c) and 2(d)]. A compar-
ison of the theoretical predictions with simulation results for
different choices of c and levels of noise is provided in Fig. S4.

Classification errors for small noise While an explicit
expression for the error is complicated, when the noise is
small relative to the margin from the optimal hyperplane σ �
1/

√
q, we provide a simple approximation for the test error,

which can be written as a signal-to-noise ratio εg ≈ H (S )
(SNR; see Appendix A 5):

S = ck/

√
q[1 + (1 + ck)2σ 2]. (16)

From the scaling of q, k for large and small α’s we have

S ≈
{

1/
√

α[1/(1 + c)2 + σ 2] α � 1

1/
√

α(1 + σ 2) α � 1
. (17)

In this regime the optimal choice of c can be found by
maximizing S [Eq. (16)] with respect to c, that is solving
0 = ∂S−2

∂c for c, which yields (see Appendix A 6)

c∗ = σ−2

1 − k
− 1

k
, (18)

which is positive in the regime where the SNR is a valid
approximation, and needs to be solved self-consistently as k
depends on c. Due to the dependence on k we have that c∗
depends on α, but this analysis also suggests a “canonical
choice” of c which is independent of α:

c ≈ σ−2. (19)

This choice is expected to capture the order of magnitude of
c∗, except when α is very small or very large [as Eq. (18)
diverges for both k → 0 and k → 1].

Figure 3(a) demonstrates the optimal choice of c calculated
by solving Eq. (18) and compares it to Eq. (19), showing this
approximation is within the correct scale for a large range of
α values. The resulting norm of the optimal solution changes
smoothly with α [Fig. 3(b)], and the canonical choice of c
achieves classification error which differs from the optimal
one only when the error is much smaller than 1 [Fig. 3(c)] and
is superior to other suboptimal choices of c (Fig. S5).

B. Methods for soft classification of manifolds

A manifold Mμ ⊆ RN for index μ ∈ [1, . . . , P] is param-
eterized by its axes {uμ

l ∈ RN }μ=1,...,P
l=0,...,D and the manifold’s

intrinsic coordinates �S ∈ Mμ ⊆ RD+1. Each point in the man-
ifold is a vector xμ(�S) ∈ Mμ such that

xμ(�S) =
D∑

l=0

uμ

l Sl . (20)

As above, the bold notation for xμ and uμ

l indicates that
they are vectors in RN , whereas the arrow notation is used for
other vectors, such as the coordinates �S (not to be confused
with the slack �s). By convention uμ

0 is the manifold center
and we take S0 = 1, so that distances are measured in units of
the center norm. When classifying P manifolds with weights
w ∈ RN , denoting axes projections v

μ

l = yμuμ

l · w the fields
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FIG. 3. The optimal choice of c in soft classification of points.
(a) The optimal choice of c (y axis, log scale) for different values of
α (x axis) and levels of noise σ 2 (color coded). Compares the optimal
choice c∗ (solid lines) and the canonical choice c = σ−2 (dashed
lines). (b) The weights’ norm q1/2 (y axis) for different values of α

(x axis) and levels of noise σ 2 (color coded) when using the optimal
value of c. (c) Classification error (y axis) for different values of α (x
axis) and levels of noise σ 2 (color coded). Compares the optimal
choice c∗ (solid lines) and the canonical choice c = σ−2 (dashed
lines).

become

hμ(�S) = yμw · xμ(�S) = v
μ
0 + �S · �vμ. (21)

The classic soft classification formalism [3], called here
point-slack SVM, uses one slack variable per sample. It is
usually inapplicable for manifold classification as the number

of samples may be infinite. Thus we consider two simple
alternatives which allow for soft classification of manifolds;
both require only a single slack variable per manifold. In
several specific cases where the point-slack formalism can be
used, it is compared with those formalisms.

Center-slack method A naive approach for the classifica-
tion of manifolds is to assume the soft classifier is learned
using only the manifolds’ centers and then evaluated on the
entire manifolds. Formally, soft classification using center
slacks is defined by weights w ∈ RN and slack variables �s ∈
RP such that the central fields obey for all μ ∈ [1, . . . , P]

v
μ
0 = yμw · uμ

0 � 1 − sμ. (22)

Given a regularization parameter c � 0 the optimal classifier
is defined by the Lagrangian

L = ‖w‖2/N + c‖�s‖2/N s.t. ∀μ v
μ
0 � 1 − sμ.. (23)

Using this method the manifold structure is not used
during training, so the weights’ norm and field distribution
(with respect to the centers) are given by points classifica-
tion theory from previous section. However, an evaluation of
classification errors on the manifold would require additional
assumptions on the manifold.

Manifold-slack method The previous method uses a slack
variable to constrain the mean of the fields on the manifold. A
natural alternative would be to constrain the minimal field on
the manifold. Using the field definition hμ(�S), soft classifica-
tion using manifold slacks is defined by weights w ∈ RN and
slack variables �s ∈ RP where the minimal fields obey for all
μ ∈ [1, . . . , P]

hμ
min

.= min
�S∈Mμ

hμ(�S) � 1 − sμ. (24)

That is, given a regularization parameter c � 0 the optimal
classifier is defined by the Lagrangian

L = ‖w‖2/N + c‖�s‖2/N s.t. ∀μ hμ
min � 1 − sμ. (25)

Figure 4 illustrates soft classification of points (or manifold
centers, as noted above), spheres, and general manifolds. In
what follows we first discuss spheres, then extend the discus-
sion to general manifolds.

C. Soft classification of spheres

A D-dimensional sphere of radius R in RN is defined:

xμ(�S) = uμ
0 + R

D∑
l=1

Slu
μ

l s.t. ‖�S‖ � 1. (26)

As in the case of points we would analyze the classification
problem for random labels �y ∈ {±1}P and random axes uμ

li ∼
N (0, 1/N ), i.e., again scaling ‖uμ

l ‖ ≈ 1.

1. Center slack

Using center slacks the classifier properties are given by the
theory of soft classification of points, self-consistent Eqs. (7)
and (8), and the distribution of the fields on the centers follows
Eq. (13).

The classification error on the sphere is defined ε = P(v0 +
R
∑

l vl Sl � 0) but as vl = yw · ul where w is independent of
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(a) (b) (c)

FIG. 4. Illustration of soft classification of points, spheres, and general manifolds. A weight vector w (gray arrow) defines the signed
fields w · x on the manifolds being classified and satisfies yw · x � 1 − s. The light gray hyperplane depicts the decision boundary w · x = 0;
points above it are labeled +1 and below it −1. The dark gray hyperplanes depict the boundaries w · x = ±1. The length of each manifold’s
slack is indicated by a dashed line from the manifold point with the minimal field yw · x to the hyperplane w · x = y. Each panel depicts the
classification of four blue manifolds (target label is +1) against four orange manifolds (target label is −1). The blue and orange manifolds
are symmetrically positioned for illustration purposes only. Manifolds are numbered from darkest to lightest. (a) Classification of points:
the first point is in the interior yw · x > 1, has s = 0; the second and third points have nonzero slack 0 < s < 1, are classified correctly; the
fourth point is below the decision boundary yw · x < 0, corresponds to an error, and has s > 1. (b) Classification of spheres: the first sphere is
in the interior yw · x > 1, the second sphere is fully embedded within the hyperplane yw · x = 1 − s, and the third and fourth spheres touching
the hyperplane yw · x � 1 − s with the minimal field above 0 for the third and below 0 for the fourth. (c) Classification of general manifolds:
the first manifold is in the interior yw · x > 1, the second manifold has a face embedded within the hyperplane yw · x = 1 − s, and the third
and fourth manifolds touching the hyperplane yw · x � 1 − s with the minimal field above 0 for the third and below 0 for the fourth.

ul in this case, we have that vl ∼ N (0, q), and as ‖�S‖ = 1
on the sphere R

∑
l vl Sl ∼ N (0, qR2). If we assume Gaussian

noise N (0, σ 2/N ) is added independently for each sam-
ple component, as we have done for points, we have noise
N (0, q(σ 2 + R2)) at the fields. Thus the error is given by ε =
P(v0 +

√
(σ 2 + R2)qη � 0) where η is a standard Gaussian,

or equivalently

ε = 〈H (v0/
√

(σ 2 + R2)q)〉v0 , (27)

where surprisingly, the dimensionality D of the spheres plays
no role in this setting.

We conclude that soft classification of spheres of radius R
using center slacks with noise level of σ 2 is equivalent to soft
classification of points with effective noise σ 2

e f f = σ 2 + R2.
Several corollaries can be made from the analysis of points,
by using the effective noise σ 2

e f f instead of σ 2. First, when
(σ 2 + R2)q � 1 we expect a good SNR approximation ε ≈
H (S ) using

S = ck/

√
q[1 + (σ 2 + R2)(1 + ck)2]. (28)

Figure 5(a) shows the resulting error when sampling from the
sphere (i.e., σ = 0) for different values of R, and Fig. S6 com-
pares the theory to the error measured empirically. Second, the
optimal choice of c is then given by Eq. (18), as well as the
“canonical choice”

c ≈ 1/(σ 2 + R2). (29)

Contrary to the result from classification of points, due to the
contribution of R, here the optimal choice for c is finite even
for σ = 0, as illustrated in Fig. 5(b).

2. Manifold slack

We now consider soft classification of the entire manifold,
that is, hμ

min � 1 − sμ, thus generalizing the analysis of max-
margin classifiers for spheres [6]. For spheres the point with
the “worst” field, or minimal overlap with w, is given by
�S = −v̂ (where v̂ = �v/‖�v‖), and hence a necessary and suffi-
cient condition for the soft classification of the entire sphere
is given by v

μ
0 − R‖�vμ‖ � 1 − sμ.

Replica theory This observation allows us to write an ex-
pression for the volume V (L, c) of solutions achieving a target
value of the loss L:

V (L, c) =
∫

dNw

∫
dP�sδ(‖w‖2 + c‖�s‖2 − NL) (30)

· · ·
P∏
μ

δ(vμ
0 − R‖�vμ‖ − hμ)�(hμ − 1 + sμ). (31)

A replica analysis yields the following relation between L, α

and the same order parameters q, k (i.e., defined exactly as in
the case of points) when the volume of solutions vanishes (see
Appendix A 7):

L/q = k − 1

k
+ α

k

∫
DD�t

∫
Dt0F (�t, t0), (32)

F (�t, t0) = min
v0−R‖�v‖�1/

√
q

{
‖�v − �t‖2 + ck

1 + ck
(v0 − t0)2

}
,

(33)

where q = ‖w‖2/N and Dt0 = dt0e−t2
0 /2/

√
2π so �t, t0 are

D + 1 Gaussian variables representing the quenched noise
in the solution, due to the variability of the labels {yμ}
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FIG. 5. Soft classification of spheres using center slacks.
(a) Classification error (y axis) for different values of α (x axis) and
R (color coded), without noise σ 2 = 0, using the optimal choice of c
(solid lines) and the canonical choice c = R−2 (dashed lines). (b) The
optimal choice of c (y axis, log scale) for different values of α (x axis)
and R (color coded), without noise σ 2 = 0. The canonical choice
c = R−2 is indicated by the dashed horizontal lines. Those results are
independent of D; see main text.

and the manifolds’ axes {uμ

l }. Note that for D = 0, F (t0) =
ck

1+ck α−1
0 (1/

√
q) so we recover Eq. (6).

Solving the inner problem [Eq. (33)] using Karush-Kuhn-
Tucker conditions [19] (KKT) allows us to describe the joint
distribution of v0, v = ‖�v‖, and s conditioned on t0, t = ‖�t‖
at different solution regimes (see Appendix A 8):

(1) “Interior” regime: the entire sphere is classified cor-
rectly with h > 1 and a margin larger than 1/

√
q from the

hyperplane h = 0; in this regime the slack is not utilized s = 0
and the solution satisfies v0 = t0, vl = tl so that F = 0. This
regime is in effect for 1/

√
q + Rt � t0 � ∞.

(2) “Touching” regime: the tip of the sphere touches the
hyperplane h = 1 − s; in this regime v0, v, s have nontrivial
values. This regime is in effect for 1/

√
q − 1+ck

ck t/R � t0 �
1/

√
q + Rt .

(3) “Embedded” regime: the entire sphere is within the
hyperplane h = 1 − s; in this regime v = 0 but v0, s have
nontrivial values. This regime is in effect for −∞ < t0 �
1/

√
q − 1+ck

ck t/R.
The same KKT analysis also provides the minimization

value F (t0, t ) achieved at each regime, so that denoting

f (R, D, ck, q) = ∫ DD�t ∫ Dt0F (�t, t0) and the chi distribution

with D degrees of freedom χD(t ) = 21−D/2

�(D/2) t
D−1e−t2/2 dt :

f (R, D, ck, q)

=
∫

χD(t )
∫ 1/

√
q− 1+ck

ck t/R

−∞
Dt0

[
ck

1 + ck
(1/

√
q − t0)2 + t2

]
(34)

+
∫

χD(t )
∫ 1/

√
q+Rt

1/
√

q− 1+ck
ck t/R

Dt0
ck

1 + ck(1 + R2)
(1/

√
q + Rt − t0)2

,

(35)

and the mean-field equation becomes

L/q = k − 1

k
+ 1

k
α f (R, D, ck, q). (36)

Self-consistent equations Assuming the optimal loss L∗
satisfies saddle-point conditions 0 = ∂L

∂q = ∂L
∂k , we have two

self-consistent equations for k, q, similar to those found in the
case of points:

1 = α f − αk
∂

∂k
f , (37)

1 − k = α f + αq
∂

∂q
f . (38)

See the concrete form in A 9. Those equations can be solved
numerically to predict the weights’ norm (Algorithm 2). This
prediction is compared to the norm observed in simulations
(i.e., by finding the optimal weights for classification of
spheres, Algorithm 3). Figure 6 shows the resulting q, k for
specific values of R, D (and additional ones are presented in
Fig. S8); q(α) has a single peak, increasing from 0 to a finite
value at the peak, then decreasing monotonically, while k(α)
decrease monotonically from 1 to 0. We note that while for
spheres ck no longer corresponds exactly to the ratio between
the two parts of the optimization target, its interpretation as a
measure of the contribution of the weights is maintained.

The mean-field equations can be simplified when consid-
ering several interesting limits (see Appendix A 10). As in
the case of points, in the limit c → ∞, we find a different
behavior below and above αHard

C , the max-margin capacity.
For α < αHard

C we have that k is finite while ck diverges, with
Eq. (37) becoming the mean-field equation from max-margin
classification [6], and the underlying Lagrangian is given by

L = ‖w‖2/N s.t. ∀μ hμ
min � 1. (39)

On the other hand, for α > αHard
C we have that k approaches

0 while q and K = limc→∞ ck are finite, with the underlying
Lagrangian

L = ‖�s‖2/N s.t. ∀μ hμ
min � 1 − sμ. (40)

A second interesting limit is α → 0. In this limit we ex-
pect the order parameters to behave as in the case of points,
q → 0 and k → 1. We find that for small α the self-consistent
equations are simplified, and for α � 1 we have the approx-
imations k ≈ 1 − α(1 + D) and q ≈ α(ck)2/(1 + ck)2 (see
Fig. 6 and Fig. S8 where those approximations are marked).

Phase transition An analysis of the mean-field equa-
tions reveals that for spheres (unlike points) there is a finite
value of α where q → 0, and above which the self-consistent
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FIG. 6. Order parameters in soft classification of spheres using
manifold slacks. (a) The weights’ norm q1/2 (y axis) for different
values of α (x axis), and choices of c (color coded), for radius R =
0.25 and dimension D = 10. Compares theory results (solid lines) to
simulation results (diamonds). (b) The order parameter k (y axis) for
different values of α (x axis) and choices of c (color coded). (a, b)
Theory for the limits of α → 0, α → αSoft

C is marked as black dotted
and dash-dot lines, respectively.

equations cannot be solved for k, q (see Figs. 6 and S8).
The corresponding simulation results indicate that when the
theory equations cannot be solved the optimal classifier is
w = 0, that is q = 0, with all the slack variables saturating at
�s ≡ 1. Thus, soft margin classification problems always have
a solution, unlike max-margin problems, but above a certain
value of α this is the trivial solution. The critical value for
α can be found by assuming that both k,

√
q � 1; using a

scaling of x = ck/
√

q we get that α = αC would satisfy (see
Appendix A 11)

α−1
C =

∫ xR

0
χD(t )t2 + xR

∫ ∞

xR
χD(t )t, (41)

x =
(

1 + R2
∫ ∞

xR
χD(t )

)−1

R
∫ ∞

xR
χD(t )t, (42)

where x is the self-consistent solution of Eq. (42).
Surprisingly, the critical value is independent of c and we

denote it αSoft
C , as a soft analog of the max-margin capacity
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FIG. 7. Capacity in manifold-slack classification of spheres.
(a) The ratio between αSoft

C and αHard
C (y axis, log scale) for different

values of R (x axis) and D (color coded). (b) The ratio between αSoft
C

and Eq. (43) approximation (y axis) for different values of R (x axis)
and D (color coded).

αHard
C [6]. Notably, the former is always larger αSoft

C � αHard
C ,

as shown in Fig. 7(a).
For R → 0 we have that x = R

∫∞
0 χD(t )t = R

√
2�( D

2 +
1
2 )/�( D

2 ) and α−1
C = x2. Thus, for small R, the critical value

αSoft
C diverges as R−2 (and in the limit of points there is no

phase transition). Conversely, for R → ∞ we have x ≈ 0 and
αSoft

C = D−1, whereas in this limit αHard
C = (D + 1/2)−1 [6].

Intuitively, in both cases w must be perpendicular to the PD
manifold axes; for soft classification this implies just N >

PD or α < D−1, while for max-margin classification due to
the finite capacity when classifying the centers this means
P/(N − PD) < 2 or α < (D + 1/2)−1.

The existence of a sharp transition in the manifold-slack
problem is the result of the thermodynamic limit. For small
N , the existence of a solution at any given α depends on the
particular labels realization. As N increases, the probability of
having a solution approaches 1 for α < αC , and 0 for α > αC

(Fig. S7).
Phase transition for large D regime When D � 1 the phase

transition Eqs. (41) and (42) implies a simple expression for
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capacity:

αSoft
C ≈ (1 + R2)/R2D. (43)

Figure 7(b) compares this approximation to the full expression
for different values of R, D; as observed, this approximation
is reasonable for large D independently of the value of R. In
this regime the max-margin capacity is given by [6]

αHard
C ≈ (1 + R2)α0(R

√
D). (44)

Phase-transition intuition To gain some intuition for why a
phase transition is to be expected for manifold slack, we need
to consider the distribution of slack values. As for points, the
mean-field theory provides the full distribution of the fields
and slack variables (see Appendix A 12). Figure S9 compares
the theoretical slack distribution to the histogram of the values
observed in simulations. We note that the slack distribution
depends on q both for the mean and the variance; decreasing
q pushes the slack distribution toward a δ-function at 1 when
q = 0. Now consider how manifold slack is compared to cen-
ter slack. From the theory of classification of points, the loss in
classification using center slacks monotonically increases in
α and tends asymptotically (from below) toward L = cα. As
this is the loss achieved by the trivial solution, reaching it at
a finite α corresponds to the phase transition. For large values
of α, weights trained on manifold centers have small q and
slack values near 1; those achieve hmin ≈ v0 − √

qR
√

D. Thus
if those weights were used by the manifold slack, the slacks
would need to increase by

√
qR

√
D, pushing their mean above

1. To avoid this, the loss is reduced by decreasing q, pushing it
toward 0. Below we use this intuition to speculate on whether
other soft classification formalisms would introduce a phase
transition (see discussion).

Classification errors Next we use the fields and slack distri-
butions to calculate the probability of classification errors. In
the framework of manifold slacks it is natural to consider the
probability of error anywhere on the manifold, or equivalently
the fraction of manifolds where the worst point is misclassi-
fied. This is the fraction of slack variables that are larger than
1, i.e., εmanifold

tr = P(s � 1), which can be evaluated from the
slack distribution. This entire-manifold classification error is
given by εmanifold

tr = H (Smanifold ) for Smanifold defined in A 13.
A different kind of error is the probability of classification

error on uniformly sampled points from the sphere, that is,
ε

sample
tr = P(h < 0), similar to the error considered above for

center slacks. These fields can be written as h = v0 + Rvz,
where z = cos(θ ) for θ the angle between the weight vector
and the point on the sphere, v0 and v = ‖�v‖ are the projections
of the weight vector on the center and the sphere subspace.
Thus, ε

sample
tr = P(v0 + Rvz < 0), where the joint distribu-

tion of v0, v is given by theory, and for a uniform sampling
from a sphere z ∈ [−1, 1] has a bell-shaped distribution (see
Appendix A 13):

P(z) = 1√
π

(1 − z2)
D−3

2 �
(D

2

)/
�

(
D − 1

2

)
(45)

with moments 〈z〉 = 0 and 〈δz2〉 = 1/D. In this setting clas-
sification error monotonically decreases with c so the optimal
value of ε

sample
tr is achieved for c = ∞.

We now consider the classification error of points on the
sphere in the presence of noise, where the classifier is trained
on the entire manifold (i.e., with no noise), and tested on
noisy samples from the manifold. Assuming Gaussian noise
N (0, σ 2/N ) is added to each component of manifold samples,
the fields are affected by noise N (0, σ 2q). Thus the probabil-
ity of error in a sample is given by P(h + σ

√
qη < 0) where

η is standard Gaussian, and equivalently

εsample
g =

〈
H

(
v0 + Rzv

σ
√

q

)〉
v0,v,z

. (46)

Large D regime The regime of spheres with D � 1 is
important as real-world manifolds are expected to be high-
dimensional, and in this regime it is possible to derive an SNR
approximation of Eq. (46).

When R ∼ O(1), αSoft
C is close to αHard

C (see Fig. 7). Thus
in this regime the benefit of soft classification, in terms of the
range of valid solutions, is small. On the other hand, when
R
√

D ∼ O(1), αSoft
C can be much larger than αHard

C [Fig. 7(a)],
and thus we focus on this regime in our analysis of classifica-
tion errors.

To derive an SNR approximation we assume that in this
regime v0 + Rzv is approximately Gaussian, and that only the
“touching” regime contributes to the error, thus substituting
the values of v0, v derived from the mean-field theory in that
regime. The resulting SNR is provided in Appendix A 13.

Importantly, from this analysis we can calculate the
limiting behavior of the SNR. In the α → 0 limit the error
anywhere on the manifold scales as limα→0 εmanifold

tr =
H (ck/

√
q), and using the order parameters in this limit leads

to

lim
α→0

εmanifold
tr = H[(1 + c)/

√
α], (47)

which is exactly the scaling for classification of the center
points alone [εcenters

tr , Eq. (17) with σ 2 = 0]. Thus in this
regime (i.e., N → ∞) the manifold structure does not affect
the classification error, and furthermore the error in classifica-
tion of the entire sphere is the same as the error in classifica-
tion of samples ε

sample
tr , as the former is bounded between the

two classification errors εcenters
tr � ε

sample
tr � εmanifold

tr .
On the other hand, in the α → αSoft

C limit, from the scal-
ing of k, q in this limit the error in classifying the entire
manifold saturates, but not the error classifying samples (see
Appendix A 13):

lim
α→αSoft

C

εmanifold
tr = H (0) = 1/2, (48)

lim
α→αSoft

C

εsample
g = H

(
R
√

D

1 + R2

1√
1 + σ 2

)
. (49)

Thus the theory predicts that errors at the phase transition are
independent of c and jump from this finite value to 0.5 (in
simulations using a finite N this transition is smoothed, as
already discussed above).

Figure 8(a) presents both types of training errors and their
dependence on α and c at specific values of R, D, demon-
strating that they are monotonically decreasing with c and
monotonically increasing with α. Unlike the training error, in
the presence of noise the test error is not monotonic in both
α [Fig. 8(b)] and c [Fig. 8(c)]. Thus error is minimized for a
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FIG. 8. Errors in soft classification of spheres using manifold
slacks. Results for spheres of radius R = 0.25 and dimension D =
10. (a) Classification error without noise (y axis) for different values
of α (x axis) and choices of c (color coded). Compares samples’
classification error (dark lines) and entire-manifold classification
error (light lines). (b) Classification error at noise level σ 2 = 1 (y
axis) for different values of α (x axis) and choices of c (color coded).
(c) Classification error (y axis) for different choices of c (x axis,
log scale), for several values of α (color coded), levels of noise σ 2

(solid/dashed lines).

finite value of c, which depends on both the noise level σ and
the load α.

Agreement of the theory with empirical simulations is
presented for different parameter values and choices of c in
Fig. S10 for the training error, and similarly in Fig. S11 for the
test error. Thus theory can be used to choose the optimal value
of c. Figure S12 presents the optimal value of c for different
values of α and levels of noise, demonstrating a nontrivial
behavior for manifold slacks, unlike the monotonic behavior
predicted by theory for center slacks.

Comparison with other methods Comparing the perfor-
mance of the manifold-slack method with other methods
requires optimization of the regularization value c indepen-
dently for each method. When there is no noise, below
max-margin capacity α < αHard

C , the optimal choice of c is
infinite such that manifold-slack classification converges to
max-margin classification. However, in the presence of noise
the optimal value of c is finite and using manifold slacks re-
duces classification error relative to max-margin classification
[Fig. 9(a)]. While the manifold-slack method is strictly better
than the max-margin method due to choosing from a larger
pool of classifiers, the improvement is usually small and is
achieved toward αHard

C (see Fig. S13).
A systematic comparison of the manifold-slack and center-

slack methods finds that manifold slacks are better for small
α values, with notable benefits at larger R and smaller σ

values [see Figs. 9(b) and 9(c)]. Intuitively, when the noise
is small, manifold slacks may achieve near-zero error at a
range of α values, while center-slack performance depends
on R as a noise term and thus may be order 1 when R is
order 1. For larger α values the performance of center slacks
surpasses that of manifold slacks, and finally above αSoft

C only
the center-slack method is a viable option.

As noted above, the point-slack method cannot in general
be used for classification of manifolds with an infinite number
of points. However, for classification of line segments (i.e.,
spheres with D = 1), a correct classification of the 2P end
points is enough to classify the entire line. Figure S14 com-
pares manifold slack with point-slack classification of the 2P
end-points, both using the optimal choice of c for a given level
of noise. The performance of point-slack SVM is usually close
to that of the manifold-slack method, but provides a significant
improvement toward αSoft

C . The line segments case demon-
strates a striking contrast between those alternatives. Using
the manifold-slack method (with P slack variables) there is a
phase transition where the nontrivial classifier vanishes at a
finite α, as expected from spheres classification theory. But
there is no such transition using the point-slack method (with
2P slack variables), as expected from the point-slack theory
[compare the weights’ norms in Figs. S14(a) and S14(b)].

D. Soft classification of general manifolds

We now consider the more general case, which is relevant
for applications, where the above analysis of both points and
spheres would serve as a stepping stone toward theoretic un-
derstanding of general manifolds.
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FIG. 9. Comparison of classification errors for spheres using dif-
ferent methods. (a) Classification error (y axis) using manifold slacks
(at the optimal choice of c, solid lines) or max-margin classification
(dashed lines) at different values of α (x axis) for radius R = 0.25 and
dimension D = 10. Compares simulation results at different noise
levels (color coded). (b, c) Classification error using the optimal
choice of c (y axis) for different values of α (x axis) and values of
R (color coded), for dimension D = 5. Compares simulation results
of manifold-slack classifiers (solid lines) and center-slack classifiers
(dashed lines), without noise (b) and with noise (c).

1. Center slack

The center-slack method is straightforward to generalize to
general manifolds, with the centers defined per our definition
of a general manifold [u0 in Eq. (20)]. A classifier trained on
the centers would have a norm per points classification theory
[Eqs. (7) and (8)], and central field distribution per Eq. (13).

The probability of classification error for a point on
the manifold x(�S) would be ε(�S) = P(v0 + �S · �v � 0) with
�S · �v ∼ N (0, q‖x(�S) − u0‖2). A calculation of classification
error on a general manifold requires to make further assump-
tions on the sampling of �S ∈ M (see discussion). However,
for the simple case of uniform sampling from a point-cloud
manifolds where xm = u0 + δxm for min[1 . . . M] we have
that

ε = 1

M

M∑
m=1

〈H (v0/
√

(σ 2 + ‖δxm‖2)q)〉v0 , (50)

where σ 2/N is the variance of Gaussian noise added to each
component, which generalize Eq. (27) from spheres, with the
empirical ‖δxm‖2 taking the role of R2. Furthermore, when the
number of samples is large we expect self-averaging:

ε = 〈H (v0/

√
(σ 2 + R̂2)q)〉v0 (51)

for R̂2 = 1
M

∑M
m=1 ‖δxm‖2 the total variance of the manifold

points. Figure S15 compares the full theory [Eq. (50)] and
the approximation [Eq. (51)] to empirical measurement of the
error using center slacks.

2. Manifold slack

Replica theory Generalizing the mean-field theory of
spheres to general manifolds, the theory implies that Eq. (32)
is unmodified while Eq. (33) becomes

F (�t, t0) = min
v0+g(�v)�1/

√
q

{
‖�v − �t‖2 + ck

1 + ck
(v0 − t0)2

}
,

(52)

where g(�v) = minS∈M �v · �S is a called the “support function.”
To characterize the solution of F (�t, t0) using KKT conditions,
we formally define “anchor points” as the subgradient of the
function (as in [7])

S̃(�v) = ∂

∂v
g(�v), (53)

and when the support function is differentiable, the subgradi-
ent is unique and is equivalent to the gradient:

S̃(�v) = arg min
�S∈M

�S · �v. (54)

For a given data manifold Mμ and known values of q, k,
one can sample from the anchor point distribution using the
mean-field theory (see Appendix A 14):

S̃(�t, t0) = �v∗ − �t
ck

1+ck (v∗
0 − t0)

, (55)
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FIG. 10. Order parameters and manifold properties for point-cloud manifolds. Sampling m = 100 points from an ellipsoid with γ = 1.5,
R = 0.25, D = 20. (a) The weights’ norm q1/2 (y axis) for different values of α (x axis) and choices of c (color coded). Compares theory
(solid lines) and simulation results (diamonds). (b–d) The corresponding values of the order parameter k (b), manifold dimension DM (c), and
manifold radius RM (d) (y axis) for different values of α (x axis) and choices of c (color coded).

where �v∗, v∗
0 are the values which minimize F (�t, t0), to be

found using general least-squares optimization methods. This
method for sampling from the anchor point distribution is
formally described in Algorithm 4.

Large D regime We note that the structure of the manifold
enters the mean-field equations only through the anchor points
and their distribution. For large D, Ref. [7] has suggested their
contribution can be summarized by measuring two statistics.
Those manifold properties RM, DM are defined through the
statistics of the anchor points with respect to �t, t0:

R2
M = 〈‖δS̃‖2〉�t,t0 , (56)

DM = 〈(�t · δS̃)
2
/‖δS̃‖2〉�t,t0 . (57)

As those generalize R, D of spheres, we suggest using RM, DM

to solve for q, k, and αSoft
C in the equations of soft classifi-

cation of spheres. For each value of α, c we can iteratively
calculate RM, DM by sampling anchor points using the cur-
rent values of q, k, then update the estimation of q, k [using
Eqs. (A36) and (A37) with R = RM, D = DM], until conver-
gence (Algorithm 7). Similarly, we can calculate αSoft

C directly
by iteratively calculating RM, DM at small q, k, then update the
estimation of αSoft

C [using Eq. (41) with R = RM, D = DM],
until convergence (Algorithm 8).

As was the case for spheres, when D is large we expect
only the “touching” regime to contribute, and applying KKT
condition to minimizing F (�t, t0) we get a self-consistent rela-
tion (see Appendix A 14):

�v = �t + ck

1 + ck
(1/

√
q − �v · S̃ − t0)S̃. (58)

Thus Eqs. (54) and (58) can be used to iteratively update �v
and S̃ (Algorithm 5). This iterative approach allows for finding
the anchor points without solving a least-squares optimization
problem for each value of �t, t0, as in the least-squares algo-
rithm.

Using manifold slacks we expect classification of gen-
eral manifolds to exhibit finite capacity because the minimal
field hmin is expected to be finite and negative relative to the
central field v0 as long as the weights are finite. To use a

concrete example, for simulations of general manifolds we
used point-cloud manifolds created by sampling m points
from a D-dimensional ellipsoid with radii rl ∼ l−γ . Denoting
R2 =∑D

l=1 r2
l the ellipsoid shape is defined by parameters

R, D, γ . Figures 10(a) and 10(b) and Figs. S16(a) and S16(b)
demonstrate the existence of finite capacity when using man-
ifold slacks also for those manifolds. The predicted values of
q matches the empirically observed values, which vanish at a
finite α value [Figs. 10(a) and S16(a)]. The dependence of the
measured DM on c and α is quite small [see Figs. 10(c) and
S16(c)] and similarly for the measured RM [see Figs. 10(d)
and S16(d)].

Figure S18 presents the weights’ norm for the classification
of point-cloud manifolds and the theoretical values predicted
for q, k, RM , DM , using either the iterative or the least-squares
algorithm. The two algorithms give very similar results, with
a notable difference at large R where the assumption that only
the “touching” regime contributes to the solution no longer
holds.

As it is favorable to have manifold properties DM and RM

which do not depend on α, Fig. S19 shows that using a single
choice of DM, RM , calculated for α near αSoft

C (i.e., largest
solvable α) to predict q provides a good match for the entire
range of α (but not using a single choice calculated from a
small α value).

Point-cloud manifolds are important for applications of the
theory, and so we explored how manifold properties scale with
the number of points in the manifold. Figure 11 demonstrates
the contrast between structured manifolds, sampled from a
low-dimensional ellipsoid, and random manifolds, sampled
from Gaussian statistics. For both types the manifold radius
RM does not depend on the number of samples [Fig. 11(a)].
However, while for structured manifolds the manifold dimen-
sion DM does not depend on the number of points [Fig. 11(b)],
for random manifolds we observe that DM is linear in the
number of points m [Fig. 11(c)]. As a result, for struc-
tured manifolds the capacity αSoft

C saturates to a finite value
[Fig. 11(d)] when the number of samples is increased while
for random manifolds it vanishes as 1/m [Fig. 11(e)]. The
properties of random manifolds are further demonstrated in
Fig. S20.
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FIG. 11. Scaling of capacity and manifold geometry with the number of points in point-cloud manifolds. Comparison of point-cloud
manifolds of m points sampled from either an ellipsoid with γ = 1.5, radius R = 0.5, and dimension D = 10, or from a random Gaussian.
(a) Manifold radius (y axis) dependence on the number of manifold points (x axis) for ellipsoid and random manifolds. (b, c) Manifold
dimension (y axis) dependence on the number of manifold points (x axis) for ellipsoid manifolds (b) and random manifolds (c). (d, e) Capacity
(y axis) dependence on the number of manifold points (x axis) for ellipsoid manifolds (d) and random manifolds (e). All values calculated at
the largest possible α; error bars indicate standard deviation with respect to choices of c.

Classification errors For general manifolds, the classifica-
tion error is defined assuming manifold points are sampled
according to some measure on the manifold (see discussion);
for the simpler case of point-cloud manifolds, we assume this
is a uniform distribution.

Figure S21 presents the training and test errors found in
classification of point-cloud manifolds, demonstrating that the
training error is monotonic in both c and α but the test error is
not. Classification errors can be predicted from the theory of
classification of spheres, by plugging in the theoretical values
of q, k, RM , DM , calculated using the least-squares algorithm.
Figure S22 compares the training error predicted with the
error measured in simulations, and Fig. S23 compares the
predicted test error at several noise levels with simulation
results. The observed agreement means that the theory of
spheres classification can be used to make predictions regard-
ing classification of nonspherical manifolds by measuring the
manifolds’ RM and DM , demonstrates that those geometric
properties capture the contribution of manifold shape to clas-
sification.

Comparison with other methods Comparing the perfor-
mance of different classification methods on point-cloud
manifolds reveals a similar behavior to that observed for
spheres. Figure S24 compares the manifold-slack method
with both center-slack and max-margin methods, using the
optimal choice of c for each method. Below αHard

C manifold-
slack classification exhibits improved performance compared
to max-margin classification, but this improvement is usually
small [Figs. S24(a) and S24(b)]. As in the case of spheres, for
small α values manifold slacks are superior to center slacks,
with large qualitative difference at low noise level when R
is order 1, while for larger α values the performance of the
center-slack method is better [Fig. S24(c)].

For point-cloud manifolds, when the number of samples
per manifold is not too large, the point-slack method can
also be used for manifold classification. Figures S25(a)–
S25(d) show that using the point-slack method, there is no
phase-transition to zero weights as for the manifold-slack
method. Despite this marked difference, the classification er-
ror achieved by the point-slack method is only slightly better
than that achieved by the manifold-slack method [both us-
ing the optimal choice of c; Figs. S25(e) and S25(f)]. This

improvement is significant only at small levels of noise and
towards αSoft

C . Thus point-slack SVM uses the additional de-
grees of freedom (and additional computational costs) from
assigning a separate slack variable per sample to slightly out-
perform the manifold-slack method.

III. DISCUSSION

The introduction of slack variables to SVMs allows linear
classification of data which are not linearly separable, and
for optimizing performance by choosing the right balance
between making training errors and increasing classification
margin [using the regularization parameter c; Eqs. (2), (23),
and (25)]. Here we analyze the noise resilience of such classi-
fication by considering test performance with respect to input
noise (with variance σ 2/N applied to each input component).

Point slack We first study the statistical mechanics of a
point-slack model where a set of P random points in N di-
mensions are independently labeled, and each is assigned a
slack variable. We show that the problem has a well defined
solution for all load values α = P/N (Fig. 1). In the absence
of input noise, the optimal choice of c is infinite for all α;
however, in the presence of noise in the test data, the optimal
c is finite (Fig. 2). Furthermore, the optimal choice of c can
be calculated from theory [Eq. (18)], and is roughly given by
the “canonical choice” c = σ−2 (Fig. 3), demonstrating that
an optimal regularization is tuned to the noise.

Manifold classification Our main interest is the case of
points arranged in P randomly labeled manifolds, such that all
points within a manifold have the same target label. Assuming
the number of points per manifold is large (and possibly
infinite) assigning a slack variable to each point is not feasible.
We introduced and analyzed two schemes of slack algorithms
for classification of manifolds, which differ in the manner
in which slack variables are attached to manifolds. In the
center-slack method, each manifold center is associated with
a slack variable, reducing the learning to point-slack SVM of
the centers. In the manifold-slack method, a slack variable is
associated with the “worst” point in each manifold, relative
to the separating hyperplane. The relation between slack vari-
ables and errors is different in the two methods (Fig. 4); when
using center slacks, if the center is misclassified, most of the
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manifold may follow, but using manifold slacks most of it may
be classified correctly even if the “worst” point is not.

Center slack The relatively simple center-slack scheme
has several attractive features. First, it has a well-defined,
nonzero, solution for the weights for all values of α. Sec-
ond, the associated optimal c is provided by theory (Fig. 5)
and is approximately given by the simple “canonical choice”
c = (R2 + σ 2)−1, where R is the manifold radius, expressing
the intuition that the variability of the manifold data relative to
the center (quantified by R2) is an intrinsic noise on top of the
extrinsic noise σ 2. Finally, for large α values its performance
is superior to the more sophisticated manifold-slack method
[Figs. 9(b) and 9(c) and Fig. S24(c)], as discussed below. The
disadvantages of the center-slack method are its performance
for small α values and that it does not generalize max-margin
manifold classification.

Manifold slack The manifold-slack scheme is a natural ex-
tension of max-margin manifold classification [6,7] in which
the optimal weight vector is a sum of anchor points, one per
manifold, which are the closest points in each manifold to
the separating hyperplane. Here each such point is assigned a
slack variable. For α below the errorless classification capac-
ity αHard

C , when c approaches ∞, manifold-slack classification
approaches max-margin classification. However, the optimal
c may not be infinite even in this α regime in the presence of
noise (Fig. 8). As for larger values of α, a surprising result
of our mean-field theory is that the manifold-slack method
possesses a solution with nonzero weight vector only below
a second critical value, αSoft

C (Fig. 6). Thus, this method al-
lows for extending the range of linear classification above the
errorless capacity, but for a limited range (Fig. 7).

Using an optimal choice of c, the classification-error per-
formance of manifold slacks is always better than max-margin
and may be superior to center slacks, depending on parame-
ters. The main improvement over max-margin is the extended
range of α values (Fig. 7), as the reduction of the classifica-
tion error is usually small [Figs. 9(a) and Figs. S13, S24(a),
and S24(b)]. The improved performance compared to center
slacks is substantial for small α values when the noise is small
and R is order 1, where manifold slacks achieve near-zero
error while center-slack error is order 1 [Figs. 9(b) and 9(c)
and Fig. S24(c)].

While many of the results for manifolds were derived in
the context of spheres, the theory extends well to general
manifolds by recovering their effective radius and dimension
[Eqs. (56) and (57); Figs. 10 and S16]. Importantly, their
classification performance is well predicted by plugging those
values into the theory of spheres (Figs. S22 and S23), thus
demonstrating they capture the classification-relevant aspects
of manifolds’ geometry. For structured point-cloud manifolds
we find a dimension which does not depend on the number
of points, in sharp contrast to random point-cloud manifolds,
where the dimension is linear in this number (Fig. 11).

Extension to other formalisms Soft classification can be
defined in many ways [3,4,20], and each may be extended to
manifold classification. Based on our analysis we expect that
attaching a slack variable to the “worst” manifold point would
lead to the same phase transition reported here. Figure S17
demonstrates this for a variant of manifold slack where an L1

norm is used on the slacks, where the weights’ norm vanishes

at a load that is independent of c. On the other hand, attaching
slack variables to predefined manifold locations would not
lead to the appearance of such a transition. Furthermore, when
attaching slack variables to both predefined points and the
“worst” point (previously done in [21]), a phase transition is
expected.

Measure on manifolds The use of manifold slacks benefits
from being insensitive to the exact measure assumed on the
manifolds (as long as it is nonzero). In the case of center
slacks, the center of mass of the manifolds depends in general
on the measure. Nevertheless, in some cases, there is a natural
choice for the center, as in spheres or ellipsoids (due to sym-
metry), or in a points cloud, where using the points’ average
corresponds to a uniform measure on the points. Furthermore,
one can use the measure-independent Steiner point [22] as
the manifold center. Regardless of the employed classification
method, the evaluation of the errors depends in general on the
measure.

Future work Extending the theory of max-margin classifi-
cation of manifolds to soft classification is an important step
in connecting the theory to applications, where soft-margin
classifiers are more commonly used. We believe the theory
of general manifolds is relevant for the analysis of real-world
data [23]. To properly do so, the theory needs to be extended
to allow for center correlations, as was done for max-margin
classifiers [8]; we expect this to be straightforward as the
methods of [8] involve manifold preprocessing which is in-
dependent of the geometrical analysis.

The issue of robustness to noise would naturally come
up when aiming to apply the theory to neural data analysis
where noise is a common attribute of the problem, unlike the
artificial networks analyzed in [8]. It would be interesting to
apply the methods described here to analyze object represen-
tations with non-Gaussian noise, such as neural noise with
Poisson-like characteristics.

On a broader scope, the discussion of robustness to noise is
a limited form of generalization. In general, we would like to
be able to discuss generalization with respect to a finite num-
ber of samples from a manifold, where the scaling behavior of
the classification error with the number of samples is an open
question. Recent work on the few-shot learning setup, where
the number of samples is very small, has revealed relatively
simple behavior of the classification error [24].
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APPENDIX

1. Optimal loss in soft classification

We write a Lagrangian for the problems of points [Eq. (2)]
and spheres [Eq. (25)], assuming no bias for brevity. For
spheres the constraint on the minimal field is hμ

min = v
μ
0 −

R‖vμ‖ � 1 − sμ so that both cases are captured by the
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Lagrangian (with R = 0 for points)

L = ‖w‖2/N + c‖�s‖2/N + 2
P∑
μ

βμ

(
1 − sμ − hμ

min

)
. (A1)

KKT conditions yield three equations, 0= ∂L
∂wi

, 0 = ∂L
∂sμ , and

0 = �β(1 − �s − �hmin). Those lead to �β = �sc/N and ‖w‖2/N =
�βT �hmin, and hence the optimal solution L∗ satisfies

L∗ =
P∑
μ

βμ = c

N

P∑
μ

sμ = cα〈s〉. (A2)

2. Replica theory for points

Consider P points xμ ∈ RN and labels yμ ∈ {±1}; soft-
margin classification is defined as solving

w∗, �s∗ = arg min
w

‖w‖2 + c‖�s‖2 s.t. hμ � 1 − sμ, (A3)

where w∗ ∈ RN and �s∗ ∈ RP
+ and the fields hμ = yμ(w ·

xμ + b) where we assume b = 0 for brevity. Denot-
ing the optimal loss as L∗, we write an expression
for the volume of solutions V (L, c), which vanishes
for L < L∗:

V (L, c) =
∫

dNw

∫
dP�s

P∏
μ

�(hμ − 1 + sμ)δ(‖w‖2 + c‖�s‖2 − NL) (A4)

=
∫

dNw

∫
dP�s

∫ ∞

1−sμ

dPhμ

∫
dPĥμ

2π
ei
∑P

μ (yμw·xμ−hμ )ĥμ

∫
dl̂

2π
ei(‖w‖2+c‖�s‖2−NL)l̂ . (A5)

We wish to calculate the values for which the volume vanishes assuming random (Gaussian) points xμ and random (binary)
labels yμ. Using the replica identity [Eq. (5)] it is enough to find G which satisfies [V n] = enG, to have that [logV ] ≈ G. Thus
we consider V n, average over xμ

i ∼ N (0, 1/N ), and denote qαβ = 1
N

∑N
i wα

i w
β
i . After integrating over ĥα,μ, wα

i we have

[V n]x =
∫

dn×nqαβ

∫
dn×nq̂αβ

2π

∫
dnl̂α

√
2π

e−nNG0−nNG1 , (A6)

G0 = i

n

n∑
α,β

qαβ q̂αβ + 1

2n
log det(−2iq̂αβ − δαβ2il̂α ) + i

n

n∑
α

Ll̂α, (A7)

G1 = α

2n
log det q − α

n
log
∫

dnsα

√
2π

∫ ∞

1−sα

dnhαeic
∑n

α (sα )2 l̂α− 1
2

∑n
α,β q−1

αβ hαhβ

. (A8)

We assume replica symmetry, i.e., qαβ = q + (q0 − q)δαβ ,
−iq̂αβ = q̂ + (q̂0 − q̂)δαβ , and −il̂α = l̂ , and also that the be-
havior in the thermodynamic limit N → ∞ is dominated by
the maximum of the integral, so we can set 0 = ∂G0

∂ q̂ = ∂G0
∂ q̂0

to
get rid of those two variables:

G0 = −1

2
+ (q0 − L)l̂ − 1

2
log (q0 − q) − 1

2

q

q0 − q
. (A9)

We use the Hubbard-Stratonovich transform to decouple G1

into n terms, then use the replica identity log
∫

Dt z(t )n ≈
n
∫

Dt log z(t ) for n → 0. Integrating over the slack variables
s, denoting k = 2l̂ (q0 − q) and taking the limit q → q0, the
integral in G1 is dominated by the maximal value, given by
ckq0

1+ck minh>1/
√

q(h − t )2. In the limit of q → q0:

lim
q→q0

(q0 − q)G0 = (q0 − L)
k

2
− 1

2
q0, (A10)

lim
q→q0

(q0 − q)G1 = α

2

ckq0

1 + ck
α−1

0 (1/
√

q0) (A11)

for Gardner’s α−1
0 (κ ) = ∫ κ

−∞ Dt (κ − t )2 [5]. Denoting G =
G0 + G1, the volume vanishes when limq→q0 (q0 − q)G = 0,
yielding Eq. (6).

3. Self-consistent equations for points

The self-consistent equations for points, Eqs. (7) and (8),
are derived directly from the mean-field Eq. (6) by assuming

that for the optimal loss we expect saddle-point conditions on
L(q, k), namely, that 0 = ∂L

∂q = ∂L
∂k .

Those self-consistent equations can be evaluated for the
limits α → 0 and α → ∞. When α → 0 we have k → 1
and q → 0 so that α−1

0 (1/
√

q) ≈ 1/q, and thus k ≈ 1 − c
1+c α

while
√

q ≈ c
1+c

√
α. When α → ∞ we have k → 0 and q →

0 so that scaling k = k0/α we have k ≈ 1/cα and q ≈ 1/α.
The limit c → ∞ exhibits different behavior for α < 2 and

α > 2. For α < 2 the problem follows the Lagrangian from
Eq. (10), and the solution satisfies 1 = αα−1

0 (1/
√

q), which is
the max-margin solution. On the other hand, when c → ∞ for
α � 2 the problem follows the Lagrangian from Eq. (11), and
we have that limc→∞ k = 0 with finite q and K = limc→∞ ck,
which obey the self-consistent equations

1 = K2

(1 + K )2 αα−1
0 (1/

√
q), (A12)

1 = K

1 + K
αH (−1/

√
q), (A13)

and the relation between α and q becomes α =
α−1

0 (1/
√

q)/H2(−1/
√

q), yielding Eq. (12).

4. Field and slack distribution for points

The replica theory yields, without integrating over the slack
variables s and using the notation k = 2l̂ (q0 − q), that the
limit q → q0 is given by an optimization problem with a
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Lagrangian:

L = 1
2 (h − t

√
q)2 + 1

2 cks2 + λ(1 − h − s), (A14)

where from KKT conditions the solution satisfies

0 = λ(1 − h − s), (A15)
λ = h − t

√
q, (A16)

λ = cks. (A17)

In the “interior” regime s = 0, h = √
qt ; in the “touching”

regime s > 0, h = 1 − s = √
qt + cks, yielding

h =
{

ck
1+ck +

√
q

1+ck t0 −∞ � t0 � 1/
√

q
√

qt0 1/
√

q � t0
, (A18)

which can be written equivalently as Eq. (13). The slack
variables satisfy s = max{1 − h, 0} or explicitly

s =
{

1
1+ck −

√
q

1+ck t0 −∞ � t0 � 1/
√

q

0 1/
√

q � t0
. (A19)

Interestingly, the slack distribution allows deriving the self-
consistent Eqs. (7) and (8) without saddle-point assumption
(i.e., without taking derivatives of L). From the definition of L
we have that L = q + αc〈s2〉 while for the optimal loss L∗ =
αc〈s〉 (see Appendix A 1). Combining these equations with
Eq. (6) yields Eqs. (7) and (8). Furthermore, from the ex-
pression for 〈s2〉 and the self-consistent Eq. (7), α〈s2〉 = q

c2k2

[Eq. (9)].

5. Classification error for points

The training error εtr = P(h < 0) has a contribution only
from the “touching” regime of the field distribution [Eq. (13)],
so that

εtr = H (ck/
√

q). (A20)

When i.i.d. Gaussian noise N (0, σ 2/N ) is applied to each
input component, as the weights are independent of this noise,
the fields are affected by i.i.d. noise N (0, σ 2q), i.e., hσ = h +

σ
√

qη when η is a standard Gaussian variable. The noisy field
distribution can be written explicitly by convolving the field
distribution with Gaussian; but for an analytic analysis of the
error it is useful to write an expression for the error directly:

εg = P(h + σ
√

qη < 0) = 〈H (h/σ
√

q)〉h. (A21)

Using the field distribution [Eq. (13)] and replacing g1 =
h(1 + ck)/

√
q − ck/

√
q and g2 = h/

√
q we have

εg =
∫ 1/

√
q

−∞
Dg1H

(
g1

√
q + ck

σ
√

q(1 + ck)

)
+
∫ ∞

1/
√

q
Dg2H (g2/σ ).

(A22)

Using identity 10,010.4 from [25] we get an expression which
is approximated for σ � 1/

√
q as εg ≈ H (S ) for S from

Eq. (16).

6. Optimal choice of c for points

We may optimize the SNR S with respect to c:

c∗ = arg min
c

S−2. (A23)

Taking its derivative should satisfy 0 = ∂S−2

∂c , yielding an
expression for ∂q

∂c . On the other hand, starting from the
self-consistent Eqs. (7) and (8) and taking the deriva-
tive with respect to c, using the identity ∂

∂c qα−1
0 (1/

√
q) =

H (−1/
√

q) ∂q
∂c we have a second expression for ∂q

∂c . Com-
bining these two equations yields an expression without ∂q

∂c

or ∂k
∂c . Using the self-consistent equations again to substitute

αα−1
0 (1/

√
q) and αH (−1/

√
q) we get that the optimal c sat-

isfies Eq. (18), which needs to be solved self-consistently as
k depends on c. Furthermore, for σ = 0 we have no solution
with finite c and nonzero q, thus proving that εtr is monotonic
in c for any α.

7. Replica theory for spheres

We write an expression for the volume V (L, c) for L =
‖w‖2/N + c‖�s‖2/N which vanishes for L < L∗:

V (L, c) =
∫

dNw

∫
dP�s

∫
dP�h

P∏
μ

δ
(
v

μ
0 − R‖�vμ‖ − hμ

)
�(hμ − 1 + sμ)δ(‖w‖2 + c‖�s‖2 − NL) (A24)

=
∫

dNw

∫
dP�s

∫ ∞

1−sμ

dPhμ

∫
dPĥμ

2π
ei
∑P

μ (vμ
0 −R‖�vμ‖−hμ )ĥμ

∫
dl̂

2π
ei(‖w‖2+c‖�s‖2−NL)l̂ , (A25)

where we denote v
μ

l = yμw · uμ

l for l = 0, . . . , D and μ = 1, . . . , P and enforce this using appropriate v̂
μ

l variables.
We wish to calculate the values for which the volume vanishes assuming random (Gaussian) axes uμ

l and random (binary)
labels yμ. Using the replica identity [Eq. (5)] it is enough to find G which satisfies [V n] = enG, to have that [logV ] ≈ G. Thus
we consider V n and use a Gaussian integral on the axes uμ

li ∼ N (0, 1/N ), denoting as usual qαβ = 1
N

∑N
i wα

i w
β
i . After Gaussian

integration over v̂
α,μ

l , wα
i we have

[V n]x =
∫

dn×nqαβ

∫
dn×nq̂αβ

2π

∫
dnl̂α

√
2π

e−nNG0−nNG1 , (A26)

G0 = i

n

n∑
α,β

qαβ q̂αβ + 1

2n
log det(−2iq̂αβ − δαβ2il̂α ) + i

n

n∑
α

Ll̂α, (A27)

G1 = α

2n
(D + 1) log det q − α

n
log
∫

dn�sα

√
2π

∫
dn×D�vα

l

∫ ∞

1−sα+R‖�vα‖

dnvα
0√

2π
e− 1

2

∑D
l=0

∑n
α,β q−1

αβ vα
l v

β

l +i
∑n

α c(sα )2 l̂α . (A28)
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We assume replica symmetry, namely, qαβ = q + (q0 −
q)δαβ , −iq̂αβ = q̂ + (q̂0 − q̂)δαβ , and −il̂α = l̂ and also that
the behavior in the thermodynamic limit N → ∞ is domi-
nated by the maximum of the integral, so that the derivatives
satisfy 0 = ∂G0

∂ q̂ = ∂G0
∂ q̂0

. This allows for getting rid of those two
variables, and G0 becomes

G0 = −1

2
+ (q0 − L)l̂ − 1

2
log (q0 − q) − 1

2

q

q0 − q
. (A29)

For G1 we use the Hubbard-Stratonovich transform on∑n
α vα

l for l = 0, . . . , D, so that G1 decouples into n
terms, and then use the replica identity log

∫
Dt z(t )n ≈

n
∫

Dt log z(t ) for n → 0. We proceed by integrating away the
slack parameters s and by completion to square of vl − tl .
Renaming k = 2l̂ (q0 − q) and taking the limit q → q0, the
integral is dominated by the maximum F (�t, t0; ck, q) from
Eq. (33).

Taking the limit q → q0 yields

lim
q→q0

(q0 − q)G0 = (q0 − L)
k

2
− 1

2
q0, (A30)

lim
q→q0

(q0 − q)G1 = αq0

2

∫
DD�t

∫
Dt0F (�t, t0; ck, q). (A31)

Thus for G = G0 + G1 the volume vanishes at limq→q0 (q0 −
q)G = 0, yielding Eq. (32).

8. Solving the mean-field minimization problem for spheres

Let us solve the minimization problem from Eq. (33), so
that we can write it as a closed-form expression. Denoting a
Lagrangian,

L = 1

2
‖�v − �t‖2 + 1

2

ck

1 + ck
(v0 − t0)2 · · ·

+λ(1/
√

q + R‖�v‖ − v0). (A32)

From KKT conditions we have the equations

λ = ck

1 + ck
(v0 − t0), (A33)

tl = vl + λRvl/v, (A34)

0 = λ(1/
√

q + Rv − v0), (A35)

denoting v = ‖�v‖ � 0 (and similarly we denote below t =
‖�t‖). We solve those for different regimes:

(1) “Interior” regime, defined as λ = 0, where v0 = t0 and
vl = tl so that F = 0, valid at t0 � 1/

√
q + Rt .

(2) “Embedded” regime, defined as λ > 0 and v = 0, such
that v0 = 1/

√
q and F = ck

1+ck (1/
√

q − t0)2 + t2.
(3) “Touching” regime, defined as λ > 0 and v > 0,

with v0 = 1/
√

q + Rv and vl = v
v+λRtl , which is valid

at 1/
√

q − 1+ck
ck t/R � t0 � 1/

√
q + Rt and leads to F =

ck
1+ck+ckR2 (1/

√
q + Rt − t0)2.

so that the minimization problem depends only on
t0 and the norm t = ‖�t‖. As t ∼ χD the chi distri-
bution with D degrees of freedom, denoting χD(t ) =
�(D/2)−121−D/2tD−1e−t2/2dt we have Eq. (34).

9. Self-consistent equations for spheres

Assuming the optimal loss satisfies the saddle-point equa-
tions 0 = ∂L

∂k = ∂L
∂q we have Eqs. (37) and (38). Taking the

derivatives of f with respect to k, q yields the following self-
consistent equations:

1 = α
(ck)2(1 + R2)

(1 + ck(1 + R2))2

∫
χD(t )

∫ 1/
√

q+Rt

1/
√

q− 1+ck
ck t/R

× Dt0(1/
√

q + Rt − t0)2

+α

∫
χD(t )

∫ 1/
√

q− 1+ck
ck t/R

−∞
Dt0

×
[

(ck)2

(1 + ck)2 (1/
√

q − t0)2 + t2

]
, (A36)

1 − k = α

∫
χD(t )

∫ 1/
√

q+Rt

1/
√

q− 1+ck
ck t/R

Dt0
ck

1 + ck(1 + R2)

× (1/
√

q + Rt − t0)(Rt − t0)

+α

∫
χD(t )

∫ 1/
√

q− 1+ck
ck t/R

−∞
Dt0

×
[

t2 − ck

1 + ck
(1/

√
q − t0)t0

]
. (A37)

As for points, those equations can also be derived by com-
bining the equations for the optimal loss, namely, the loss
definition L = q + αc〈s2〉, the mean-field equation L = q +
q
k (α f − 1) [Eq. (36)], and an optimality condition for the loss
L = cα〈s〉 (see Appendix A 1), where the slack distribution
[Eq. (A49)] leads to the self-consistent Eqs. (37) and (38)
by noting the moments can be written as 〈s2〉 = q

c
∂
∂k f and

〈s〉 = − q
ck q ∂

∂q f .

10. Interesting regimes of the self-consistent
equations for spheres

The self-consistent Eqs. (A36)–(A37) can be integrated
over t0 to yield equivalent consistent equations, which are
useful when analyzing the behavior of different limits. Fur-
thermore, when D � 1 the distribution of χD is narrow with
a mode at

√
D − 1 and a mean just below

√
D, so we may

assume t = √
D and αC ≈ 1+R2

R2D .
In the limit c → ∞ for α < αHard

C the problem follow the
Lagrangian from Eq. (10) and converge with the max-margin
case [7], while for α > αHard

C the equations can be derived by a
replica theory for the Lagrangian from Eq. (11). The resulting
equations are related to the self-consistent equations of soft
classification theory through limc→∞ k = 0 while q and K =
limc→∞ ck are finite, similarly to Eqs. (A12) and (A13) for
points.

In the limit of α → 0 we expect to have q → 0 and
k → 1, as in the case of soft classification of points, so
that 1/

√
q − 1+ck

ck

√
D/R � 1 and 1/

√
q + R

√
D � 1, and

the self-consistent equations are simplified, resulting in the
following first-order approximations for small α, k ≈ 1 −
α(1 + D) and

√
q ≈ √

α ck
1+ck .

On the other hand, for α → αSoft
C we expect both q → 0

and k → 0, so that we need to assume 1/
√

q + R
√

D � 1
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and 1+ck
ck

√
D/R − 1/

√
q � 1, leading to different simpli-

fied equations, and the resulting order parameters k ≈ (1 −√
α/αC )/(αc + 1) for αC from Eq. (43) and furthermore

√
q ≈ ck

1 + R2

R
√

D
. (A38)

11. Capacity in classification of spheres

Consider the self-consistent Eqs. (A36)–(A37), and let us
assume both k,

√
q � 1 and further that k = x

√
q. For the first

equation we have two contributions
∫ xcR

0 χD(t )(t2 + c2x2),
and c2x2(1 + R2)

∫∞
xcR χD(t ), yielding

1 = α

∫ xcR

0
χD(t )(t2 + c2x2) + αc2x2(1 + R2)

∫ ∞

xcR
χD(t ).

(A39)

For the second equation we two contributions
∫ xcR

0 χD(t )t2

and xcR
∫∞

xcR χD(t )t , leading to

1 = α

∫ xcR

0
χD(t )t2 + αxcR

∫ ∞

xcR
χD(t )t . (A40)

Combining these equations and replacing xc → x we have
x = kc/

√
q, but the resulting equations are independent of c:

a self-consistent Eq. (42) for x and Eq. (41) for α = αC .
Now note that for R → 0 we have that x = R

∫∞
xR χD(t )t =

R
√

2�( D
2 + 1

2 )/�( D
2 ) and α−1

C = x2 (which converges to R2D
for large D), whereas for R → ∞ we have x ≈ 0 and α−1

C =
D. When D � 1 the distribution of χD is narrow around

√
D.

If
∫ xR

0 χD � 1 we have a much simpler result, as x ≈ R
√

D
1+R2 and

thus

α−1
C = xR

√
D = R2D

1 + R2
. (A41)

From the above limits on R we obtain that for large D this
approximation is valid for any R.

12. Field and slack distribution for spheres

To derive the slack and field distribution we do not in-
tegrate away the slack variables and use the notation k =
2l̂ (q0 − q) to show that in the limit limq0→q(q0 − q)G1 the
behavior is dominated by the solution of a constraint optimiza-
tion problem with a Lagrangian:

L = 1

2
‖�v − √

q�t‖2 + 1

2
(v0 − √

qt0)2 · · ·

+1

2
cks2 + λ(1 − s + R‖�v‖ − v0). (A42)

and the solution should satisfy the KKT conditions:

0 = λ(1 − s + R‖�v‖ − v0), (A43)

λ = v0 − √
qt0, (A44)

√
qtl = vl (‖�v‖ + λR)/‖�v‖, (A45)

λ = cks. (A46)

Denoting v = ‖�v‖ and t = ‖�t‖ we have solution regimes:

(1) “Interior” regime: assuming λ = 0, which is valid for
t0 � 1/

√
q + Rt .

(2) “Touching” regime: assuming λ > 0, v > 0, which is
valid for 1/

√
q − 1+ck

ck t/R � t0 � 1/
√

q + Rt .
(3) “Embedded” regime: assuming λ > 0, v = 0 which is

valid for t0 � 1/
√

q − 1+ck
ck t/R.

The fields and slack distribution can be written explicitly
in terms of t, t0 for the three regimes:

v0 =

⎧⎪⎨
⎪⎩

ck
1+ck + 1

1+ck

√
qt0 “Embedded”

(1+R
√

qt )ck
1+(1+R2 )ck + (ckR2+1)

√
q

1+(1+R2 )ck t0 “Touching”√
qt0 “Interior”

, (A47)

v =

⎧⎪⎨
⎪⎩

0 “Embedded”
(1+ck)

√
qt−ckR

1+(1+R2 )ck +
√

qckR
1+(1+R2 )ck t0 “Touching”

√
qt “Interior”

, (A48)

s =

⎧⎪⎨
⎪⎩

1
1+ck − 1

1+ck

√
qt0 “Embedded”

1+R
√

qt
1+(1+R2 )ck −

√
q

1+(1+R2 )ck t0 “Touching”

0 “Interior”

, (A49)

from which the slack variable moments, used for the self-
consistent equations, are easily derived.

13. Classification error for spheres

Assuming D � 1, t ∼ χD is concentrated around
√

D and
the distribution of v0, v, s is a concatenation of the truncated
Gaussian (or δ) distributions which correspond to the different
regimes.

The slack distribution is then

s ∼

⎧⎪⎪⎨
⎪⎪⎩
N
(

1
1+ck ,

q
(1+ck)2

) √
q

ck

√
D/R < s

N
(

1+R
√

q
√

D
1+(1+R2 )ck ,

q
[1+(1+R2 )ck]2

)
0 < s �

√
q

ck

√
D/R

δ(0)H
(
1/

√
q + R

√
D
)

s = 0

.

(A50)

Thus the probability of an error anywhere on the manifold is
εmanifold

tr = P(s > 1) = H (Smanifold ) for

Smanifold =
{

ck/
√

q
√

q
ck

√
D/R < 1

(1 + R2)ck/
√

q − R
√

D
√

q
ck

√
D/R � 1

,

(A51)

where for α → αSoft
C we have that (1 + R2)

√
q/ck = R

√
D so

limα→αSoft
C

Smanifold = 0.
Given any classifier w, we assume the test error is cal-

culated by sampling uniformly from the sphere, then adding
noise. When i.i.d. Gaussian noise N (0, σ 2/N ) is applied to
each input component, as the weights are independent of this
noise, the fields are affected by noise N (0, σ 2q). That is,
the error is given by ε = P(h + σ

√
qη < 0) = 〈H (h/σ

√
q)〉h

where η is a standard Gaussian variable.
For a D-dimensional spheres of radius R, denote the fields

h(�S) = yw · x(�S) = v0 + �S · �v. For a given w, we can always
choose the coordinate system such as u1 ∝ w so that v1 =
w · u1 and vi = 0 for i > 1, so that v = ‖�v‖ = v1. Denote
S1 = z we note that �S · �v = zv and thus h = v0 + zv. As the
joint distribution of v0, v is given by theory [Eqs. (A47)
and (A48)] it is enough to find the distribution of z under
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uniform sampling from the sphere. As z ∈ [−R, R], we can
denote x ∈ SD−2(

√
R2 − z2) a sphere of all choices for the

values of S2,...,D; using the n-ball surface formula, Sn−1(r) =
2π

n
2 �( n

2 )−1rn−1, the surface of the D − 1 sphere with a radius
‖x‖ is SD−2(

√
R2 − z2), which needs to be normalized by

the total surface, given by SD−1(R). Using polar coordinates
the measure on z is given by R/

√
R2 − z2, and by a change

of variable ẑ = z/R we use the surface formulas to derive
the bell-shaped distribution of ẑ, Eq. (45), supported at ẑ ∈
[−1, 1]. Then the error is an average with respect to P(ẑ),
namely, ε = 〈H[(v0 + Rẑv)/σ

√
q]〉ẑ,v0,v .

For D � 1, by assuming that only the “touching” regime
contributes to the error, we may evaluate the leading orders
of v0 + Rẑv to derive a simpler expression for the error.
The values of v0, v in this regime are given by Eqs. (A47)
and (A48) and depend on t0 ∼ N (0, 1) and t ∼ χD. Noting
that ẑ, t, t0 are pairwise independent, we can calculate the
first two moments; then approximating v0 + Rẑv as Gaussian
and using 〈H (x/a)〉x∼N (μ,s2 ) = H (μ/

√
s2 + a2) we have the

following approximation, denoting σ 2
0 the total contribution

of the different terms to the variance:

ε ≈
〈

H

⎛
⎝ (1/

√
q + Rt )ck√

σ 2
0 + [1 + (1 + R2)ck]2

σ 2

⎞
⎠〉

t∼χD

, (A52)

σ 2
0 (t )

.= (ckR2 + 1
)2 + R4

D
(ck)2

×
[(

1/
√

q − 1 + ck

ck
t/R

)2

+ 1

]
, (A53)

and the training error is given by setting σ = 0. Near αC we
have k → 0 such that σ 2

0 = 1 + 1/(R−1 + R)2 ≈ 1 and using

Eq. (A38) yields ε ≈ H ( R
√

D
1+R2

1√
1+σ 2 ).

14. Iterative algorithm for general manifolds

From the mean-field equations of spheres we get that a
theory of general manifolds implies the same equation:

1 = (1 − L/q)k + α

∫
DD�t

∫
Dt0F (�t, t0), (A54)

where the inner minimization is now defined as

F (�t, t0) = min
v0+g(�v)�1/

√
q

{
‖�v − �t‖2 + ck

1 + ck
(v0 − t0)2

}
,

(A55)

where g(�v) = min�S∈M �v · �S is a scalar function with a subgra-
dient S̃(�v) = ∂

∂v
g(�v). Denoting a Lagrangian

L = 1

2
‖�v − �t‖2 + 1

2

ck

1 + ck
(v0 − t0)2

+ λ[1/
√

q − v0 − g(�v)], (A56)

the optimal solution satisfies KKT conditions:

0 = λ[1/
√

q − v0 − g(�v)], (A57)

λ = ck

1 + ck
(v0 − t0), (A58)

�v = �t + λS̃(�v), (A59)

so that we get Eq. (55) for S̃(�t, t0) when v0 �= t0. Denoting
v = ‖�v‖ and t = ‖�t‖ we have the following regimes:

(1) “Interior” regime: assuming v > 0 and λ = 0 we have
v0 = t0 and vl = tl , so that F = 0.

(2) “Embedded” regime: assuming v = 0 and λ > 0 we
have v0 = 1/

√
q, so that F = t2 + ck

1+ck (1/
√

q − t0)2.
(3) “Touching” regime: assuming v > 0 and λ > 0 we

have v0 = 1/
√

q − g(�v) and �v = �t + ck
1+ck (1/

√
q − �v · S̃ −

t0)S̃ [i.e., Eq. (58)], so that F = ck
1+ck(1+S̃2 )

(1/
√

q − t0 − �t ·
S̃)2.
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