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Geometric decomposition of entropy production into excess, housekeeping, and coupling parts
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For a generic overdamped Langevin dynamics driven out of equilibrium by both time-dependent and non-
conservative forces, the entropy production rate can be decomposed into two positive terms, termed excess
and housekeeping entropy. However, this decomposition is not unique: There are two distinct decompositions,
one due to Hatano and Sasa, the other one due to Maes and Netočný. Here we establish the connection
between these two decompositions and provide a simple, geometric interpretation. We show that this leads to a
decomposition of the entropy production rate into three positive terms, which we call the excess, housekeeping,
and coupling part, respectively. The coupling part characterizes the interplay between the time-dependent and
nonconservative forces. We also derive thermodynamic uncertainty relations for the excess and housekeeping
entropy in both the Hatano-Sasa and Maes-Netočný decomposition and show that all quantities obey integral
fluctuation theorems. We illustrate the decomposition into three terms using a solvable example of a dragged
particle in a nonconservative force field.
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I. INTRODUCTION

Entropy production quantifies the degree of time-reversal
symmetry breaking, which is the most fundamental feature
of out-of-equilibrium systems. While equilibrium systems are
tightly constrained by the requirement of detailed balance,
there are many qualitatively different ways in which a system
can be driven out of equilibrium. Some important examples
are varying the parameters of the system according to a time-
dependent protocol, inducing currents via an external bias,
or relaxing a system from an initial nonequilibrium config-
uration. In every case, we observe a positive rate of entropy
production as long as the system remains out of equilibrium.

In a generic situation, any combination of these archetypal
processes can occur: A system may be subject to both exter-
nal bias and time-dependent driving at the same time. This
naturally raises the question of whether we can separate their
effects on the entropy production rate. More specifically, the
entropy production rate can be decomposed into positive con-
tributions which can be associated with different parts of the
system [1–8] or different types of driving [9–15]. In the latter
case, the concept of excess (or nonadiabatic) and housekeep-
ing (or adiabatic) entropy production has emerged as a useful
concept: The latter describes the effect of a constant bias,
which drives the system into a nonequilibrium steady state,
while the former is associated with time-dependent changes
in the system.

However, there exist two different approaches, due to
Hatano and Sasa [11] and to Maes and Netočný [15], re-
spectively, which both yield a decomposition of the entropy
production rate σ = σ ex + σ hk into positive excess σ ex and
housekeeping σ hk parts. In both cases, σ ex vanishes in the

steady state, while σ hk vanishes in the absence of noncon-
servative driving forces like an external bias. In Ref. [16] we
recently showed that both decompositions can be derived in
terms of a single, geometric approach and that the excess part
in the Maes-Netočný approach is always larger than that in the
Hatano-Sasa approach.

Here we build upon these results to show that the geomet-
ric formalism allows us to find a decomposition into three
nonnegative contributions, σ = σ ex + σ hk + σ cp. The excess
and housekeeping parts retain their interpretation as being
due to driving by time-dependent and nonconservative forces,
respectively. The third contribution, which we refer to as the
coupling part, describes the nontrivial interactions between
the two types of driving. It vanishes only if the time-dependent
driving and the nonconservative force act on independent
degrees of freedom of the system. The relation between the
two types of decomposition and the existence of the coupling
contribution are the main results of this article.

The remainder of the article is structured as follows: In
Sec. II we review the definition an properties of entropy
production for overdamped Langevin dynamics. The Hatano-
Sasa and Maes-Netočný decomposition are introduced and
their geometric interpretations provided in Secs. III and IV,
respectively. In Sec. V we derive the decomposition of the
entropy production rate into three terms and discuss the
properties of the coupling entropy production. Section VI is
devoted to variational expressions for the excess, housekeep-
ing and coupling entropy. Next, we derive extensions of the
thermodynamic uncertainty relation to the different types of
excess and housekeeping entropy in Sec. VII. For the Hatano-
Sasa decomposition, it is known that the stochastic excess and
housekeeping entropy satisfy an integral fluctuation theorem
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[11,17]. We show that a similar result also holds for the
Maes-Netočný decomposition in Sec. VIII. In Sec. IX we
discuss the interpretation of the excess entropy as a Lyapunov
function for the convergence towards the instantaneous steady
state. Finally, in Sec. X we introduce a solvable model to
demonstrate the decomposition of the entropy production rate
into three terms and discuss the role of the coupling entropy.

II. ENTROPY PRODUCTION IN OVERDAMPED
LANGEVIN DYNAMICS

We consider a system of d overdamped Brownian particles
with positions x(t ) = (x1(t ), . . . , xd (t )). These particles are
in contact with a viscous environment characterized by the
mobility μ and temperature T . In addition, they are subject to
a force field Ft (x), which generally depends on the positions
as well as explicitly on time. This force field may include
interactions between the particles, as well as conservative and
nonconservative external forces. The dynamics of the particles
are described by the Langevin equation

ẋ(t ) = μFt (x(t )) +
√

2μT ξ(t ), (1)

where ξ(t ) is a vector of mutually independent Gaussian white
noises. We here set the Boltzmann constant to be unity kB = 1.
Equivalently, we can describe the system in terms of its time-
dependent probability density pt (x), which evolves according
to the Fokker-Planck equation [18]

∂t pt (x) = −∇ · [νt (x)pt (x)], (2a)

νt (x) = μ[Ft (x) − T ∇ ln pt (x)], (2b)

with given initial state p0. Here the multdot denotes the
scalar product in Rd . The quantity νt (x) is called the local
mean velocity and describes the local flows in the system.
We remark that all results obtained in the following can
also be generalized to the more general case of a time- and
position-dependent diffusion matrix. If the force acting on the
particles is time-independent and conservative, that is, F(x) =
−∇U (x) with a time-independent potential U (x), then the
probability density converges to the Boltzmann-Gibbs equi-
librium density for long times,

peq(x) = pcan(x) = e− U (x)
T∫

dy e− U (y)
T

. (3)

In the equilibrium state, the local mean velocity vanishes,
νeq(x) = 0, which expresses that the system satisfies detailed
balance. Note that here and in the following we assume that
the potential is sufficiently confining to give rise to a well-
defined steady state. There are two qualitatively different ways
of driving the system out of equilibrium: One possibility is
to consider a conservative, yet time-dependent, force Ft (x) =
−∇Ut (x). Here the time dependence of Ut (x) is imposed via
some external protocol. In this case, if we imagine suspending
the time evolution of the protocol, the system will relax to
the Boltzmann-Gibbs equilibrium (3) corresponding to the in-
stantaneous potential Ut (x). However, due to the finite rate of
change of the potential, the system is kept out of equilibrium
and the instantaneous local mean velocity νt (x) is nonzero.
The other possibility is to introduce a time-independent, yet

nonconservative force, F(x) = −∇U (x) + Fnc(x). This non-
conservative force cannot be written as the gradient of a scalar
potential function. In this case, the system will reach a steady
state pst(x) in the long-time limit; however, this steady state
does not satisfy detailed balance and gives rise to a nonzero
steady-state local mean velocity νst(x). In both cases, the
breaking of detailed balance is characterized by a positive
entropy production, which quantifies the asymmetry between
forward and backward transitions in the system. Specifically,
the rate of entropy production for the dynamics Eq. (2) is
given by [19,20]

σt = 1

μT

∫
dx ‖νt (x)‖2 pt (x). (4)

This clearly demonstrates that the existence of a nonzero
local mean velocity is equivalent to a positive rate of entropy
production. In general, the system may be driven out of equi-
librium due to both types of driving, that is, the force may
be time-dependent and nonconservative, Ft (x) = −∇Ut (x) +
Fnc

t (x), where we also allowed the nonconservative force to
depend on time. For later use, we introduce the inner product
between two vector fields u(x) and v(x)

〈u, v〉p = 1

μT

∫
dx u(x) · v(x)pt (x). (5)

As a symmetric inner product, this is linear in each argu-
ment 〈cu + w, v〉p = c〈u, v〉p + 〈w, v〉p and positive definite
〈v, v〉p � 0 with 〈v, v〉p = 0 ⇔ v = 0. Note that 〈u, v〉p im-
plies that the average of u · v is taken with respect to pt (x),
where we omit the subscript t in the interest of a more compact
notation. In terms of this inner product, the entropy production
rate is

σt = 〈νt , νt 〉p. (6)

III. HATANO-SASA DECOMPOSITION

The existence of two qualitatively different ways of driving
a system out of equilibrium raises the natural question of
whether the effect to the two types of driving can be separated.
One way of doing so is provided by the decomposition of
the entropy production into excess and housekeeping parts
due to Hatano and Sasa [11]. For the generic case of a time-
dependent and nonconservative force, we can still imagine
suspending the time evolution of the force at time t and let-
ting the system relax to the steady state corresponding to the
instantaneous value of the force. This steady state obeys the
steady-state Fokker-Planck equation

0 = −∇ · [νst
t (x)pst

t (x)
]
, (7a)

νst
t (x) = μ

[
Ft (x) − T ∇ ln pst

t (x)
]
. (7b)

Note that, since we consider the instantaneous steady state of
the system, this steady state and the corresponding local mean
velocity depend on the time t at which we suspended the time
evolution. Next, we consider the inner product〈

νt − νst
t , νst

t

〉
p =
∫

dx
[
∇ ln

pst
t (x)

pt (x)

]
· νst

t (x)
pt (x)

pst
t (x)

pst
t (x), (8)
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FIG. 1. Geometric interpretation of the HS decomposition (11).
The local mean velocity νt (x) can be decomposed into two orthog-
onal components νst

t (x) and νt (x) − νst
t (x), whose length gives the

housekeeping and excess entropy production rate, respectively.

where we inserted a factor 1 = pst
t (x)/pst

t (x). We note that
[∇ ln f (x)]/ f (x) = −∇[1/ f (x)] and thus

〈
νt − νst

t , νst
t

〉
p
= −
∫

dx
{
∇
[

pt (x)

pst
t (x)

]}
· νst

t (x)pst
t (x)

= −μT

〈
∇
(

pt

pst
t

)
, νst

t

〉
pst

. (9)

Integrating by parts and using Eq. (7), we immediately obtain〈
νt − νst

t , νst
t

〉
p = 0. (10)

Thus, with respect to the inner product Eq. (5), the difference
between the local mean velocity and its instantaneous steady-
state value is orthogonal to the latter. Then we can write the
entropy production rate as

σt = 〈νt , νt 〉p = 〈νt − νst
t + νst

t , νt − νst
t + νst

t

〉
p

= 〈νt − νst
t , νt − νst

t

〉
p
+ 〈νst

t , νst
t

〉
p

= σ ex,HS
t + σ hk,HS

t , (11)

where we used the linearity of the inner product and Eq. (10).
Here the superscript HS denotes the Hatano-Sasa decompo-
sition. Since each of the two terms is positive, we thus have
a decomposition of the entropy production into two positive
parts. The quantity σ

ex,HS
t is the HS excess entropy production

rate. It vanishes only when pt = pst
t , that is, when the system

is in the steady state at any instant of time. Thus, generi-
cally, we have σ

ex,HS
t > 0 whenever the system is driven by a

finite-speed protocol. σ hk,HS
t , by contrast is the HS housekeep-

ing entropy production rate, which vanishes only when the
steady-state local mean velocity vanishes, which implies that
the instantaneous steady state is in equilibrium. As a conse-
quence, we have σ

hk,HS
t > 0 whenever nonconservative forces

are present in the system. In that sense, Eq. (11) provides a
splitting of the entropy production rate into two positive parts
which quantify the effects of time-dependent and nonconser-
vative driving, respectively. Moreover, Eq. (10) provides a
geometric interpretation of this decomposition, as illustrated
in Fig. 1.

IV. MAES-NETOČNÝ DECOMPOSITION

An alternative way of decomposing the entropy production
is provided by the minimum entropy production principle
introduced by Maes and Netočný [15]. The Maes-Netočný
decomposition has been recently revisited in Ref. [16] based
on the relationship between stochastic thermodynamics and
optimal transport theory [21–24]. Here the basic idea to search
for the force F∗

t (x) and the corresponding local mean velocity
ν∗

t (x) that minimize the entropy production rate Eq. (4), while
keeping the time evolution of the probability density pt (x)
unchanged. The result is that there exists a unique conserva-
tive force F∗

t (x) = −∇U ∗
t (x), which gives rise to a given time

evolution pt (x), that is, for conservative forces, there is a one-
to-one correspondence between the force and the probability
density. This conservative force is also the minimizer of the
entropy production rate, so that we can write

inf
Ft (x)

σt = σ ∗
t = 〈ν∗

t , ν
∗
t 〉, (12)

where the optimal local mean velocity is given by

ν∗
t (x) = μ[−∇U ∗

t (x) − T ∇ ln pt (x)] = −∇ψ∗
t (x) (13)

and is itself the gradient of a scalar function ψ∗
t (x). While the

fact that σ ∗
t is obtained by minimizing the entropy production

rate already implies that both σ ∗
t and σt − σ ∗

t are positive, this
fact can also be shown explicitly. To see this, we consider the
inner product

〈νt − ν∗
t ,∇φ〉p

= 1

μT

∫
dx [∇φ(x)] · [νt (x) − ν∗

t (x)]pt (x), (14)

for some scalar function φ(x). Integrating by parts, we obtain

〈νt − ν∗
t ,∇φ〉p

= − 1

μT

∫
dx φ(x)∇ · [νt (x) − ν∗

t (x)]pt (x). (15)

Since, by definition, both νt (x) and ν∗
t (x) correspond to the

same time evolution, this expression vanishes using Eq. (2a).
Thus, we find

〈νt − ν∗
t ,∇φ〉p = 0, (16)

which implies that the difference between the local mean
velocity and its optimal value is orthogonal to the gradient of
any scalar function. Comparing this to Eq. (9), we see that in
the HS decomposition, by contrast, νst

t (x) is orthogonal only
to specific gradient fields; we will come back to this point in
Sec. VI. Since, from Eq. (13), we know that the optimal local
mean velocity is a gradient field, we obtain

〈νt − ν∗
t , ν

∗
t 〉p = 0, (17)

in analogy to Eq. (10). This allows us to write the entropy
production rate as

σt = 〈ν∗
t , ν

∗
t 〉p + 〈νt − ν∗

t , νt − ν∗
t 〉p

= σ ex,MN
t + σ hk,MN

t . (18)

Here the superscript MN denotes the Maes-Netočný de-
composition. Just like in the HS decomposition, we can
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FIG. 2. Geometric interpretation of the MN decomposition (18).
The local mean velocity νt (x) can be decomposed into two or-
thogonal components ν∗

t (x) and νt (x) − ν∗
t (x), whose length gives

the excess and housekeeping entropy production rate, respectively.
Further, the local mean velocity ν∗

t (x) corresponding to the minimal
entropy production rate is obtained as the orthogonal projection of
νt (x) into the space of gradient functions (indicated by the shaded
plane).

decompose the entropy production rate into positive MN ex-
cess and housekeeping parts. The excess entropy production
rate σ

ex,MN
t vanishes only if the local mean velocity corre-

sponding to the minimal entropy production rate vanishes,
which implies that the system is in a steady state. Thus, we
have σ

ex,MN
t > 0 whenever the state of the system depends

on time. Conversely, the housekeeping entropy production
rate σ

hk,MN
t vanishes only if the force acting on the system is

conservative and thus we have σ
hk,MN
t > 0 in the presence of

nonconservative forces. Likewise, the MN decomposition can
be given a geometric interpretation using Eq. (17); see Fig. 2.
We remark that one advantage of Eq. (18) is that it does not
require the existence of an instantaneous steady state and thus
can also be applied, for example, to free diffusion in a noncon-
servative force field. We stress that the optimal potential U ∗

t (x)
depends on both the force Ft (x) and the probability density
pt (x): Even in the same force field, starting from different
initial states will generally result in different potential forces.
Intuitively, we can mimic the effects of the force Ft (x) on the
present state pt (x) by using the conservative force −∇U ∗

t (x);
however, since the two forces are different, this equivalence
holds only for the specific state pt (x).

V. EXCESS, HOUSEKEEPING, AND COUPLING ENTROPY

Comparing Eqs. (11) and (18), we note that the two de-
compositions are generally equivalent only if the system is
either in a steady state (σ st = σ hk,HS = σ hk,MN) or driven by
a time-dependent conservative force (σt = σ

ex,HS
t = σ

ex,MN
t );

in both cases the decomposition becomes trivial since one of
the two terms vanishes. However, in the general case of both
time-dependent and nonconservative forces, the two decom-
positions are different, which naturally leads to the question of
how they are related. In order to establish a relation between
Eqs. (11) and (18), we note that

νt (x) − νst
t (x) = μT ∇ ln

pst
t (x)

pt (x)
, (19)

such that the left-hand side can be written as the gradient of a
scalar function. Using Eq. (16), we immediately find〈

νt − ν∗
t , νt − νst

t

〉
p = 0, (20)

which imposes an orthogonality relation between the two
decompositions. Next, we write the MN excess entropy pro-
duction rate as

σ ex,MN
t = 〈ν∗

t , ν
∗
t 〉p

= 〈ν∗
t + νst

t − νt − νst
t + νt , ν

∗
t + νst

t − νt − νst
t + νt
〉
p

= 〈νt− νst
t , νt− νst

t

〉
p+
〈
ν∗

t + νst
t − νt , ν

∗
t + νst

t − νt
〉
p

− 2
〈
νt − νst

t , ν∗
t + νst

t − νt
〉
p. (21)

The first term can be identified as the HS excess entropy
production rate and the second term is positive and can be
written as 〈

ν∗
t + νst

t − νt , ν
∗
t + νst

t − νt
〉
p

= 〈ν∗
t − νt , ν

∗
t 〉p + 〈ν∗

t − νt , ν
st
t − νt
〉
p

+ 〈νst
t , νst

t − νt
〉
p + 〈νst

t , ν∗
t

〉
p

= 〈νst
t , ν∗

t

〉
p
, (22)

where, in the second line, the first, second, and third terms
vanish because of Eqs. (17), (20), and (10), respectively. The
third term, on the other hand evaluates to〈

νt − νst
t , ν∗

t + νst
t − νt
〉

= 〈νt − νst
t , ν∗

t − νt
〉
p + 〈νt − νst

t , νst
t

〉
p = 0, (23)

where the first term vanishes because of Eq. (20) and the
second term because of Eq. (10). Finally, as our first main
result, we find that the MN excess entropy production rate can
be further decomposed into two positive parts:

σ ex,MN
t = σ ex,HS

t + 〈νst
t , ν∗

t

〉
p. (24)

This provides the sought relation between the MN and HS
decompositions: The excess entropy production rate in the
former is always larger than in the latter, with the additional
contribution given by the inner product of the steady-state
and minimum-entropy-production local mean velocities. Us-
ing this in Eq. (11), we further find, as our second main result,
that we can decompose the entropy production rate into three
positive terms:

σt = σ ex,HS
t + σ hk,MN

t + σ
cp
t . (25)

We interpret the first term as the excess entropy production
rate; it is equal to the HS excess entropy production rate, and it
is nonzero whenever the state of the system is time-dependent.
The second term, which is equal to the MN housekeeping
entropy production, is interpreted as the housekeeping entropy
production rate; it is nonzero whenever the system is driven
by a nonconservative force. The final term quantifies the joint
effect of time-dependent and nonconservative driving, and
we interpret it as the coupling entropy production rate. A
geometric interpretation of Eq. (25) is provided in Fig. 3.
Similar to the HS and MN decomposition, we write the local
mean velocity as a sum of orthogonal terms; however, instead
of two, we now have three mutually orthogonal contribu-
tions. We remark that both νt (x) − νst

t (x) (corresponding to
the excess entropy) and ν∗

t (x) + νst
t (x) − νt (x) (corresponding

to the coupling entropy) are gradient fields, while νt (x) −
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FIG. 3. Geometric interpretation of the decomposition (25). The
local mean velocity νt (x) can be decomposed into three orthogo-
nal components νt (x) − νst

t (x), νt (x) − ν∗
t (x), and ν∗

t (x) + νst
t (x) −

νt (x), whose length gives the excess, housekeeping, and coupling
entropy production rate, respectively. Note that both νt (x) − νst

t (x)
and ν∗

t (x) + νst
t (x) − νt (x) are gradient fields.

ν∗
t (x) (corresponding to the housekeeping entropy), as argued

above, is orthogonal to the space of gradient fields. The cou-
pling part has two equivalent expressions via Eq. (22),

σ
cp
t = 〈νst

t , ν∗
t

〉
p = 〈ν∗

t + νst
t − νt , ν

∗
t + νst

t − νt
〉
p, (26)

where the first expression emphasizes the interpretation as a
coupling between the currents ν∗

t (x) which govern the time
evolution of the system and the steady-state currents νst

t (x)
as a consequence of the nonconservative force, while the
second expression explicitly demonstrates the positivity. The
coupling entropy production is nonzero only if both sources of
nonequilibrium are present and interact in a nontrivial manner.
Specifically, σ

cp
t = 0 implies

νt (x) = νst
t (x) + ν∗

t (x). (27)

Obviously, this is satisfied if either νst
t (x) = 0 (implying con-

servative driving) or ν∗
t (x) = 0 (implying a steady state). In

principle, this relation may also be satisfied if both time-
dependent and nonconservative driving are present but their
effects on the system are independent of each other (see
below). However, in the generic case, σ

cp
t > 0 in the pres-

ence of both time-dependent and nonconservative driving. In
terms of the coupling part of the entropy production rate,
the difference between the decompositions (11) and (18) is
whether this term is included in the housekeeping part (HS
decomposition) or the excess part (MN decomposition). We
remark that, in general, explicitly computing the decomposi-
tion (25) is challenging since we need to know the solution
to the Fokker-Planck equation as well as the instantaneous
steady state. However, for systems with linear forces, whose
probability density is Gaussian, we can derive more explicit
expressions, as is done in Appendix A.

The origin of the three terms in Eq. (25) can be clarified
further by noting that they can be rewritten as

σ ex,HS
t = −

∫
dx ln

[
pt (x)

pst
t (x)

]
∂t pt (x), (28a)

σ
cp
t = −

∫
dx ln

[
pst

t (x)

pcan
t (x)

]
∂t pt (x), (28b)

σ hk,MN
t =

∫
dx ‖Ft (x) − F∗

t (x)‖2 pt (x). (28c)

Here F∗
t (x) = −∇U ∗

t (x) is the force corresponding to the
minimum entropy production dynamics Eq. (13), and we de-
fined the canonical distribution corresponding to U ∗

t (x) as

pcan
t (x) ∝ e− U∗

t (x)
T . Thus, the time evolution of the probability

density Eq. (2) gives rise to two coevolving steady states:
The first one, pst

t (x), is obtained by fixing the value of the
force Ft (x) and letting the system relax into the (generally)
nonequilibrium steady state. However, since the force F∗

t (x)
leads to the same time evolution, we can also replace Ft (x)
with F∗

t (x), fix the instantaneous value of F∗
t (x) and then let

the system relax, which leads to the equilibrium state pcan
t (x).

The two states are the same if the system is driven either by
a conservative force [in this case pst

t (x) is already the unique
instantaneous equilibrium state] or already in the steady state
[in this case, the potential leading to zero minimum entropy
production is just U ∗(x) = −T ln pst(x)]. Let us now return
to Eq. (28). The excess entropy production clearly quanti-
fies the difference between the probability density and its
coevolving instantaneous steady state. The coupling entropy
production, on the other hand, quantifies the difference be-
tween the coevolving steady state and equilibrium state, that
is, how much the instantaneous steady states of the dynamics
driven by Ft (x) and F∗

t (x) differ. Finally, the housekeeping
entropy production directly measures the magnitude of the
nonconservative part of the force Ft (x) − F∗

t (x). We note that
the housekeeping entropy can also be written as

σ hk,MN
t = −

∫
dx ln pcan

t (x)∂t pt (x) + 〈Q̇〉t

T
, (29)

where Q̇ = Ft (x(t )) ◦ ẋ(t ) is the rate at which heat is dissi-
pated into the environment with ◦ the Stratonovich product
[19,20]. Using this form together with Eq. (28) in Eq. (25),
we immediately recover the decomposition of the entropy
production rate into the rate of Gibbs-Shannon (GS) entropy
change and the dissipated heat

σt = σ GS
t + 〈Q̇〉t

T
with

σ GS
t = −dt

∫
dx ln pt (x)pt (x). (30)

From the positivity of the individual terms in Eq. (28), we
have the series of inequalities

σ GS
t � −

∫
dx ln pst

t (x)∂t pt (x)

� −
∫

dx ln pcan
t (x)∂t pt (x) � −〈Q̇〉t

T
, (31)

or, in terms of the excess heat dissipation rates

σ GS
t � −〈Q̇ex,HS〉t

T
� −〈Q̇ex,MN〉t

T
� −〈Q̇〉t

T
, (32)

where we defined

σ ex,HS
t = σ GS

t + 〈Q̇ex,HS〉t

T
,

σ ex,MN
t = σ GS

t + 〈Q̇ex,MN〉t

T
. (33)
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The outermost inequality represents the usual Clausius in-
equality between the entropy change of the system and the
heat dissipated into the environment. In the absence of non-
conservative forces, we recover an equality in the quasistatic
limit, where the state of the system changes slowly and it is
in equilibrium at any given time. However, in the presence of
nonconservative forces, which keep dissipating heat even in
the steady state, this inequality becomes meaningless in the
quasistatic limit. By identifying the intermediate quantities in
Eq. (32) as excess heat dissipation rates, we again recover an
equality in the limit of slow driving, as has been discussed
in Refs. [11,15]. Note that, in the quasistatic limit, where the
system is assumed to be in the steady state at every instant,
we have pcan

t (x) = pst
t (x), so the HS and MN decompositions

agree with one another. For finite-speed driving, on the other
hand, the excess dissipation of the MN decomposition is al-
ways larger than the HS one.

Finally, we discuss the case where the coupling part in
Eq. (25) vanishes, while the excess and housekeeping part
remain finite. We recall that the MN decomposition allows us
to view an arbitrary dynamics as the conservative dynamics
driven by the potential U ∗

t (x) with an additional nonconserva-
tive force F̃

nc
t (x) = [νt (x) − ν∗

t (x)]/μ, which satisfies

∇ · [F̃nc
t (x)pt (x)

] = 0. (34)

In terms of U ∗
t (x) and F̃

nc
t (x), the instantaneous steady state

is determined by

∇ · {[∇U ∗
t (x) − F̃

nc
t (x) + T ∇ ln pst

t (x)
]
pst

t (x)
} = 0. (35)

Since, from Eq. (26), we have

σ
cp
t = μ2T 2

〈
∇ ln

(
pst

t

pcan
t

)
,∇ ln

(
pst

t

pcan
t

)〉
p

, (36)

a vanishing coupling part implies pst
t (x) = pcan

t (x) ∝
exp[−U ∗

t (x)/T ], which leads to the condition

∇ · [F̃nc
t (x)pcan

t (x)
] = 0. (37)

Comparing this to Eq. (34), we obtain the condition on the
nonconservative force

F̃
nc
t (x) · ∇ ln

(
pt (x)

pcan
t (x)

)
= 0. (38)

This condition is both necessary and sufficient, since we al-
ways have Eq. (34), which then implies Eq. (37), and, since
the steady state is unique, pst

t (x) = pcan
t (x). Written in terms

of νt (x) and ν∗
t (x), we have

[νt (x) − ν∗
t (x)] · ν∗

t (x) = 0. (39)

This implies that, for a vanishing coupling part, the orthogo-
nality condition between the flows ν∗

t (x) contributing to the
time evolution and the nonconservative flows νt (x) − ν∗

t (x)
has to hold not only on the ensemble averaged level of the in-
ner product (5), but also on the more microscopic level of the
usual inner product in Rd . Equation (39) shows that, as argued
above, the coupling term vanishes only if the time evolution
and the nonconservative flows affect separate degrees of free-
dom and thus do not impact each other. A vanishing coupling
part is equivalent to σ

ex,HS
t = σ

ex,MN
t and σ

hk,HS
t = σ

hk,MN
t and

the HS and MN decompositions are identical if and only if the

coupling part vanishes. From the condition pst
t (x) = pcan

t (x),
we see that this can happen only if the corresponding compo-
nents of the local mean velocity coincide,

ν∗
t (x) = νt (x) − νst

t (x), (40)

and, thus, Eq. (39) also implies the microscopic orthogonality
relation [

νt (x) − νst
t (x)
] · νst

t (x) = 0. (41)

VI. VARIATIONAL REPRESENTATION

In Ref. [16] we argued that a decomposition of the local
mean velocity into orthogonal components implies variational
expressions for the lengths of the individual components. In
this section, we will first rederive the results in more detail
and then apply them to obtain variational formulas for the
individual terms in Eq. (25). First, we note that the space
of local mean velocities associated with a probability den-
sity pt (x) is a vector space. More precisely, the space of
all smooth vector fields v(x): Rd → Rd which are square
integrable with respect to pt (x), that is, 〈v, v〉p < ∞, in-
herits its vector space structure from Rd . Any such vector
field can be interpreted as the instantaneous local mean ve-
locity νt (x) = v(x) corresponding to some force Ft (x) =
v(x) + T ∇ ln pt (x) via Eq. (2). We impose the additional
condition that the corresponding steady state exists, that is,
we can find a normalized probability density pst

t (x) with
∇ · ({v(x) − T ∇ ln[pst

t (x)/pt (x)]}pst
t (x)) = 0. This additional

condition keeps the vector space structure intact, and we call
the resulting vector space V . Next, we consider a decomposi-
tion which separates any such vector field into two orthogonal
components, v(x) = v1(x) + v2(x) with 〈v1, v2〉p = 0. Since
this decomposition should be valid for any vector field, this
also separates the vector space V into two orthogonal sub-
spaces V1 and V2. Now, for any u(x) ∈ V1 and v ∈ V , we
have 〈u, v〉p = 〈u, v1〉p. Then, we use the Cauchy-Schwarz
inequality for the inner product,

〈u, v〉2 = 〈u, v1〉2
p � 〈u, u〉p〈v1, v1〉p

⇒ 〈v1, v1〉p �
〈u, v〉2

p

〈u, u〉p
. (42)

Since the choice u(x) = cv1(x), with an arbitrary constant c =
0 results in an equality, we can thus write

〈v1, v1〉p = sup
u∈V1

( 〈u, v〉2
p

〈u, u〉p

)
. (43)

This is the first general variational expression. The geomet-
rical interpretation of this expression is that the orthogonal
projection v1(x) of v(x) into the subspace V1 is given by the
element u(x) ∈ V1 which has the largest overlap with v(x)
relative to its length, which is satisfied for any element parallel
to v1(x). The second variational expression is obtained by
noting that for any v(x) ∈ V and u(x) ∈ V2, we have

〈v − u, v − u〉p = 〈v1 + v2 − u, v1 + v2 − u〉p

= 〈v1, v1〉p + 〈v2 − u, v2 − u〉p. (44)
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Since both terms are positive, we have

〈v1, v1〉p � 〈v − u, v − u〉p. (45)

Obviously, equality holds for u(x) = v2(x), so that we can
write

〈v1, v1〉p = inf
u∈V2

(〈v − u, v − u〉p), (46)

which is the second general variational expression. Its geo-
metrical interpretation is that the orthogonal projection v1(x)
of v(x) into the subspace V1 is obtained by minimizing the
length of the orthogonal complement. In principle, we can use
the above results to obtain variational representations of both
excess and housekeeping entropy production rates, as well as
the coupling entropy production rate. However, since, from
the point of view of applications, the expressions for the MN
decomposition are most useful, we will focus on the latter
in the following; the remaining expressions can be found in
Appendix B.

In order to apply the general variational expressions (43)
and (46) to the decompositions (11), (18), and (25), we need
to identify the relevant subspaces. For the MN decomposition,
this has been done in Ref. [16], where it was found that the
elements of V MN

1 and V MN
2 can be characterized as

v1(x) = ∇φ(x) and ∇ · [v2(x)pt (x)] = 0, (47)

that is, V MN
1 is the space of all gradient fields and its or-

thogonal complement V MN
2 consists of all vector fields which

leave the probability pt invariant. We stress that this structure
is a consequence of the inner product (5), which defines the
orthogonality relation; the spaces V MN

1 and V MN
2 are generally

not orthogonal with respect to the standard inner product on
Rd . Physically, this means that, while there are in general
many ways to write the local mean velocity νt (x) as the sum
of a gradient and a nongradient term, there exists a unique
decomposition such that the nongradient term has no effect on
the time evolution of the probability density. In other words,
we can write the local mean velocity as

νt (x) = μ[Ft (x) − T ∇ ln pt (x)]

= μ[−∇U ∗
t (x) + F̄t (x) − T ∇ ln pt (x)]. (48)

This corresponds to the decomposition of the force Ft into
a conservative part F∗

t (x) = −∇U ∗
t (x) and a nonconservative

part F̄t (x) which satisfies ∇ · [F̄t (x)pt (x)] = 0. Thus, Ft (x)
and F∗

t (x) lead to the same time evolution of pt (x), which
is unaffected by the nonconservative part. As was shown in
Ref. [16], this yields the variational expressions for the excess
and housekeeping entropy production rate in the MN decom-
position,

σ ex,MN
t = sup

u∈V MN
1

( 〈u, νt 〉2
p

〈u, u〉p

)
, (49a)

σ hk,MN
t = inf

u∈V MN
1

(〈νt − u, νt − u〉p). (49b)

The advantage of these expressions is that the optimization of
the expressions on the right-hand side is carried out over the
space V MN

1 of all gradient fields, which can be done without
detailed knowledge about the dynamics. Therefore, Eq. (49)
is well suited to determining the excess and housekeeping

entropy from trajectory data. We also have the complementary
pair of expressions

σ ex,MN
t = inf

u∈V MN
2

(〈νt − u, νt − u〉p), (50a)

σ hk,MN
t = sup

u∈V MN
2

( 〈u, νt 〉2
p

〈u, u〉p

)
. (50b)

Since the definition of the space V MN
2 depends on the proba-

bility density pt (x) [see Eq. (47)], these expressions are not so
useful in practice.

We remark that Eq. (49) singles out the MN decomposition
among all possible decompositions of the local mean velocity
into a gradient field and its orthogonal complement,

νt (x) = ∇ψ (x) + u(x) with 〈∇ψ, u〉p = 0. (51)

Such a decomposition exists for any gradient field ∇ψ ′(x) by
choosing ∇ψ (x) = ∇ψ ′(x)〈∇ψ ′, νt 〉p/〈∇ψ ′,∇ψ ′〉p, which
is orthogonal to its complement by construction. Geometri-
cally, this means that we choose some direction in the space
V MN

1 of gradient fields and consider the orthogonal projection
of νt (x) onto this direction. Note that generally u(x) ∈ V MN

2 ,
since the orthogonal complement of a particular gradient field
is not necessarily orthogonal any gradient field. Nevertheless,
the orthogonality condition yields a decomposition of the
entropy production rate into two positive parts:

σt = 〈∇ψ,∇ψ〉p + 〈u, u〉p. (52)

We can write the second term as

〈u, u〉p = 〈νt − ∇ψ, νt − ∇ψ〉p. (53)

Since ∇ψ ∈ V MN
1 , this is precisely of the same form as the

right-hand side of Eq. (49b), and we thus have

σ hk,MN
t = 〈u∗, u∗〉p � 〈u, u〉p, (54)

where we defined u∗(x) = νt (x) − ν∗
t (x). This means that,

among all decompositions of the local mean velocity into a
gradient field and its orthogonal complement (51), the MN
decomposition is the one that minimizes the length of the
orthogonal complement or, conversely, maximizes the length
of the gradient component.

VII. THERMODYNAMIC UNCERTAINTY RELATIONS

The thermodynamic uncertainty relation [25–28] (TUR)
relates the average and fluctuations of a stochastic current to
the entropy production in the steady state of a Markov jump
or Langevin dynamics. More recently, this relation has been
generalized to time period [29], relaxation [30], and arbitrary
time-dependent dynamics [31]. Another recent result is that
the HS housekeeping entropy also satisfies a TUR [32]. Given
the latter result it is natural to ask whether the other terms
in the decompositions discussed above also satisfy a similar
TUR.

A. Short-time uncertainty relations

The most straightforward application of the geometric in-
terpretation of the decomposition of the entropy production
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rate is the derivation of short-time TURs [33–36]. We define
a time-integrated stochastic current as

Jτ =
∫ τ

0
dt wt [x(t )] ◦ ẋ(t ), (55)

where wt (x) is a weighting function and ◦ denotes the
Stratonovich product. The average of such a current is given
by

〈Jτ 〉 =
∫ τ

0
dt
∫

dx wt (x) · νt (x)pt (x), (56)

and its rate of change by

dt 〈Jt 〉 =
∫

dx wt (x) · νt (x)pt (x) = μT 〈wt , νt 〉p. (57)

The short-time TUR can now be readily obtained from the
Cauchy-Schwarz inequality for the inner product [33]

(〈wt , νt 〉p)2 � 〈wt ,wt 〉p〈νt , νt 〉p

⇒ (dt 〈Jt 〉)2 � μT 〈‖wt‖2〉t σt . (58)

The connection to the TUR, which involves the variance
Var(Jτ ) of the current, is established by noting that the first
factor on the right-hand side characterizes the short-time be-
havior of the latter [34],

lim
�t→0

Var(Jt+�t − Jt )

2�t
= μT 〈‖wt‖2〉t . (59)

Thus Eq. (58) relates the rate of change of the average current
and the short-time growth of its fluctuations to the entropy
production rate. Since the decompositions of the entropy pro-
duction (11), (18), and (25) are based on decomposing the
local mean velocity into orthogonal components, we can use
Eq. (57) to decompose the rate of change of the current ac-
cordingly. For the MN decomposition, the orthogonal spaces
are characterized by Eq. (47). In particular, if wt (x) = ∇ηt (x)
is a gradient field, then it is orthogonal to the part of the local
mean velocity responsible for the housekeeping entropy,

〈∇ηt , νt 〉p = 〈∇ηt , ν
∗
t 〉p. (60)

Once again applying the Cauchy-Schwarz inequality, we then
obtain, instead of Eq. (58),

(dt 〈Jt 〉)2 � μT 〈‖∇ηt‖2〉t σ ex,MN
t . (61)

Thus, the rate of change of such a current provides a lower
bound on the excess part of the entropy production rate; this
bound is obviously tighter than Eq. (58). This relation can also
be obtained from Eq. (49b) by choosing ∇ηt (x) as the gradient
field u(x) ∈ V MN

1 . If η(x) is further independent of time, we
can identify

dt 〈Jt 〉 =
∫

dx ∇η(x) · νt (x)pt (x)

=
∫

dx η(x)∂t pt (x) = dt 〈η〉t , (62)

where we integrated by parts and used Eq. (2). Thus, the
change in any scalar observable without explicit time depen-
dence provides a lower bound on the MN excess entropy
production rate,

(dt 〈η〉t )
2 � μT 〈‖∇η‖2〉t σ ex,MN

t . (63)

Conversely, if the weighting function satisfies ∇ ·
[wt (x)pt (x)] = 0, then we have

〈∇ηt , νt 〉p = 〈∇ηt , νt − ν∗
t 〉p, (64)

and thus a lower bound on the MN housekeeping entropy,

(dt 〈Jt 〉)2 � μT 〈‖wt‖2〉t σ hk,MN
t . (65)

For a general current, we can always decompose its rate of
change as

dt 〈Jt 〉 = dt
〈
Jex,MN

t

〉+ dt
〈
Jhk,MN

t

〉
with

dt
〈
Jex,MN

t

〉 = μT 〈wt , ν
∗
t 〉p, (66)

dt
〈
Jhk,MN

t

〉 = μT 〈wt , νt − ν∗
t 〉p,

where the individual terms satisfy the inequalities(
dt
〈
Jex,MN

t

〉)2 � μT 〈‖wt‖2〉t σ ex,MN
t , (67a)(

dt
〈
Jhk,MN

t

〉)2 � μT 〈‖wt‖2〉t σ hk,MN
t . (67b)

Thus, any current can be split into an excess and a house-
keeping contribution, which provide lower bounds on the MN
excess and housekeeping entropy production rates, respec-
tively. In a completely analogous manner, we obtain for the
HS decomposition,

dt 〈Jt 〉 = dt
〈
Jex,HS

t

〉+ dt
〈
Jhk,HS

t

〉
with

dt
〈
Jex,HS

t

〉 = μT
〈
wt , νt − νst

t

〉
p, (68)

dt
〈
Jhk,HS

t

〉 = μT
〈
wt , ν

st
t

〉
p,

and the lower bounds on the HS excess and housekeeping
entropy production rates,(

dt
〈
Jex,HS

t

〉)2 � μT 〈‖wt‖2〉t σ ex,HS
t , (69a)(

dt
〈
Jhk,HS

t

〉)2 � μT 〈‖wt‖2〉t σ hk,HS
t . (69b)

Again, if the weighting function is given by wt =
∇ηt (pt/pst

t ), then the housekeeping part vanishes, whereas for
∇ · (wt pst

t ) = 0, the excess part vanishes. The TUR for the HS
decomposition is examined in greater detail and extended to
the case of Markov jump dynamics in Ref. [37]. In principle,
we can also split the current into three contributions:

dt 〈Jt 〉 = dt
〈
Jex,HS

t

〉+ dt
〈
Jhk,MN

t

〉+ dt
〈
Jcp

t

〉
with

dt
〈
Jcp

t

〉 = μT
〈
wt , ν

∗
t + νst

t − νt
〉
p
, (70)

which yields a short-time TUR for the coupling entropy pro-
duction rate, (

dt
〈
Jcp

t

〉)2 � μT 〈‖wt‖2〉t σ
cp
t . (71)

However, from an operational point of view, that is, for using
measured data to estimate the respective entropy production
rate, only the short-time TUR for the MN excess entropy
(63) appears immediately applicable, since it relies on only
the measurement of the rate of change of scalar observables.
By contrast, measuring the other components of the current
requires knowing the respective components of the local mean
velocity, which could also be used to calculate the entropy
production explicitly. Thus, the main insight from the remain-
ing TURs is that the current can be decomposed into different
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contributions corresponding to the orthogonal components of
the local mean velocity, whose magnitudes are controlled by
the respective contributions to the entropy production rate.

B. Finite-time uncertainty relations
for the Maes-Netočný decomposition

For the MN decomposition, we can extend the above short-
time TURs to finite times. The central observation is that,
since ∇ · {[νt (x) − ν∗

t (x)]pt (x)} = 0, this term does not con-
tribute to the time evolution of pt (x). As a consequence, we
can introduce a modified version of Eq. (1):

ẋ(t ) = μFθ
t (x(t )) +

√
2μT ξ(t ) with

Fθ
t (x) = Ft (x) + θ − 1

μ
[νt (x) − ν∗

t (x)]. (72)

For θ = 1, this reduces to Eq. (1). However, for any value
of θ ∈ R, this dynamics results in the same probability den-
sity, that is, the solution of the corresponding Fokker-Planck
equation (2) is given by pθ

t (x) = pt (x) irrespective of θ . By
contrast, the resulting local mean velocity is given by

νθ
t (x) = θνt (x) + (1 − θ )ν∗

t (x). (73)

In particular, for θ = 0, we obtain ν0
t (x) = ν∗

t (x), that is, the
local mean velocity corresponding to the minimum entropy
production dynamics driven by a conservative force. This
provides a generalization of the continuous time reversal op-
eration introduced for the steady state in Ref. [38]. In the
steady state, we have νt (x) = νst

t (x) and ν∗
t (x) = 0, so Eq. (72)

interpolates between the original dynamics at θ = 1 and the
equilibrium system with the same steady state at θ = 0. By
contrast, if the state of the system depends on time, the in-
terpolation is between the original dynamics at θ = 1 and
the dynamics with the same probability density but driven
by a conservative force at θ = 0. The remaining argument
proceeds analog to Ref. [38]. We use the fluctuation-response
inequality [39], which relates the change d〈X 〉 in the average
of some quantity X under an infinitesimal perturbation and
the variance of X to the Kullback-Leibler divergence between
the unperturbed and perturbed probability density. Since the
value of the current (55) depends on the entire trajectory,
we have to consider the ensemble of trajectories 
, which
is described by the path probability density P (
). As the
perturbation, we consider a small change in the parameter θ .
For this case, the fluctuation-response inequality reads

(〈Jτ 〉θ+dθ − 〈Jτ 〉θ )2

2Var(Jτ )
� DKL(P θ+dθ‖P θ ), (74)

where DKL denotes the Kullback-Leibler divergence or rela-
tive entropy between the probability densities. The difference
between the averages on the left-hand side is given by

〈Jτ 〉θ+dθ−〈Jτ 〉θ = dθ

∫ τ

0
dt
∫

dx wt (x) · [νt (x) − ν∗
t (x)]pt (x)

= dθ
〈
Jhk,MN
τ

〉
, (75)

since the probability density is independent of θ . Here we
identified the housekeeping contribution of the current de-
fined in Eq. (67). On the other hand, the Kullback-Leibler

divergence is given by (see Ref. [38] for the calculation)

DKL(P θ+dθ‖P θ )

= dθ2

4μT

∫ τ

0
dt
∫

dx ‖νt (x) − ν∗
t (x)‖2 pt (x)

= dθ2

4

∫ τ

0
dt 〈νt − ν∗

t , νt − ν∗
t 〉p = dθ2

4
�Shk,MN

τ , (76)

where �Shk,MN
τ = ∫ τ

0 dt σ
hk,MN
t is the housekeeping entropy

production. Note that the second-order polynomial of the
Kullback-Leibler divergence

DKL(P θ+dθ‖P θ ) = 1
2 gθθdθ2 + O(dθ3) (77)

leads to the Fisher metric gθθ = ∫ d
P θ (
)[∂θ lnP θ (
)]2 in
information geometry on the manifold of the path probability
[40,41]. Therefore, Eq. (74) is essentially the Cramér-Rao
inequality for the path probability. Equation (76) implies that
the Fisher metric is given by the MN housekeeping entropy
production rate

gθθ = 1
2�Shk,MN

τ , (78)

which leads to the finite-time TUR for the MN decomposition.
Plugging this into Eq. (74), we obtain〈

Jhk,MN
τ

〉2
Var(Jτ )

� 1

2
�Shk,MN

τ . (79)

This is precisely the finite-time TUR [42], with the average
current and the entropy production replaced by the respective
housekeeping contributions. While, for time-dependent driv-
ing, the form of the TUR has to be modified [29,31], Eq. (79)
shows that the original form of the relation is restored by con-
sidering the MN housekeeping contributions of the respective
quantities. The downside to Eq. (79) is that the housekeeping
contribution of the current is generally difficult to evaluate.
We write it as 〈

Jhk,MN
τ

〉 = 〈Jτ 〉 − 〈Jτ 〉∗, (80)

where 〈Jτ 〉∗ is the average of the current in the minimum
entropy production dynamics with the same time evolution
as the original dynamics but driven by a conservative force.
Thus, without explicit knowledge of this dynamics, Eq. (79)
provides only a straightforward way of obtaining a lower
bound on the housekeeping entropy if 〈Jτ 〉∗ vanishes. As we
saw above, the condition for this is that the weighting func-
tion satisfies ∇ · [wt (x)pt ] = 0. Since �Shk,MN

τ � �Sτ , such
currents also satisfy the conventional TUR; this identifies a
class of observables that satisfy the TUR even in the presence
of time-dependent driving. One particular choice for which
this is true is wt (x) = νt (x) − ν∗

t (x). In this case, the current
(55) can be interpreted as the stochastic housekeeping entropy
�hk,MN

τ , for which we obtain〈
�hk,MN

τ

〉2
Var
(
�

hk,MN
τ

) � 1

2
�Shk,MN

τ . (81)

Since the average of the stochastic housekeeping entropy is
just the housekeeping entropy, we find

Var
(
�hk,MN

τ

)
� 2�Shk,MN

τ . (82)
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This relation between the fluctuations and the average of the
entropy production was previously obtained for the steady
state in Ref. [43] and subsequently extended to the HS house-
keeping entropy in Ref. [44]. Equation (82) shows that the
MN housekeeping entropy satisfies the same relation.

We can also obtain a finite-time TUR for the MN excess
entropy by generalizing the results of Ref. [31]. There, it
was shown that the TUR can be extended to time-dependent
driving by considering an overall rescaling of time. We first
fix the length of the observation interval t ∈ [0, τ ] and write
the time-dependent forces in the system as

Ft (x) = F̄t/τ (x). (83)

We can thus equivalently consider the dynamics of the system
in the reduced time s = t/τ ∈ [0, 1]. For the reduced-time dy-
namics on the interval s ∈ [0, 1], τ enters only as a parameter.
This allows us to treat small perturbations in the parameter
τ using Eq. (74), that is, we change τ while keeping the
functional form of the forces fixed, thus also changing the
speed of any external protocol. The second necessary ingre-
dient is that changing τ in Eq. (2) is the same as rescaling the
local mean velocity. Specifically, the reduced-time version of
Eq. (2) reads

∂s pτ
s (x) = −τ∇ · [ντ

s (x)pτ
s (x)
]

with

ντ
s (x) = μ

[
F̄s(x) − T ∇ ln pτ

s (x)
]
. (84)

As before, we introduce a modified dynamics by changing
the force, F̄s(x) → F̄s(x) + dθντ

s (x)/μ with dθ � 1, which
changes the solution pτ

s (x) → p̃τ
s (x). Expanding with respect

to dθ , it can be seen that to first order in dθ , we have

p̃τ
s (x) � p(1+dθ )τ

s (x) + O(dθ2). (85)

Thus, adding a force proportional to the local mean velocity
has the same effect as rescaling τ . For the former perturbation,
the Kullback-Leibler divergence in Eq. (74) is proportional to
the entropy production

DKL(P̃‖P ) � dθ2

4
�Sτ . (86)

On the other hand, the change in a current (55) evaluates to

〈̃J〉τ − 〈Jτ 〉 � dθτ∂τ 〈Jτ 〉, (87)

which leads to the generalized TUR [31]

(τ∂τ 〈Jτ 〉)2

Var(Jτ )
� 1

2
�Sτ . (88)

Here the derivative with respect to τ is understood as the
change in the average value of the current when changing the
speed of the driving protocol while keeping its functional form
(83) fixed. Note that in general, this has two contributions,
one from the explicit dependence of Eq. (55) on τ and one
from the implicit dependence of the probability density pt

on the driving speed. In the steady state, the latter contribu-
tion vanishes and thus τ∂τ 〈Jτ 〉 = 〈Jτ 〉, recovering the original
finite-time TUR. The connection to the excess entropy can
be made by instead changing the force as F̄s(x) → F̄s(x) +
dθντ,∗

s (x)/μ, where ντ,∗
s (x) is the reduced-time version of

the local mean velocity ν∗
t (x) corresponding to the minimum

entropy production dynamics. In this case, the correspondence

between the additional force and the rescaling of time does
not hold for arbitrary observables, but only for those whose
average depends only on the probability density pt . From
Eq. (56), we see that this is the case whenever the weighting
function is a gradient field, wt (x) = ∇ηt (x), in which case we
have

〈Jτ 〉 =
∫ τ

0
dt
∫

dx∇ηt (x) · νt (x)pt (x)

=
∫ τ

0
dt
∫

dx ηt (x)∂t pt (x). (89)

These current are precisely the ones whose housekeeping
component in Eq. (67) vanishes. The corresponding Kullback-
Leibler divergence is proportional to the MN excess entropy,
so that we obtain

(τ∂τ 〈Jτ 〉)2

Var(Jτ )
� 1

2
�Sex,MN

τ . (90)

This shows that, when the observable is of the form (89),
which is in particular true for averages of scalar observables
ηt (x), then the TUR derived in Ref. [31] is actually a lower
bound on the MN excess entropy rather than the total entropy
production. Equation (90) is useful because it allows us to
obtain a lower estimate on the excess entropy production by
measuring the change in the average of a state-dependent
observable when changing the overall duration of the process.
For example, when a system is in a nonequilibrium steady
state and we instantaneously change the parameters of the
system, the relaxation towards the new steady state will lead to
a finite excess entropy production. Since, during the relaxation
process, the forces in the system remain constant, chang-
ing τ simply amounts to a change in the observation time.
Then Eq. (90) allows us to estimate the excess entropy from
the time-dependent relaxation of an arbitrary state-dependent
observable. Note that we can choose time-integrated or instan-
taneous observables,

Jτ =
∫ τ

0
dt η(x(t )) or Jτ = η(x(τ )), (91)

and consider the change in their average with respect to τ ;
both result in a lower bound on the excess entropy. On the
other hand, if the system is time periodic with period τ , then
changing τ corresponds to a change in the driving frequency
ω = 2π/τ [29]. Again, we can choose time-integrated or in-
stantaneous observables,

Jτ =
∫ τ

0
dt ηt (x(t )) or Jτ = η(x(rτ )), (92)

for some fixed r ∈ [0, 1] and where ηt+τ (x) = ηt (x), and es-
timate the excess entropy from the change of their averages
with respect to ω.

VIII. INTEGRAL FLUCTUATION THEOREMS

A. General formalism

A remarkable property of the entropy production is that it
satisfies an integral fluctuation theorem [45]: We define the
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stochastic entropy production as

�τ =
∫ τ

0
dt

[
1

μT
νt (x(t )) ◦ ẋ(t ) − ∂t ln pt (x(t ))

]
, (93)

which is a stochastic current of the type (55). Using Eq. (56),
we see that the average of �τ is equal to the total entropy
production �S = ∫ τ

0 dt σt in the time interval [0, τ ]. Equa-
tion (93) has an equivalent expression in terms of the path
probability density,

�τ =
[

P (
)

P †(
†)

]
, (94)

where P †(
) is the time-reversed path probability density. The
trajectory 
 describes the time evolution of x(t ) in Eq. (1)
in the interval [0, τ ], 
 = (x(t ))t∈[0,τ ]. The time-reversed path
probability is obtained from the dynamics (1), in which the
time dependence of the forces is reversed Ft (x) → Fτ−t (x)
and which starts from the final state pτ (x). The trajectory of
this dynamics is taken in the time-reversed direction 
† =
(x(τ − t ))t∈[0,τ ]. Here we assume that both path probabili-
ties are evaluated using the midpoint discretization, otherwise
P †(
) also involves a change in the discretization scheme
[46]. We note that both P (
) and P †(
†) are normalized
path probabilities,

∫
d
 P (
) = ∫ d
 P †(
†) = 1. Using the

expression (94), it is then straightforward to obtain the integral
fluctuation theorem [20,45]

〈e−�τ 〉 =
∫

d
 e− ln[ P
† (
† )
P (
) ]P (
) =

∫
d
 P †(
†) = 1. (95)

This places a strong constraint on the fluctuations of the
stochastic entropy production. More generally, any quantity
that can be written as

�τ = ln

[
P (
)

P̃ (
)

]
, (96)

with some normalized path probability P̃ (
), also satisfies a
fluctuation theorem

〈e−�τ 〉 = 1. (97)

For the following discussion it is useful to also introduce the
modified dynamics

ẋ(t ) = μFt (x) + at (x) +
√

2μT ξ(t ), (98)

which corresponds to adding a force at (x)/μ to Eq. (1), start-
ing from the same initial state p0(x). We denote the path
probability generated by this dynamics as P a(
) and its time-
reversed version as P a,†(
†), which involves a time reversal
of the force, Fτ−t (x) + aτ−t (x)/μ, and the trajectory, while
starting from the final state of Eq. (1), pτ (x). For this type of
path probability density, we obtain [47] (see Appendix C for
the detailed calculation)

�a
τ = ln

[
P (
)

P a(
)

]
= 1

4μT

∫ τ

0
dt{‖at (x(t ))‖2

+ 2at (x(t )) · [μFt (x(t )) − ẋ(t )]}, (99)

where the scalar product (·) is interpreted as an Itô product.
Using Eq. (1), we see that the average of this quantity is given
by 〈

�a
τ

〉 = 1

4

∫ τ

0
dt 〈at , at 〉p. (100)

Since the average is equal to the Kullback-Leibler divergence
between P (
) and P a(
) it is positive. For the time-reversed
path probability density, we find (see Appendix C)

�a,†
τ = ln

[
P (
)

P a,†(
†)

]
= �τ + 1

4μT

∫ τ

0
dt {‖at (x(t ))‖2 + 4at (x(t )) ◦ ẋ(t )

+ 2at (x(t )) · [μFt (x(t )) − ẋ(t )]}. (101)

For at (x) = 0, we recover Eq. (94). Taking the average of this
quantity, we find〈

�a,†
τ

〉 = �S + 1

4

∫ τ

0
dt (〈at , at 〉p + 4〈at , νt 〉p)

=
∫ τ

0
dt

〈
νt + 1

2
at , νt + 1

2
at

〉
p

. (102)

Again, this is positive and attains its minimal value of 0 for
at (x) = −2νt (x). Note that Eq. (100) implies that, for any
dimensionless positive quantity B > 0, we can find arbitrarily
many stochastic observables whose average is B, and all of
which obey an integral fluctuation theorem. Specifically, for
any at (x), we can choose ãt (x) = √4B/〈�a

τ 〉at (x) and have

〈e−�ã
τ 〉 = 1 and

〈
�ã

τ

〉 = B. (103)

B. HS decomposition

We now choose at (x) = −2νst
t (x) in Eq. (99), which is

also referred to as the dual dynamics [20,48,49]. Then, using
Eq. (100), we immediately have 〈�a

τ 〉 = �Shk,HS. So we have
a stochastic quantity, whose average is equal to the HS house-
keeping entropy and which satisfies the integral fluctuation
theorem (97). This quantity can be rewritten as

�hk,HS
τ = 1

μT

∫ τ

0
dt νst

t (x(t )) ◦ ẋ(t ), (104)

which is a natural definition of the stochastic HS housekeep-
ing entropy in light of Eq. (93). In deriving the above, we used
the relation between Itô and Stratonovich product,

at (x(t )) ◦ ẋ(t ) = at (x(t )) · ẋ(t ) + μT ∇ · at (x(t )). (105)

The same choice in Eq. (101) yields the HS excess entropy as
an average using Eq. (102) and satisfies an integral fluctuation
theorem. We can rewrite Eq. (101) as

�ex,HS
τ =

∫ τ

0
dt

[
1

μT

(
νt (x(t )) − νst

t (x(t ))
) ◦ ẋ(t )

− ∂t ln pt (x(t ))
]
, (106)

which is a natural definition of the stochastic HS excess en-
tropy. Thus, the HS decomposition of the local mean velocity
νt (x) = νt (x) − νst

t (x) + νst
t (x) in Eq. (93) also yields a de-

composition of the stochastic entropy production, in which
both terms satisfy an integral fluctuation theorem [11,17,50],〈

e−�ex,HS
τ

〉 = 1,
〈
e−�hk,HS

τ

〉 = 1. (107)
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We remark that the integral fluctuation theorems for the HS
excess and housekeeping entropy are established in the lit-
erature [20,48,51]; we provide them here as a reference to
facilitate the comparison to the results for the MN excess
and housekeeping, as well as the coupling entropy, which we
derive below. We further note that the decomposition of the
stochastic entropy production is not unique; we could equally
well choose at (x) = −2(νt (x) − νst

t (x)), which yields a pair
of distinct stochastic quantities, which differ from the above
expressions by a term whose average vanishes,

�̃hk,HS
τ − �hk,HS

τ = �̃ex,HS
τ − �ex,HS

τ

= 2
∫ τ

0
dt

{
∂t ln pt (x(t ))

− 1

μT

[
νt (x(t )) − νst

t (x(t ))
] · νst

t (x(t ))
}
.

(108)

Both definitions yield the correct averages and satisfy an inte-
gral fluctuation theorem.

C. MN decomposition

For the MN decomposition, we choose at (x) =
−2[νt (x) − ν∗

t (x)], which from Eqs. (100) and (102) yields
stochastic quantities whose average is the MN housekeeping
and excess entropy, respectively, and both of which satisfy the
integral fluctuation theorem. Explicitly, these can be written
as

�̃hk,MN
τ = 1

μT

∫ τ

0
dt ([νt (x(t )) − ν∗

t (x(t ))] ◦ ẋ(t )

−ν∗
t (x(t )) · [νt (x(t )) − ν∗

t (x(t ))]), (109a)

�̃ex,MN
τ =

∫ τ

0
dt

(
1

μT
{ν∗

t (x(t )) ◦ ẋ(t )

−ν∗
t (x(t )) · [νt (x(t )) − ν∗

t (x(t ))]}

−∂t ln pt (x(t ))
)

. (109b)

These expressions differ from the naive expressions obtained
by replacing νt (x) in Eq. (93) with νt (x) − ν∗

t (x) or ν∗
t (x) by

an additional term, whose average vanishes. In particular, the
stochastic entropy production is decomposed as

�τ = �̃hk,MN
τ + �̃ex,MN

τ + 2

μT

∫ τ

0
dt ν∗

t (x(t ))

· [νt (x(t )) − ν∗
t (x(t ))]. (110)

From Eq. (17), it is clear that the additional term is zero on
average. However, the presence of this term is necessary in
order for the stochastic excess and housekeeping entropy to
satisfy the integral fluctuation theorems,〈

e−�̃ex,MN
τ

〉 = 1,
〈
e−�̃hk,MN

τ

〉 = 1. (111)

We remark that, even though Eq. (109) is different from
the definition of the stochastic housekeeping entropy used
in Eq. (82), the latter relation also holds for Eq. (109). To
see this, note that the additional term in Eq. (109) is not a
stochastic current of the type (55), and thus its average is

independent of the parameter θ introduced in Eq. (72). As
with the HS decomposition, we can also obtain alternative
stochastic excess and housekeeping entropy productions by
choosing at (x) = ν∗

t (x). In summary, both the HS and MN
decomposition yields excess and housekeeping contributions
to the stochastic entropy production which satisfy an integral
fluctuation theorem. However, the conditions that the respec-
tive component of the stochastic entropy production should
yield the correct average and satisfy a fluctuation theorem are
not sufficient to uniquely specify the decomposition.

D. Coupling entropy

Finally, choosing at (x) = −2[ν∗
t (x) + νst

t (x) − νt (x)], we
obtain a stochastic version of the coupling entropy

�cp
τ = 1

μT

∫ τ

0
dt
[(

ν∗
t + νst

t − νt
) ◦ ẋ

− ν∗
t · (νt − ν∗

t ) − 2
(
ν∗

t + νst
t − νt
) · (νt − νst

t

)]
,

(112)

where we omitted the arguments for brevity. This quantity
satisfies the integral fluctuation theorem〈

e−�
cp
τ
〉 = 1; (113)

however, just like the stochastic counterpart of the MN de-
composition, this definition differs from the “naive” definition
of a stochastic coupling entropy by a term that averages to
zero. The stochastic entropy production is written as

�τ = �ex,HS
τ + �̃hk,MN

τ + �cp
τ

+ 2

μT

∫ τ

0
dt
[
(νt − ν∗

t ) · (ν∗
t + νst

t − νt
)

+ νst
t · (νt − νst

t

)]
, (114)

which likewise contains an additional term that averages to
zero and is necessary to ensure that the three contributions
each satisfy an integral fluctuation theorem.

IX. CONVERGENCE TOWARDS THE INSTANTANEOUS
STEADY STATE

A well-known result for the time evolution of the proba-
bility density is that, given two solutions pt (x) and qt (x) of
Eq. (2) the Kullback-Leibler (KL) divergence between them,

DKL(pt‖qt ) =
∫

dx ln

[
pt (x)

qt (x)

]
pt (x), (115)

is a monotonically decreasing function of time [18,52,53].
Specifically,

dt DKL(pt‖qt ) = −μT
∫

dx

∥∥∥∥∇ ln

[
pt (x)

qt (x)

]∥∥∥∥2 pt (x) � 0.

(116)

Intuitively, this ensures that, even when starting from different
initial conditions, the solution of Eq. (2) converges to a unique
limiting solution in the long-time limit. In other words, the
KL divergence serves as a Lyapunov function for the Fokker-
Planck equation, guaranteeing the stability of the solution.
Similar to the derivation of the Hatano-Sasa decomposition,
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we now fix the force at its instantaneous value Fs(x). In
this case, for sufficiently short time dt = t − s, both pt (x)
and pst

s (x) are instantaneous solutions of the corresponding
Fokker-Planck equation. We then have from Eq. (116)[

dt DKL
(
pt‖pst

s

)]
t=s � 0. (117)

The force is generally nonconservative, but, as discussed in
the derivation of the Maes-Netočný decomposition, we can
find a conservative force F∗

t (x) that leads to the same time
evolution. Fixing the value of F∗

s (x), both pt (t = s + dt) and
pcan

s (x) are instantaneous solutions, so we also have[
dt DKL
(
pt‖pcan

s

)]
t=s � 0. (118)

Using the explicit expression (116), we find[
dt DKL
(
pt‖pst

s

)]
t=s = −σ ex,HS

t , (119a)[
dt DKL
(
pt‖pcan

s

)]
t=s = −σ ex,MN

t . (119b)

This means that the excess entropy production rates serve as
Lyapunov functions for the dynamics with the force Ft (x) and
F∗

t (x), respectively. Further, the inequality σ
ex,HS
t � σ

ex,MN
t

implies that the instantaneous rate at which the respective
limit distribution is approached is faster for the system driven
by the conservative force F∗

t (x). We remark that this does not
contradict the finding that nonconservative forces generally
lead to a faster approach towards the steady state [54], since
the limit distributions for Ft (x) and F∗

t (x) are not the same.
For a relaxation process with time-independent force, we ob-
tain [55]

dt DKL(pt‖pst ) = −σ ex,HS
t , (120)

and thus the HS excess entropy production rate characterizes
the approach to the steady state. Equation (117) is the general-
ization of this result to time-dependent forces, which follows
by noting that pst

s (x) is the steady state corresponding to the
force Fs(x) with fixed s. Note that, even if the force in the
original dynamics is time-independent, the force F∗

t (x) does
depend on time and so does pcan

t (x).

X. DEMONSTRATION

A. Periodic change in the position of a parabolic trap

To demonstrate the decomposition (25) explicitly, we con-
sider the following example. A Brownian particle is trapped in
a two-dimensional parabolic potential Ut (x) = k‖x − at‖2/2
whose center position at changes with time. In addition,
the particle is driven by the nonconservative force Fnc(x) =
κ (−x2, x1), which corresponds to a torque driving the particle
in counterclockwise direction (for κ > 0) around the origin
of the x1-x2 plane. This model is an extension of the so-
called Brownian gyrator [56,57] to include a time-dependent
trapping potential. The setup is illustrated in Fig. 4. The
Fokker-Planck equation (2) for this system reads

∂t pt (x1, x2) = μ
{
∂x1

[
k(x1 − a1,t ) + κx2 − T ∂x1

]
(121)

+ ∂x2

[
k(x2 − a2,t ) − κx1 − T ∂x2

]}
pt (x1, x2). (122)

Since the forces are linear, provided that the initial state of the
system is Gaussian, pt (x) is Gaussian at any time and charac-
terized by its mean and covariance matrix; see Appendix A.

FIG. 4. A graphical illustration of the example system. A particle
is trapped in a parabolic potential with spring constant k, whose min-
imum position at moves around the origin with angular frequency ω.
In addition, the particle is driven by a nonconservative force field of
strength κ .

Moreover, the time evolution of the mean and covariance ma-
trix decouple, and from Eq. (A3), the mean evolves according
to

dt 〈x1〉t = −μ(k(〈x1〉t − a1,t ) + κ〈x2〉t ), (123a)

dt 〈x2〉t = −μ(k(〈x2〉t − a2,t ) − κ〈x1〉t ). (123b)

Since the time-dependent driving does not enter the equa-
tions for the covariance matrix, we focus on the case where
the covariance matrix has relaxed to its steady-state value
Var(x1) = Var(x2) = T/k, Cov(x1, x2) = 0,

pt (x1, x2) = k

2πT
exp

(
− k‖x − 〈x〉t‖2

2T

)
. (124)

Further, as illustrated in Fig. 4, we focus on the case where
the motion of the trap is periodic around the origin. Then the
system will settle into a periodic state at long times. If the trap
moves around the origin in a circle of radius a with angular
frequency ω, we obtain for the mean,(〈x1〉t

〈x2〉t

)
= ak

k2 + (κ − ω
μ

)2(k cos(ωt ) − (κ − ω
μ

)
sin(ωt )

k sin(ωt ) + (κ − ω
μ

)
cos(ωt )

)
,

(125)

while its instantaneous steady-state value is given by(〈x1〉st
t

〈x2〉st
t

)
= ak

k2 + κ2

(
k cos(ωt ) − κ sin(ωt )
k sin(ωt ) + κ cos(ωt )

)
. (126)

In terms of these expressions, the local mean velocity and its
instantaneous steady-state value are

νt (x) = −μk(〈x〉t − at ) + μFnc(x), (127a)

νst
t (x) = −μk

(〈x〉st
t − at
)+ μFnc(x). (127b)

Since the minimum entropy production dynamics for this time
evolution is a particle in a time-dependent parabolic potential
without the nonconservative force, the corresponding local
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FIG. 5. The entropy production rate and its decomposition for
the model illustrated in Fig. 4 as a function of the strength κ of
the nonconservative driving. Top panel: The entropy production rate
(black), the excess part [yellow (light gray)], housekeeping part
[green (medium gray)], and coupling part [red (dark gray)]. Bot-
tom panel: The excess part [yellow (light gray)], housekeeping part
[green (medium gray)], and coupling part [red (dark gray)] relative
to the overall entropy production rate. The remaining parameters are
μ = 1, k = 1, and T = 0.5; the potential moves around the origin in
a circle with radius a = 3 with frequency ω = 4.

mean velocity is given by

ν∗
t (x) = dt 〈x〉t . (128)

With these results, it is straightforward to calculate the explicit
expressions for the decomposition Eq. (25) of the entropy
production rate; the result is

σ ex
t = a2ω2k4

μT (k2 + κ2)
[
k2 + (κ − ω

μ

)2] , (129a)

σ hk
t = 2μκ2

k
, (129b)

σ
cp
t = a2ω2k2κ2

μT (k2 + κ2)
[
k2 + (κ − ω

μ

)2] , (129c)

σt = 2μκ2

k
+ a2ω2k2

μT
[
k2 + (κ − ω

μ

)2] ; (129d)

see also Eq. (A8). The behavior of the entropy production rate
and its decomposition is shown in Fig. 5. We see that the
entropy production rate exhibits a marked peak (top panel)
when rotation frequency due to the nonconservative force

μκ and the rotation frequency of the potential ω have the
same value. For these parameters, the nonconservative and
the time-dependent driving forces align to produce a greatly
enhanced motion of the particle, leading to increased dissi-
pation. By considering the decomposition (25) we see that
this peak is almost entirely due to a corresponding peak in the
coupling entropy production rate, confirming its interpretation
as quantifying the interaction between time-dependent and
nonconservative driving. This becomes even more apparent
when considering the size of the three contributions relative to
the total entropy production rate (bottom panel). As expected,
for small nonconservative forces, the excess part dominates,
while for large nonconservative forces, the housekeeping part
becomes dominant. But in the intermediate regime, where the
nonconservative and time-dependent forces are comparable,
the coupling part yields the dominant contribution. While, as
shown above, we can explicitly calculate the different contri-
butions to the entropy production in this example, in practice,
we may not know the precise values of all the parameters in
the system. In this case, the variational expressions derived in
Sec. VI and the lower bounds derived in Sec. VII can be used
to estimate some contributions from measured observables. In
particular, we recall Eq. (49), which, for the present case, can
be written as [38]

σ ex,MN
t = sup

η

[
(dt 〈η〉t )2

μT 〈‖∇η‖2〉t

]
, (130a)

σ hk,MN
t = inf

η

(
μ

T
〈‖Fnc − T ∇η‖2〉t

)
, (130b)

where the maximization or minimization is performed over
all scalar functions η(x). Here we used that the space V MN

1
in Eq. (49) is the space of all gradient fields. Thus, if we
know the bare diffusivity μT , we can calculate the MN excess
entropy production rate by maximizing the rate of change in
the average of a scalar observable relative to the magnitude of
its gradient. Importantly, both the average rate of change and
the magnitude of the gradient of some arbitrary function η(x)
can be computed from measured trajectories of the system.
Similarly, we can calculate the MN housekeeping entropy
production rate from the variational formula if, in addition,
we know the nonconservative force Fnc(x). However, even
it is unfeasible to perform the optimization over all possible
scalar functions, we can always obtain bounds by restricting
ourselves to a particular set of functions. In this case, since the
system is linear, a reasonable ansatz for η(x) is

η(x) = α1x1 + α2x2 = α · x, (131)

with some vector α. We then obtain the bounds

σ ex,MN
t � sup

α

[
(α · dt 〈x〉t )2

μT ‖α‖2

]
, (132a)

σ hk,MN
t � inf

α

(
μ

T
〈‖Fnc − T α‖2〉t

)
. (132b)

The optimization can now be performed explicitly, and we
obtain α = dt 〈x〉t in the first line and α = 〈Fnc〉t/T in the
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second line, which leads to

σ ex,MN
t � ‖dt 〈x〉t‖2

μT
, (133a)

σ hk,MN
t � μ

T
〈‖Fnc − 〈Fnc〉t‖2〉t . (133b)

We remark that these bounds are completely general; the first
one corresponds to the short-time TUR (63) for the weighting
function wt (x) = dt 〈x〉t . Comparing this to Eq. (129), we
find that, in the present example, both inequalities are actu-
ally equalities, which shows that these bounds can be tight.
Equation (133) provides useful and general bounds on the
excess and housekeeping entropy, but we still need to know
the temperature, the mobility and the nonconservative force
to evaluate them. However, for the MN excess entropy, we
can use the finite-time TUR (90) to obtain a lower bound
that can be evaluated directly in terms of measured quantities.
Suppose that we measure the instantaneous squared distance
of the particle from the minimum of the potential,

Jτ = ‖x(rτ ) − arτ‖2, (134)

where r ∈ [0, 1] denotes some fixed point along the driving
protocol. Then, from Eq. (90), we have

(τdτ 〈Jτ 〉)2

Var(Jτ )
� 1

2
�ex,MN

τ . (135)

Note that, since the driving is periodic, a changing the driving
period τ is equivalent to changing the driving frequency ω =
2π/τ , and thus τdτ = −ωdω. Thus, we can obtain a lower
bound on the excess entropy by examining the dependence
of the lag between the minimum position of the trap and the
actual position of the particle on the speed of driving. Since
the probability density is Gaussian, all quantities can be eval-
uated explicitly, allowing us to directly assess the tightness of
the bound. We obtain

〈Jτ 〉 = ‖〈x〉rτ − arτ‖2 + 2T

k
,

Var(Jτ ) = 4T

k

(
‖〈x〉rτ − arτ‖2 + T

k

)
. (136)

Since the dynamics are radially symmetric, the lag is indepen-
dent of the point r along the protocol,

‖〈x〉rτ − arτ‖2 = a2

(
κ − ω

μ

)2
k2 + (κ − ω

μ

)2 . (137)

The results are shown in Fig. 6. We see that this choice of
the observable does not capture the magnitude of the excess
entropy production; the lower bound is at most 0.04 of the true
value. In order to improve upon this, we would have to find
an observable that is more sensitive to changes in the driving
frequency. However, we also see that the lower bound captures
several qualitative features of the excess entropy, including
its maximum due to the coupling contribution [in terms of
Eq. (25), the MN excess entropy contains both the excess and
the coupling term] when the driving frequency matches the
magnitude of the nonconservative force.

FIG. 6. Comparison between the lower bound from the finite-
time TUR (135) on the excess entropy production per period (dashed)
and the actual value (solid). The top panel shows the results as
a function of the magnitude of the nonconservative force for two
different driving frequencies, the bottom panel as a function of the
driving frequency for two different nonconservative forces [positive
(negative) frequency corresponds to a counterclockwise (clockwise)
motion of the trap]. The remaining parameter values are μ = 1,
k = 1, T = 0.5, and a = 3.

B. Periodic change in the stiffness of a parabolic trap

Finally, we construct an example where the coupling part
vanishes while both the excess and housekeeping parts are
finite. As shown in Sec. V, a vanishing coupling entropy is
equivalent to the condition (39). For the above example, this
implies

(Fnc(x) − 〈Fnc〉t ) · dt 〈x〉t = 0. (138)

This expression remains true as long as the trapping potential
is parabolic, Ut (x) = k‖x − at‖2/2, and the probability den-
sity is given by the Gaussian

pt (x) =
(

k

2πT

) d
2

e− k
2T ‖x−〈x〉t ‖2

. (139)

In two dimensions, Eq. (138) cannot be satisfied in a nontrivial
way: If the nonconservative force is orthogonal to a constant
(with respect to the coordinates) vector field, then it has to be
of the form Fnc(x) = g(x)ut , where ut is the unit vector of
the direction orthogonal to dt 〈x〉t . However, such a force can
always be written as a gradient and is thus conservative. Thus,
for the two-dimensional example discussed above, the only
possibilities for a vanishing coupling entropy are Fnc = 0 or
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dt 〈x〉t = 0, which implies that the housekeeping, respectively
excess, entropy vanish as well. In three dimensions, on the
other hand, there is a simple way of satisfying Eq. (138): If
we apply a nonconservative force as above in the x1-x2 plane
and a time-dependent driving in the x3 direction, then the
effects of the two types of driving are independent of each
other. In Eq. (39), ν∗

t (x) is has only a x3 component, while
νt (x) − ν∗

t (x) has only x1 and x2 components, so they are
trivially orthogonal. In two dimensions, we can also obtain a
nontrivial example satisfying Eq. (138), if we allow the width
of the distribution to depend on time,

pt (x1, x2) = 1

2π�t
e− 1

2�t
‖x‖2

, (140)

for example, via a time-dependent trapping strength Ut (x) =
kt
2 ‖x‖2. In this case, since the probability density is radially
symmetric, the flows ν∗

t (x) contributing to the time evolution

have only a radial component, while the nonconservative force
Fnc(x) = κ (−x2, x1) and νt (x) − ν∗

t (x) has only a tangential
component, thus satisfying Eq. (39). More generally, let us
consider a potential of the form Ut (x) = 1

2 x · Kt x, where Kt is
a symmetric matrix. Such a potential is generally not radially
symmetric and the matrix At in Eq. (A1) can be written as

At = μ

(
K11,t K12,t + κ

K12,t − κ K22,t

)
. (141)

For simplicity, we focus on the case where at = 0 (so that
the distribution remains centered at x = 0) and the matrix
Kt is instantaneously and periodically changed between two
values K0 and K1 with time τ between subsequent changes.
In this case, the dynamics consists of a sequence of relaxation
processes and we can formally solve Eq. (A3),

Ct =
{

2μT
∫ t

0 ds e−A0se−AT
0 s + e−A0tC0eAT

0 t for 0 � t � τ

2μT
∫ t−τ

0 ds e−A1se−AT
1 s + e−A1(t−τ )Cτ eAT

1 (t−τ ) for τ < t � 2τ,
(142)

and the constant C0 is determined by the condition C2τ = C0.
Note that the matrices A0 and A1 do not commute with each
other and their transposes. In principle, we can obtain an
explicit expression in terms of the parameters of the model;
however, this expression is already so complicated as to be of
little practical use, and we therefore evaluate the covariance
matrix numerically and then use Eq. (A8) to compute the
respective contributions to the entropy production rate. We
consider the two specific cases:

K0 =
(

k0 0
0 k0

)
, K1 =

(
k1 0
0 k1

)
, (143a)

K̃0 =
(

k0 0
0 k1

)
, K̃1 =

(
k1 0
0 k0

)
. (143b)

The first case, Kt , corresponds to a radially symmetric trap,
whose stiffness is periodically changed between two values.
By contrast, in the second case, the trap is not radially sym-
metric (for k1 > k0, the particle is more strongly confined in
the x2 direction), and the symmetry is changed periodically.
The results for the individual contributions to the entropy
production rate are shown in Fig. 7. In both cases, we first
note that the total entropy production rate can behave in a
nonmonotonic manner even during a relaxation process. The
excess entropy production rate, on the other hand, is maximal
directly after changing the parameters and then monotonously
decreases. Most importantly, we see that, as argued above, the
coupling entropy production rate vanishes when the trapping
potential is radially symmetric; in this case, the change in
the probability density occurs only in the radial direction
and is thus orthogonal to the steady state flow due to the
nonconservative force. By contrast, when the radial symmetry
of the potential is broken, we observe a finite coupling entropy
production, which qualitatively behaves in a similar way as
the excess entropy. Thus, as we argued in Sec. V, the coupling
entropy production rate is nonzero in the generic case, and
its absence implies the existence of special symmetries in the
system.

XI. DISCUSSION

In general, when a system is affected by both time-
dependent and nonconservative forces, their effects can
combine in a nontrivial way. As we demonstrated using the
solvable models discussed in Sec. X, the contribution of the
coupling entropy to the total entropy production can be signifi-
cant in this case. By contrast, it vanishes when the two types of
driving act independently on different degrees of freedom of
the system. This suggest that we can use the coupling term to
quantify the interdependence between these two qualitatively
different types of driving.

One possible application is pumping [58,59]: According
to the second law of thermodynamics, it is not possible to
extract work from a single heat bath using a periodic pro-
cess. That is, if we change the potential Ut (x) in a periodic
manner, then the work W = ∫ τ

0 dt ∂tUt (x(t )) done on the
system will always be positive on average. However, this is
no longer true if the system is driven out of equilibrium by a
nonconservative force. In this case, we can in principle extract
work through a periodic process; the work of course being
supplied by the nonconservative force. Intuitively, it is clear
that, in order to extract work, we should perform the periodic
operation on the degrees of freedom that are affected by the
nonconservative force. That is, we require a coupling between
the nonconservative force and the time-dependent protocol,
which suggests that the extracted work should be related to
the coupling entropy.

The discussion in Sec. V indicates that we can decompose
the local mean velocity νt (x) into three orthogonal compo-
nents, independent of the dimensionality of the system. This
may seem surprising; however, we stress that this orthogo-
nality is defined with respect to the inner product (5), which
permits three orthogonal components even in one- or two-
dimensional systems. In general, we can consider different
types of orthogonality, for example with respect to the usual
inner product in Rd , or with respect to some function space.
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FIG. 7. The entropy production and its excess, housekeeping and coupling part (25) for changing the trap stiffness in the presence of a
nonconservative force. The left column corresponds to a radially symmetric trap with changing overall stiffness, Kt in Eq. (143), the right
column to a nonsymmetric trap with changing symmetry, K̃t in Eq. (143). The top row shows the absolute magnitude of the individual parts;
the bottom row shows the magnitude of the parts relative to the total entropy production rate. The parameters are μ = 1, T = 1, κ = 1, k0 = 1,
k1 = 2, and τ = 0.5.

The orthogonality considered here is a combination of both,
which involves the inner product between vector fields and
averaging with respect to the probability density describing
the current state of the system. This implies that, generically,
a system driven by a time-dependent and a nonconservative
force has at least three degrees of freedom, corresponding to
the three components of the local mean velocity. In general,
these degrees of freedom are not simply related to the control
parameters of the system, since, for example, changing the
magnitude of the nonconservative force modifies all three
contributions to the entropy production.

A challenging yet interesting problem is the generalization
of the results in this article to underdamped Langevin dy-
namics. While a Hatano-Sasa-type decomposition has been
developed for the underdamped case [50,60,61], an exten-
sion of the Maes-Netočný formalism seems more challenging,
since minimizing the entropy production rate in underdamped
dynamics does not yield a unique potential force [62,63].
However, if such a generalization can be developed, the cor-
responding coupling entropy may prove useful in studying
tracer particles in an active bath [64]. In this situation, the
particles constituting the active bath constantly dissipate en-
ergy, which can be interpreted as housekeeping entropy. By
contrast, performing a time-dependent operation on the tracer
particle leads to a nonvanishing excess entropy, while the
coupling entropy could quantify the nontrivial interactions
between the dissipation of the bath and the tracer.
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APPENDIX A: DECOMPOSITION OF ENTROPY
PRODUCTION FOR GAUSSIAN PROCESSES

For general systems, while the decomposition Eq. (25)
always exists, its explicit computation is challenging and re-
quires the time-dependent probability density pt (x), as well as
the instantaneous steady state pst

t (x) and instantaneous canon-
ical density pcan

t (x). The solution can be made more explicit
for systems that are driven by forces which are linear in the
degrees of freedom. The general equation of motion is of the
form

ẋ(t ) = −μ[At x(t ) − at ] +
√

2μT ξ(t ), (A1)

with some matrix At and vector at . The existence of a steady
state requires that all eigenvalues of the matrix At have a
positive real part; however, they can be complex, since the
matrix At is generally not symmetric. Provided that the initial
probability density is Gaussian, the time-dependent solution
is also Gaussian for all times and can be written as

pt (x) =
√

1

(2π )d det(Ct )
exp

[
−1

2
(x − mt ) · C−1

t (x − mt )

]
.

(A2)

The time-dependent mean mt and the covariance matrix Ct

(which is symmetric and positive definite) satisfy the equa-
tions of motion

dt mt = −μ(At mt − at ), (A3a)

dtCt = −μ
(
AtCt + Ct AT

t

)+ 2μT I, (A3b)
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where the superscript T denotes transposition and I the d ×
d identity matrix. Similarly, the instantaneous steady state is
Gaussian, with its mean and covariance matrix determined by

0 = −At mst
t + at , (A4a)

0 = −(AtCst
t + Cst

t AT
t

)+ 2T I. (A4b)

Finally, the dynamics with a conservative force that gives
the same time evolution as Eq. (A3) is determined by the
condition

a∗
t mt − a∗

t = At mt − at , (A5a)

A∗
t Ct + Ct A∗

t = AtCt + Ct AT
t , (A5b)

with the constraint that A∗
t is a symmetric matrix, and where

mt and Ct are the solution of Eq. (A3). Note that the symmetry
of A∗

t is equivalent to the force being the gradient of the
potential U (x) = x · A∗

t x/2 − a∗
t · x. For d = 2, the solution

of Eq. (A5) can be written explicitly,

A∗
t =
(

K11 + C12(A12−A21 )
C11+C22

A12C22+A21C11
C11+C22

A12C22+A21C11
C11+C22

A22 − C12(A12−A21 )
C11+C22

)
, (A6a)

a∗
t = at + (A∗

t − At )mt . (A6b)

It is easy to see that if At is symmetric (i.e., the system is
driven by a conservative force), then A∗

t = At and a∗
t = at .

The instantaneous canonical density is then given by a Gaus-
sian with mean and covariance

mcan
t = A∗

t
−1a∗

t , (A7a)

Ccan
t = T A∗

t
−1

. (A7b)

Using these results, we can then compute the excess, cou-
pling, and housekeeping terms in Eq. (25),

σ ex,HS
t = μT

{
tr
[(

C−1
t − Cst

t
−1)Ct
(
C−1

t − Cst
t

−1)]
+ ∥∥Cst

t
−1(mt − mst

t

)∥∥2}, (A8a)

σ
cp
t = μT

{
tr
[(

Ccan
t

−1 − Cst
t

−1)Ct
(
Ccan

t
−1 − Cst

t
−1)]

+ ∥∥Cst
t

−1(mt − mst
t

)− Ccan
t

−1(mt − mcan
t

)∥∥2},
(A8b)

σ hk,MN
t = μ

T
tr[(At − A∗

t )TCt (At − A∗
t )], (A8c)

where tr denotes the trace of a matrix. From these expression,
it is immediately obvious that the excess term vanishes only
when Ct = Cst

t and mt = mst
t , that is, when the system is in

the steady state. On the other hand, the housekeeping term
vanishes when At = A∗

t , that is, when the system is driven by
conservative forces. In either case, we have pst

t (x) = pcan
t (x),

and thus the coupling term vanishes as well. The main re-
maining task in order to obtain explicit expressions in terms of
the model parameters is solving the equations of motion (A3),
which amounts to solving a set of coupled linear differential
equations. Once the solution to Eq. (A3) is known, we have
to solve the matrix equations (A4) and (A5). We will discuss
some explicit examples in Sec. X. For the sake of complete-
ness, we also provide the expressions for the excess term of
the MN decomposition and the housekeeping term of the HS

decomposition,

σ ex,MN
t = μT

{
tr
[(

C−1
t − Ccan

t
−1)Ct
(
C−1

t − Ccan
t

−1)]
+ ∥∥Ccan

t
−1(mt − mcan

t

)∥∥2}, (A9a)

σ hk,HS
t = μ

T

{
tr
[(

TCst
t

−1 − Kt
)T

Ct
(
TCst

t
−1 − At

)]
+ ∥∥(TCst

t
−1 − At

))(
mt − mst

t

)∥∥2}, (A9b)

as well as the expressions for the local mean velocity and its
components,

νt (x) = −μ(At x − at ) + μTC−1
t (x − mt ), (A10a)

νst
t (x) = −μ(At x − at ) + μTCst

t
−1(x − mst

t ), (A10b)

ν∗
t (x) = −μ(A∗

t x − a∗
t ) + μTC−1

t (x − mt ). (A10c)

APPENDIX B: VARIATIONAL EXPRESSIONS FOR THE HS
DECOMPOSITION AND THE COUPLING ENTROPY

1. HS decomposition

According to Eq. (10) the component of the local mean
velocity corresponding to the excess entropy production rate
in the HS decomposition can also be written as a gradient
field,

νt (x) − νst
t (x) = −μT ∇ ln

[
pt (x)

pst
t (x)

]
. (B1)

Since this is of the form (51), we immediately obtain the
relation between the HS and MN housekeeping entropy from
Eq. (54),

σ hk,HS
t � σ hk,MN

t . (B2)

However, the orthogonal complement νst
t (x) is not orthogonal

to arbitrary gradient fields. Nevertheless, using the same argu-
ments as in the derivation of Eq. (10), we can show the more
general orthogonality relation

〈v1, v2〉p = 0 for

v1(x) = ∇φ

[
pt (x)

pst
t (x)

]
and ∇ · [v2(x)pst

t (x)
] = 0.

(B3)

This is similar to Eq. (47); however, V HS
1 now consists of

those gradient fields whose potential is a function of the ratio
pt (x)/pst

t (x), while V HS
2 is the set of all vector fields which

leave the instantaneous steady state pst
t (x) invariant. Using

Eqs. (43) and (46), we can thus obtain variational expressions
for the HS excess and housekeeping entropy production rates

σ ex,HS
t = sup

u∈V HS
1

( 〈u, νt 〉2
p

〈v, v〉p

)
= inf

u∈V HS
2

(〈νt − u, νt − u〉p), (B4a)

σ hk,HS
t = inf

u∈V HS
1

(〈νt − u, νt − u〉p)

= sup
u∈V HS

2

( 〈u, νt 〉2
p

〈u, u〉p

)
. (B4b)
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Formally, the respective first expression resembles Eq. (49);
however, since we optimize only over functions of
pt (x)/pst

t (x), we need to know both the probability density
and its instantaneous steady-state value in order to evaluate the
variational expressions. From a mathematical point of view,
a crucial difference between Eqs. (47) and (B3) is that, for
the MN decomposition, the two subspaces V MN

1 and V MN
2 de-

pend only on the probability density pt and the orthogonality
condition defined by the corresponding inner product. For the
HS decomposition, by contrast, the steady-state density pst

t (x)
depends on the force and thus on the decomposed local mean
velocity. Thus, the definition of the orthogonal components
V HS

1 and V HS
2 likewise depends on νt (x).

We can also consider the inner product with respect to
pst

t (x),

〈u, v〉pst = 1

μT

∫
dx u(x) · v(x)pst

t (x). (B5)

Since the space V HS
2 consists of vector fields satisfying ∇ ·

[v2(x)pst
t (x)] = 0, its orthogonal space with respect to this

inner product is just the space of all gradient functions V MN
1 .

In particular, in addition to Eq. (10), we also have〈
νt − νst

t , νst
t

〉
pst = 0. (B6)

We can thus view the HS decomposition as the MN decompo-
sition with respect to the inner product (B5) and the entropy
production rate in the instantaneous steady state,

σ st
t = 〈νst

t , νst
t

〉
pst , (B7)

also has a variational expression in terms of νt (x),

σ st
t = inf

u∈V MN
1

(〈νt − u, νt − u〉pst ). (B8)

Together with Eq. (49a), this implies the inequalities

〈νt − ν∗
t , νt − ν∗

t 〉p �
〈
νst

t , νst
t

〉
p, (B9a)

〈νt − ν∗
t , νt − ν∗

t 〉pst �
〈
νst

t , νst
t

〉
pst . (B9b)

Thus, the lengths of the vectors νt (x) − ν∗
t (x) and νst

t (x)
satisfy opposite inequalities with respect to the two inner
products.

2. Coupling entropy

In the decomposition (25) into three terms, the excess part
is equal to the excess part of the Hatano-Sasa decomposition,
while the housekeeping part is given by the housekeeping part
of the Maes-Netočný decomposition. As a consequence, the
variational expressions for the respective quantities are given
by Eqs. (49) and (B4). This means that all that is left is to find
the variational expression for the coupling entropy production
rate σ

cp
t . In the case of Eq. (25), we have three orthogonal

components, v(x) = v1(x) + v2(x) + v3(x). From the preced-
ing discussion, we can identify V1 = V HS

1 as the restricted
space of gradient fields v1(x) = ∇φ[pt (x)/pst

t (x)] [corre-
sponding to νt (x) − νst

t (x) in the excess part], while V2 = V MN
2

is the space of vector fields that satisfy ∇ · [v2(x)pt (x)] = 0
[corresponding to νt (x) − ν∗

t (x) in the housekeeping part]. We
then note that these two components are orthogonal due to
Eq. (16). Then we have to find a third component v3(x) that

is orthogonal to both v1(x) and v2(x). We note that this is
satisfied by

v3(x) = ∇ψ (x) = u(x) + w(x) with

∇ · [u(x)pt (x)] = 0 and ∇ · [w(x)pst
t (x)
] = 0. (B10)

That is, the space V3 consists of all gradient fields that can be
written as a sum of two vector fields u(x) and w(x), which
leave pt (x) and pst

t (x) invariant, respectively. At first, it is not
obvious that such vector fields exist; however, we note that
one explicit example is given by

u(x) = ν∗
t (x) − νt (x),

w(x) = νst
t (x),

⇒ u(x) + w(x) = −μT ∇ ln

[
pst

t (x)

pcan
t (x)

]
. (B11)

This ensures that the space V3 is not empty. Having identi-
fied the orthogonal components corresponding to Eq. (25),
we have the variational expressions for the coupling entropy
production rate,

σ
cp
t = sup

u∈V3

( 〈u, νt 〉2
p

〈u, u〉p

)
= inf

u∈V1∪V2

(〈νt − u, νt − u〉p). (B12)

APPENDIX C: DERIVATION OF EQS. (99) AND (101)

The short-time transition probability density for the
Langevin equation

ẋ(t ) = μFt (x) + at (x) +
√

2μT ξ(t ) (C1)

is given by [18]

pa(x, t + dt |y, t )

= 1

(4μT dt )
d
2

exp

{
− 1

4μT dt
‖x − y

− [μFt+dt/2(z) + at+dt/2(z)]dt‖2

− 1

2
∇ · [μFt+dt/2(z) + at+dt/2(z)]dt

}
, (C2)

where z = (x + y)/2, and the probability density of the for-
ward trajectory by

P a(
) =
[

M∏
k=1

pa(xk, tk|xk−1, tk−1)

]
p0(x0), (C3)

where we defined M = τ/dt and tk = kdt and xk denotes the
position at time tk . As discussed in Sec. VIII, time reversal in-
volves reversing the protocol, Ft (x) → Fτ−t (x) and reversing
the trajectory, x(t ) → x(τ − t ),

P a,†(
†) =
[

M∏
k=1

pa(xM−k, tM−k|xM−k+1, tM−k+1)

]
pτ (xM ).

(C4)

Note that in the time-reversed trajectory, we assume that the
system starts from the final state of the original dynamics
pa=0

τ (x). The corresponding path probabilities for the original
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dynamics are obtained by setting at (x) = 0. We can then
compute the logarithm of the ratio of the path probabilities,

ln

[
P (
)

P a(
)

]
=

M∑
k=1

ln

[
p(xk, tk|xk−1, tk−1)

pa(xk, tk|xk−1, tk−1)

]

= 1

4μT

M∑
k=1

{‖at+dt/2(zk )‖2 dt − 2[xk+1 − xk

− μFt+dt/2(zk )] · at+dt/2(zk )

+ 2μT ∇ · at+dt/2(zk ) dt}, (C5)

where zk = (xk+1 + xk )/2. Taking the continuum limit and
keeping only the leading order in dt , we obtain

ln

[
P (
)

P a(
)

]
= 1

4μT

∫ τ

0
dt {‖at (x(t ))‖2

− 2[ẋ(t ) − μFt (x(t ))] ◦ at (x(t ))

+ 2μT ∇ · at (x(t ))}. (C6)

Note that here the product between ẋ(t ) and at [x(t )] has to
be interpreted in the Stratonovich sense, since in the discrete-
time formulation at (zk ) is evaluated at the midpoint [x(t +
dt ) + x(t )]/2. Using the relation between the Stratonovich
and Itô product,

ẋ(t ) ◦ at (x(t )) = ẋ(t ) · at (x(t )) + μT ∇ · at (x(t )), (C7)

we obtain Eq. (99),

ln

[
P (
)

P a(
)

]
= 1

4μT

∫ τ

0
dt {‖at (x(t ))‖2

− 2[ẋ(t ) − μFt (x(t ))] · at (x(t ))}. (C8)

We remark that, in principle, the relation between the two
stochastic products depends on the dynamics, that is, the con-
crete expression for x(t ). However, since we are considering
only changes in the drift vector while keeping the diffusion
coefficient constant, this relation is the same for any choice
of at (x). When averaging the above expression with respect
to P (
), we can use that, along a trajectory of the original
dynamics, we have

ẋ(t ) = μFt (x) +
√

2μT ξ(t ), (C9)

so that the average is given by〈
ln

[
P (
)

P a(
)

]〉
=
〈

1

4μT

∫ τ

0
dt [‖at (x(t ))‖2

− 2
√

2μT ξ(t ) · at (x(t ))]
〉
. (C10)

Since the noise is white, the average of the second term van-
ishes, and we have〈

ln

[
P (
)

P a(
)

]〉
= 1

4μT

∫ τ

0
dt
∫

dx ‖at (x)‖2 pt (x), (C11)

which, recalling the definition of the inner product (5) is
precisely Eq. (100). For the time-reversed path probability, we

have

ln

[
P (
)

P a,†(
)

]
=

M∑
k=1

ln

[
p(xk, tk|xk−1, tk−1)

pa(xk−1, tk−1|xk, tk )

]
+ ln

[
p0(x0)

pτ (xM )

]
,

(C12)

where we relabeled the indices as k → M − k + 1 in the prod-
uct in the time-reversed path probability. This expression can
be expanded as

ln

[
P (
)

P a,†(
)

]
= 1

4μT

M∑
k=1

{‖at+dt/2(zk )‖2dt + 2[xk+1

− xk + μFt+dt/2(zk )] · at+dt/2(zk )

+ 4(xk+1 − xk ) · μFt+dt/2(zk ) + 2μT ∇

· at+dt/2(zk ) dt} + ln

[
p0(x0)

pτ (xM )

]
. (C13)

Taking the continuum limit, we obtain

ln

[
P (
)

P a,†(
)

]
= 1

4μT

∫ τ

0
dt {‖at (x(t ))‖2 + 2[ẋ(t )

+ μFt (x(t ))] ◦ at (x(t )) + 4ẋ(t ) ◦ μFt (x(t ))

+ 2μT ∇ · at (x(t ))} + ln

[
p0(x(0))
pτ (x(τ ))

]
= 1

4μT

∫ τ

0
dt {‖at (x(t ))‖2 − 2[ẋ(t )

− Ft (x(t ))] · at (x(t )) + 4ẋ(t ) ◦ [μFt (x(t ))

+ at (x(t ))]} + ln

[
p0(x(0))
pτ (x(τ ))

]
. (C14)

In order to obtain Eq. (101), we use the relations

ẋ(t ) ◦ μFt (x(t )) = ẋ(t ) ◦ [νt (x(t )) + μT ∇ ln pt (x(t ))],

(C15a)

dt ln pt (x(t )) = ∂t ln pt (x(t )) + ∇ ln pt (x(t )) ◦ ẋ(t ),

(C15b)

to rewrite the above as

ln

[
P (
)

P a,†(
)

]
= 1

4μT

∫ τ

0
dt {‖at (x(t ))‖2 − 2[ẋ(t )

− Ft (x(t ))] · at (x(t )) + 4ẋ(t ) ◦ [νt (x(t ))

+ at (x(t ))] + 4μT [dt ln pt (x(t ))

− ∂t ln pt (x(t ))]} + ln

[
p0(x(0))
pτ (x(τ ))

]
. (C16)

The time integral over the total derivative cancels the bound-
ary term and we obtain Eq. (101):

ln

[
P (
)

P a,†(
)

]
=
∫ τ

0
dt

(
1

μT
νt (x(t )) ◦ ẋ(t ) − ∂t ln pt (x(t ))

+ 1

4μT
{‖at (x(t ))‖2 + 4at (x(t )) ◦ ẋ(t )

− 2at (x(t )) · [ẋ(t ) − Ft (x(t ))]}
)

. (C17)
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The first two terms are independent of at (x) and correspond
the stochastic entropy production (93), which is obtained by
setting at (x) = 0. Taking the average of this expression with
respect to P (
), the term involving the Itô product vanishes
(see above), as does the term containing the partial derivative
of the logarithm of pt (x), because we have∫

dx pt (x)∂t ln pt (x) =
∫

dx ∂t pt (x) = 0 (C18)

due to conservation of probability. Finally, when taking the
average, the Stratonovich product with ẋ(t ) becomes a product

with the local mean velocity, and we find〈
ln

[
P (
)

P a,†(
)

]〉
= 1

μT

∫ τ

0
dt
∫

dx
{

[νt (x) + at (x)] · νt (x)

+ 1

4
‖at (x)‖2

}
pt (x)

= 1

μT

∫ τ

0
dt
∫

dx
∥∥∥νt (x) + 1

2
at (x)
∥∥∥2 pt (x),

(C19)

which is Eq. (102).
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