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Stochastic line integrals and stream functions as metrics of irreversibility and heat transfer
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Stochastic line integrals are presented as a useful metric for quantitatively characterizing irreversibility and
detailed balance violation in noise-driven dynamical systems. A particular realization is the stochastic area, re-
cently studied in coupled electrical circuits. Here we provide a general framework for understanding properties of
stochastic line integrals and clarify their implementation for experiments and simulations. For two-dimensional
systems, stochastic line integrals can be expressed in terms of a stream function, the sign of which determines the
orientation of nonequilibrium steady-state probability currents. Theoretical results are supported by numerical
studies of an overdamped two-dimensional mass-spring system driven out of equilibrium. Additionally, the
stream function permits analytical understanding of the scaling dependence of stochastic area growth rate on
key parameters such as the noise strength for both linear and nonlinear springs.
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I. INTRODUCTION

Understanding and quantitatively characterizing irre-
versibility and related phenomena is a central task in the
study of noise-driven nonequilibrium systems. Such systems
are of interest throughout the natural sciences with examples
in diverse fields such as biophysics [1,2], climate dynamics
[3,4], optically levitated nanoparticles [5–7], and electronic
transport systems and circuits [8–10]. Well-known approaches
for understanding nonequilibrium behavior focus on charac-
terizing the dynamics with physically inspired metrics such
as entropy production and heat transfer [2,11,12]. One ad-
vantage of such techniques is that they connect directly to
the nonequilibrium behavior of the underlying system, e.g.,
heat transfer from a hot mass to a cold mass in a coupled
mass-spring system [12,13]. However, for many systems of in-
terest, the nonequilibrium dynamics is not directly determined
by thermal gradients [1,14] and the implementation of such
metrics may not be straightforward. For example, biophys-
ical systems such as beating flagella and cilia are typically
driven by chemical (metabolic and enzymatic) processes [1],
while nonlinear electronic circuits may be driven by external
voltage noise sources as well as internal nonthermal sources
(e.g., shot noise) associated with nonlinear elements such as
tunnel diodes [10]. For such systems, measured time series
oftentimes do not have a direct or obvious connection to
heat transport or entropy production,and the question natu-
rally arises how to best quantify nonequilibrium dynamical
behavior.

This has motivated the introduction of a variety of
theoretical and empirical metrics to characterize and quan-

*teitso@phy.duke.edu

tify the extent of nonequilibrium behavior. Such metrics
include probability angular momentum [4,15,16], cycling
frequencies [17], dissipation rate inference schemes [14,18],
information-theoretic methods [19], and stochastic area [20].
One advantage of these metrics is that they can often be
computed directly from experimental data time series and
without knowledge of a detailed underlying model. In this
paper we introduce and explore two such metrics: (i) the
stochastic line integral (SLI), which is a generalization of the
recently introduced stochastic area [20], and (ii) a stochas-
tic stream function applicable to two-dimensional systems in
steady state.

To frame the discussion, it is useful to start by recalling
a key aspect of Brownian motion as a prototype for a large
class of stochastic dynamical systems: a small number of
macroscopic degrees of freedom are distinguished from a
great multitude of others called microscopic by the nature of
couplings. The couplings of any one microscopic degree of
freedom to the macroscopic degrees are small, but the collec-
tive action of the microscopic degrees upon the macroscopic
degrees is comparable to the couplings of the macroscopic de-
grees among themselves. This being so, individual identities
of the microscopic degrees of freedom are not retained. Their
collective actions upon the macroscopic degrees of freedom
are modeled by random fluctuations and by dissipation. As
a concrete example, we can imagine a mechanical assembly
immersed in a fluid, its movements stimulated by individual
impacts of fluid particles, and inhibited by drag. An example
with two masses coupled by springs, which we analyze in
greater detailed below, is depicted in Fig. 1. Here we envision
that the mass on the left with position x1 is stochastically
driven by thermal fluctuations of temperature T1 while moving
in the deterministic potential energy produced by the attached
coupling springs and similarly for the mass on the right at
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FIG. 1. Linear mass-spring network of two Brownian particles
(labeled with coordinates x1 and x2) and driven by thermal fluctua-
tions at respective temperatures T1 and T2.

position x2, which is driven by thermal fluctuations of temper-
ature T2.

In the overdamped limit which neglects inertia, we model
the statistics of the macroscopic degrees of freedom by an Itô
stochastic differential equation (SDE) [21]

dx(t ) = u(x(t ))dt + σdW(t ) + O((dt )3/2). (1)

Here x(t ) is the time series of the state vector in Rn, dt is the
time step, and dx(t ) is the forward difference

dx(t ) := x(t + dt ) − x(t ). (2)

The vector field u(x) is the deterministic flow and dW(t )
denotes the forward difference of the vector Wiener process
with statistics [21]

〈dWi(t )〉 = 0, 〈dWk (t )dWl (t )〉 = δkl dt . (3)

Here σ is a constant noise tensor which determines the linear
combinations of the dWi which induce fluctuations in each
component of dx. On the account of (3), we think of dW as
formally O(

√
dt ).

The structure of the paper is as follows. In Sec. II we
examine the projection of statistics in the full Hamiltonian
phase space with all the degrees of freedom, including the
microscopic, onto a reduced statistics which sees only the
macroscopic degrees of freedom.1 Elementary analysis shows
that the projected statistics is characterized by a continuity
equation for ρ(x, t ), the marginal of the phase-space prob-
ability density. This marginal has an associated probability
current J(x, t ). There is no a priori determination of this “ex-
act” probability current as a simple functional of the reduced
probability density ρ. Nevertheless, we show that microscopic
reversibility [22] implies that J vanishes identically for Hamil-
tonian systems that are closed with stationary probability
density. Conversely, nonvanishing of J associated with macro-
scopic irreversibility is possible for closed systems when the
full probability density is not strictly stationary.

1This also provides helpful insight when we apply metrics such as
the stochastic line integral directly to real experimental data collected
from high-dimensional systems. The process of experimentally mea-
suring only a few macroscopic variables is qualitatively related to
the theoretical process of projecting from a high-dimensional micro-
scopic model (e.g., with the number of degrees of freedom of order
of Avogadgro’s number) to SDE models described by (1).

In Sec. III we examine line integrals over trajectories on
macroscopic state space projected from the full Hamiltonian
phase space. They are useful detectors of irreversibility as
pointed out in recent theoretical and experimental work that
focused on one particular realization called stochastic area
[9,20]. To develop a general definition, let

C(t ): x = x(t ′), 0 < t ′ < t, (4)

be such a trajectory. Form the line integral

G(t ) :=
∫

C(t )
gidxi =

∫ t

0
gi(x(t ′))ẋi(t

′)dt ′, (5)

where gi is an arbitrary vector-valued function of x and a
summation convention is used, i.e., repeated Cartesian indices
are summed over. (For the special case of stochastic area, one
chooses g1 = − x2

2 and g2 = x1
2 .) We show that the ensemble

average generally satisfies

d

dt
〈G〉(t ) := d

dt

〈∫
C(t )

gidxi

〉
=

∫
Rn

gi(x)Ji(x, t )dx, (6)

so the nonvanishing of ensemble-averaged line integrals in-
dicates irreversibility. In the general nonstationary case we
expect d〈G〉/dt to have explicit time dependence. However,
in the important case where the probability current Ji is sta-
tionary or quasistationary, d〈G〉/dt will be time independent.

The statistics on the macroscopic state space governed by
the stochastic ordinary differential equation (ODE) approxi-
mates the exact statistics based upon projection from the full
Hamiltonian phase space. In Sec. IV we examine the analog
of the stochastic line integral formula (6) within the statistics
governed by the SDE (1). We focus on those systems where
the exact probability current J can be reasonably approxi-
mated by a Fokker-Planck probability current [21],

j(x, t ) := u(x)ρ − D∇ρ. (7)

Here ρ(x, t ) denotes the reduced probability density over the
macroscopic position variables and

D := 1
2σσ T (8)

is the diffusion tensor induced by the noise tensor σ in (1).
The Fokker-Planck expression works well for a wide variety
of experimentally relevant noise-driven systems. Examples of
recent interest include electronic circuits driven by thermal
noise [23] and filament dynamics in active biological net-
works driven by nonequilibrium noise [2,24].

We propose and analyze two definitions of stochastic line
integral closely related to the Stratonovich stochastic integral
[21,25] and show their equivalence. For both we find that the
stochastic line integral formula (6) holds with the Fokker-
Planck probability current j in place of J.

To illustrate the general points in earlier sections and to
show connections of stochastic line integrals with physically
relevant concepts such as heat transfer, Sec. V examines the
overdamped statistics of a well-established paradigm system
of two coupled Brownian particles in heat baths of tempera-
tures T1 and T2 (cf. Fig. 1). Heat transfer between the baths is
analyzed for the case of linear coupling, starting from its char-
acterization by a specific type of the stochastic line integral,
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the stochastic area [20]. For two-dimensional systems, simula-
tions may be complemented by a theoretical quantification of
heat transfer in terms of the stream function for the stationary
probability current. We show how stochastic line integrals
may generally be expressed as relatively simple integrals of
the stream function and how this allows us to analytically
infer physically significant properties such as heat transfer
rate. Finally, in Sec. VI we discern the effects of nonlinearity
by studying the scaling dependence of time rate of change in
stochastic area versus noise amplitude. In particular, we show
analytically that hard spring nonlinearity inhibits heat trans-
fer relative to a linear system, as the temperature difference
increases.

II. PROJECTION OF HAMILTONIAN PHASE SPACE ONTO
MACROSCOPIC VARIABLES

To understand the broad applicability of SLIs it is useful
to consider how they follow from a microscopic perspective.
Here we focus on high-dimensional closed classical Hamil-
tonian systems and carry out projections [26]. However, the
motivation to do this is not purely formal since, for a wide
range of experimental noise-driven nonequilibrium systems,
one can in principle associate a set of classical Hamiltonians
provided there are enough degrees of freedom and the func-
tional form of the Hamiltonian H is appropriately chosen.
Equivalently, we expect that a classical experimental system
can be simulated with arbitrary accuracy by a reversible clas-
sical computer which in turn can be associated with a classical
Hamiltonian flow [27].

Let X and P be N-vectors of coordinates and momenta of
the full Hamiltonian dynamics. We assume that the Hamilto-
nian has a structure such that the first n � N components of
X can be identified as macroscopic coordinates.2 In that case,
the projection of the trajectory (X(t )

P(t )) in 2N-dimensional phase
space onto the space of macroscopic coordinates is

x :=
⎛
⎝X1(t )

...

Xn(t )

⎞
⎠.

For convenience of discussion, we define all of the remaining
microscopic coordinates by

X̃ :=
⎛
⎝Xn+1(t )

...

XN (t )

⎞
⎠.

Figure 2 visualizes the projection from the Hamiltonian
phase space onto the state space of macroscopic coordinates.
Any ensemble of trajectories on the full phase space is trans-
ported by the Hamiltonian flow, so the full probability density
f (X, P, t ) satisfies a continuity condition or, equivalently, the

2More generally, in cases where the Hamiltonian does not have this
structure, we note that it may sometimes be possible to bring it into a
form that clearly separates macroscopic and microscopic coordinates
via suitable canonical transformation.

(X,P)

x

FIG. 2. Depiction of the projection from full phase space onto
the space of macroscopic states.

classical Liouville equation [26]

∂

∂t
f + ∂

∂Xi

(
∂H

∂Pi
f

)
− ∂

∂Pi

(
∂H

∂Xi
f

)
= 0. (9)

Here H (X, P) is the (autonomous) Hamiltonian. Given an
ensemble of trajectories on the full phase space, we examine
its projection onto the space of macroscopic coordinates. The
probability density of the projected ensemble is

ρ(x, t ) :=
∫
RN−n

dX̃
(∫

RN

dP f

)
. (10)

Here dX̃ := dXn+1 · · · dXN is the volume element of micro-
scopic coordinates. By integrating (9) over all momenta and
microscopic coordinates, we arrive at the projection of the
continuity equation onto the space of macroscopic coordi-
nates,

∂

∂t
ρ +

n∑
i=1

∂

∂Xi

∫
RN−n

dX̃
(∫

RN

dP
∂H

∂Pi
f

)
= 0. (11)

Here we recognize

Ji(x, t ) :=
∫
RN−n

dX̃
(∫

RN

dP
∂H

∂Pi
f

)
(12)

for i = 1, . . . , n as the components of projected probability
current in the space of macroscopic coordinates.

As expected for generic Hamiltonian flows, we assume that
H (X, P) is even in the momenta [26]. If (X(t )

P(t )) is a realizable

phase-space trajectory, then so is its time reversal ( X(−t )
−P(−t )).

Following Onsager [22], we assume an equilibrium ensem-
ble in phase space which is stationary and invariant under
interchange of all trajectories with their time reversals. Let
fs(X, P) be the stationary probability density of the original
ensemble. At t = 0, swap every trajectory for its time re-
versal. The probability density after the swap is fs(X,−P).
Then, due to the aforementioned invariance, we must have
fs(X, P) = fs(X,−P) so that fs is even in P. Given the even
symmetries of H and fs in the momenta, we see that the
projected probability current (12) must vanish for all x. We
anticipate that equilibrium modeled by the stochastic ODE (1)
should likewise have zero probability current. In the context
of overdamped stochastic ODEs such as (1), this property is
called detailed balance [28,29]. It is equivalent to microscopic
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reversibility because the forward direction of time cannot be
inferred from the stationary reduced statistics.

Here we are interested in systems where the reduced statis-
tics of macroscopic variables is irreversible, i.e., nonvanishing
projected probability current. What does irreversibility of re-
duced statistics mean in the context of a much larger whole
which is assumed to be reversible and closed? An illustrative
scenario is the situation of two heat baths, each with many
degrees of freedom, coupled to one another via a few macro-
scopic degrees of freedom. Figure 1 visualizes a mechanical
example which has been studied extensively as a paradigmatic
nonequilibrium system that breaks detailed balance (see, e.g.,
[11,12,14]). A mass-spring system consists of two Brownian
particles moving in baths at different temperatures. They are
trapped by restoring forces and coupled to each other by
a linear spring. A temperature difference between the baths
drives heat transfer from hot to cold. Strictly speaking, the
statistics on the full phase space (including all the microscopic
degrees of freedom) cannot be stationary. Nevertheless, we
anticipate that stationary reduced statistics representing the
steady heat transfer is achieved asymptotically as the heat
capacities of the baths become very large. This means that the
projected statistics of the full Hamiltonian system must settle
into a quasistationary state for a very long time, longer than
the duration of any measurement. Conversely, the lower bound
on the timescale for quasistationary behavior is limited by the
transients to decay from typical arbitrary initial conditions to
the quasistationary state, a timescale that is, relatively speak-
ing, many of orders of magnitude smaller. For overdamped
systems, this decay time is typically determined by linearizing
the deterministic part of the flow in the SDE.3

III. STOCHASTIC LINE INTEGRALS
IN FULL PHASE SPACE

In this section we show generally how stochastic line in-
tegrals can be written in terms of the projected probability
currents. Let

d

dt
〈G〉 := d

dt

〈∫
C(t )

gidxi

〉
= 〈gi(x)ẋi〉 (13)

be the time rate of change of the ensemble average of the line
integral (5). Carrying out the ensemble averaging in the full
Hamiltonian phase space, we have

d

dt
〈G〉 =

∫
R2N

dX dPgi(x)
∂H

∂Pi
(X, P) f (X, P, t )

=
∫
Rn

dx gi(x)

[∫
RN−n

dX̃
∫
RN

dP
∂H

∂Pi
f (X, P, t )

]

=
∫
Rn

dx gi(x)Ji(x, t ), (14)

3More generally, it less clear that one might infer this separation of
timescales looking directly at the structure of the full H . Related to
this point, there are certainly many Hamiltonian flows for which this
form of separation of timescales is not expected [26].

where Ji(x, t ) is the ith component of the projected probability
current in (12). From (13) and (14), the previously mentioned
line integral formula (6) follows.

We now examine two instructive special cases. If g is the
differential of a function φ(x), and so g = ∇φ, we have

giJi = ∂iφJi = ∇φ · J. (15)

For stationary statistics, we have ∇ · J = 0, in which case we
can write

giJi = ∇ · (φJ).

Hence, the integral (14) of giJi over a region of RN is a
boundary integral. Assuming sufficiently strong decay of φJ
as |x| → ∞, the boundary integral vanishes as the region
expands to the whole RN . Hence, d〈G〉/dt vanishes for sta-
tionary statistics. We conclude that a line integral of an exact
differential form cannot detect irreversibility.

Next we look at the stochastic area [9,20] as a detector of
irreversibility. Let

C(t ): x1 = x1(t ′), x2 = x2(t ′), 0 < t ′ < t, (16)

be the projection of a stochastic trajectory in the time interval
(0, t ) onto the (x1, x2) plane. Then the line integral

A(t ) := 1

2

∫
C(t )

x1dx2 − x2dx1 (17)

represents the area swept out by the displacement vector
(x1, x2) in the time interval 0 < t ′ < t . The net rotation of the
displacement vector about the origin after a sufficiently long
time indicates irreversibility. According to (14) and (17), the
ensemble rate of change of area can be written in terms of Ji

as

d

dt
〈A〉 = 1

2

∫
Rn

dx(x1J2 − x2J1). (18)

IV. STOCHASTIC LINE INTEGRALS
WITHIN REDUCED STATISTICS

Since the exact statistics of Hamiltonian phase-space
trajectories projected onto the macroscopic state space is
modeled by the SDE (1), it is natural to ask what the ana-
log of the line integral formula (14) is within the reduced
statistics. The analog of the right-hand side (RHS) of (14)
seems clear enough: The exact probability current J can be
replaced by the Fokker-Planck probability current [cf. (7)]. A
deeper question concerns how to implement line integrals over
trajectories of the SDE (1). Here we examine two definitions
of stochastic line integral closely, both of which are related to
the Stratonovich stochastic integral [21].

The first proposed definition of stochastic line integral is∫
C(t )

gi(x)dxi := lim
N→∞

∑
t ′

g(y(t ′))dxi(t
′). (19)

Here t ′ := ndt , dt := t/N , and the summation runs from
n = 0 to n = N . The dxi(t ′) are components of the forward
difference as in (2) and the y(t ′) are midpoints

y(t ′) := x(t ′) + x(t ′ + dt )

2
. (20)
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The evaluation of differential form components gi at mid-
points between x(t ′) and x(t ′ + dt ) is analogous to the
Stratonovich stochastic integral [21,25].

The second definition of the stochastic line integral re-
places evaluation of the gi at midpoints by the average at end
points, that is,∫

C(t )
gi(x)dxi

:= lim
N→∞

∑
t ′

1

2
[gi(x(t ′)) + gi(x(t ′ + dt ))]dxi(t

′). (21)

Here the summation is over t ′ = ndt , 0 � n < N , as in the
first definition (19). Let us look at the difference between the
two definitions,

lim
N→∞

∑
t ′

[
1

2
gi(x(t ′)) − gi(y(t ′)) + 1

2
gi(x(t ′ + dt ))

]
dxi(t

′).

(22)
Setting x(t ′) = y(t ′) − 1

2 dx(t ′) and x(t ′ + dt ) = y(t ′) +
1
2 dx(t ′), we find that the Taylor polynomial approximation
of the term in square brackets is quadratic in dx(t ′)
and so is O(dt ). Then the entire sum in (22) is
O(Ndt3/2) = O( 1√

N
) → 0 as N → ∞. The limit process

of the second definition yields the same result as the first. The
reason for the second definition is that its equivalence to the
first gives a reassuring sense that the notion of stochastic line
integral is robust. In addition, the two definitions of stochastic
line integral lead to two constructions of probability current
based upon discrete time series of state variables, and close
variants of both appear in the literature [9,14].

Our immediate task is to analyze the ensemble-averaged
stochastic line integral according to the first definition (19).
We take the time series x(t ) to be a solution of the Itô SDE
(1). Setting y(t ′) = x(t ′) + 1

2 dx(t ′) and evoking (2) for the
forward difference dx(t ′), we have

〈gi(y(t ′))dxi(t
′)〉

= 〈gi(x(t ′))dxi(t
′)〉+ 1

2 〈(∂ jgi )x(t ′)dxi(t
′)dx j (t

′)〉+O(dt3/2)

= 〈gi(x(t ′))σi jdWj (t
′)〉 + 〈(giui )x(t ′)〉dt

+ 1
2 〈(∂ jgi )x(t ′)σikσ jl dWk (t ′)dWl (t

′)〉 + O(dt3/2). (23)

Since x(t ′) is independent of the increment dW(t ′) over the
time interval (t ′, t ′ + dt ), we simplify the RHS to

〈gi(x(t ′))〉σi j〈dWj (t
′)〉 + 〈(giui )x(t ′)〉τ

+ 1
2 〈(∂ jgi )x(t ′)〉σikσ jl〈dWkdWl (t

′)〉 + O(dt3/2). (24)

Evoking the statistics of dWi [cf. (3)], we can write

〈gi(y(t ′))dxi(t
′)〉 = 〈(giui + Di j∂ jgi )x(t ′)〉dt + O(dt3/2).

(25)
Here Di j are the components of the diffusion tensor in (8).
Hence,〈∑

gi(y(t ′))dxi(t
′)
〉

=
∑

〈(giui + Di j∂ jgi )x(t ′)〉dt + O

(
1√
N

)
. (26)

The RHS is the Riemann sum for the integral of 〈(giui +
Di j∂ jgi )x(t ′)〉 over 0 < t ′ < t , so we have

〈∫
C(t )

gi(x)dxi

〉
=

∫ t

0
dt ′〈(giui + Di j∂ jgi )x(t ′)〉. (27)

Introducing the reduced probability density ρ(x, t ), we have

〈giui + Di j∂ jgi〉 =
∫
Rn

dx ρ(giui + Di j∂ jgi )

=
∫
Rn

dx gi(ρui − Di j∂ jρ). (28)

Here we recognize the components of the Fokker-Planck
probability current (7) or, equivalently, the reduced probabil-
ity current density. Thus, Eqs. (27) and (28) allow us to write
the line integral formula within the reduced statistics,

d

dt
〈G〉 =

∫
Rn

dx gi ji. (29)

This equation has the same form as (14) with projected prob-
ability current J now replaced by the Fokker-Planck current j
and reaffirms the role of the stochastic line integrals as a detec-
tor of irreversibility. For steady-state situations (i.e., ∂j/∂t =
0), if we have j = 0 everywhere in the reduced phase space,
then d〈G〉/dt vanishes for any choice of vector function g and
detailed balance is satisfied. Conversely, if j has regions of
nonzero value, one can choose g such that d〈G〉/dt 	= 0 with
the magnitude and sign determined according to (29), thereby
providing a quantitative measure of the associated irreversible
behavior. Suitable choices of g will typically depend on sys-
tem details; examples are discussed in the following section.

V. IRREVERSIBLE STATISTICS OF COUPLED BROWNIAN
PARTICLES: STREAM-FUNCTION APPROACH

We analyze the overdamped statistics of two degrees of
freedom with coordinates x1 and x2 in a given energy land-
scape U (x1, x2). The following are two major reasons for
studying this type of system: (i) The physics is analogous
to that of many physical nonequilibrium systems that are the
focus of recent work including coupled electronic circuits and
mechanical systems [2,9,23,30] and (ii) the reduction of high-
dimensional systems onto two-dimensional planar subspaces
often has a similar effective dynamics [1,11]. The Itô SDE
system for x1(t ) and x2(t ) can be written as

dx1 = −μ1∂1Udt + σ1dW1, dx2 = −μ2∂2Udt + σ2dW2,

(30)
where μ1 and μ2 are given mobilities, dW1 and dW2 are
forward differences of independent Wiener processes, and σ1

and σ2 are given noise amplitudes. Following previous studies
[12,14,30], we can think of (30) as the stochastic dynamics of
two Brownian particles in heat baths of temperatures T1 and
T2. Each particle moves in its own potential, which may be
nonlinear, and we assume below that they are coupled to one
another with a linear (or nonlinear) spring (cf. Fig. 1). The
noise amplitudes are related to the temperatures by the usual
Einstein relations [25]

σ1 =
√

2μ1kBT1, σ2 =
√

2μ2kBT2. (31)
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We now focus on the specific form taken by the line
integral formula (29) for stationary statistics of the two-
dimensional stochastic dynamics of (30). The stationary
probability current j on R2 is divergence free, so there exists
a stream function ψ (x) satisfying [31]

j1 = ∂2ψ, j2 = −∂1ψ. (32)

Assuming that j decays to zero sufficiently rapidly as |x| →
∞, we may select the unique stream function which vanishes
at infinity. The reason for this selection becomes evident mo-
mentarily: Substituting (32) for j1 and j2 into the line integral
formula (29), we have

d

dt
〈G〉 :=

∫
R2

dx(g1∂2ψ − g2∂1ψ )=
∫
R2

dx ψ (∂1g2 − ∂2g1),

(33)
where the second equality uses integration by parts and the
boundary condition that ψ vanishes at ∞. For stochastic area
(18) (g1 = − x2

2 and g2 = x1
2 ), the ensemble-averaged rate of

change can be written concisely in terms of the stream func-
tion

d

dt
〈A〉 =

∫
R2

dx ψ. (34)

This remarkable formula shows a simple and direct connec-
tion between the stochastic area and the stream function.
For some problems it may be relatively easy to compute or
even calculate ψ and (34) provides a direct connection to
ensemble-averaged time rate of change of area, thus providing
a quantitative measure of system irreversibility [9,14].

We now formulate a boundary value problem for the stream
function, noting that equations of this type have been studied
extensively in hydrodynamics, with a large arsenal of solution
methods available [31,32]. Recalling that ji = −μi∂iUρ −
1
2σ 2

i ∂iρ, we can recast the stream-function derivatives in (32)
as

∂2ψ = −μ1ρ∂1U − 1
2σ 2

1 ∂1ρ, ∂1ψ = μ2ρ∂2U + 1
2σ 2

2 ∂2ρ.

(35)
Now we use these expressions to evaluate the combination
−σ 2

1 ∂1(∂1ψ/ρ) − σ 2
2 ∂2(∂2ψ/ρ) to arrive at

−σ 2
1 ∂1

(
∂1ψ

ρ

)
− σ 2

2 ∂2

(
∂2ψ

ρ

)
= (

σ 2
2 μ1 − σ 2

1 μ2
)
∂12U .

(36)
With the help of (31), the prefactor σ 2

2 μ2 − σ 2
2 μ1 on the

RHS of (36) is 2μ1μ2(T2 − T1), so the stream function ψ (x)
satisfies

−σ 2
1 ∂1

(
∂1ψ

ρ

)
− σ 2

2 ∂2

(
∂2ψ

ρ

)
= 2μ1μ2(T2 − T1)∂12U,

(37)
an inhomogeneous elliptical partial differential equation. The
operator

−σ 2
1 ∂1

(
∂1

ρ

)
− σ 2

2 ∂2

(
∂2

ρ

)
(38)

on the LHS is positive, i.e.,∫
R2

dx ϕ

{
−σ 2

1 ∂1

(
∂1ϕ

ρ

)
− σ 2

2 ∂2

(
∂2ϕ

ρ

)}

=
∫
R2

dx
{
σ 2

1
(∂1ϕ)2

ρ
+ σ 2

2
(∂2ϕ)2

ρ

}
> 0, (39)

for all reasonably behaved ϕ(x) that satisfy zero boundary
conditions and are not identically constant. Hence, the solu-
tion to (37) subject to ψ vanishing at infinity is unique. It
should be noted that the preceding analysis assumes a diago-
nal diffusion tensor [cf. (8)]. We also note that a more general
boundary value problem and corresponding uniqueness theo-
rem for the stream function can be established for the case of
a general diffusion tensor and is treated elsewhere [33].

If the degrees of freedom are uncoupled (∂12U = 0) or the
temperatures are equal (T1 = T2), then the stream function,
and hence probability current, vanishes identically [cf. (37)].
Equivalently, the time rate of change of ensemble-averaged
line integrals vanishes [cf. (34)].

We now examine the prototypical example of linearly cou-
pled degrees of freedom with energy landscape

U (x1, x2) = u1(x1) + u2(x2) + k

2
(x2 − x1)2. (40)

Here we treat u1(x1) and u2(x2) as potential energies of restor-
ing forces acting on each degree of freedom separately. The
two degrees of freedom are coupled by a spring with stiffness
k > 0. We assume that u1(x) and u2(x) diverge to +∞ as
|x| → ∞ sufficiently rapidly so that there is stationary prob-
ability density satisfying the usual normalization condition∫
R2 ρ dx = 1. For the energy (40), we have ∂12U = −k < 0,

and then the RHS of (37) is a positive constant for T1 >

T2. Due to the positivity of the operator (38) and utilizing
the maximum principle for elliptic partial differential equa-
tions [34], we conclude that ψ > 0 for T1 > T2. Then the
rate of change of stochastic area in (34) is positive. This
is consistent with the circulation of probability current: The
stream function has a global maximum and the circulation
of probability current sufficiently close to this maximum is
counterclockwise. A similar argument for the case T1 < T2

results in d〈A〉/dt < 0 and clockwise circulation near the
global minimum of ψ .

Next we show that the rate of heat transfer between baths
is the rate of change of a similar stochastic line integral. To
see this, note that the forward difference of the energy (40) is

dU = ∂1Udx1 + ∂2Udx2 + 1
2∂11U (dx1)2

+ ∂12Udx1dx2 + ∂22U (dx2)2 + O(dt3/2). (41)

Substituting for dx1 and dx2 according to the Itô SDE (30)
and using the identities (3) satisfied by dW1 and dW2, the
ensemble average of (41) yields

d

dt
〈U 〉 = −Q̇1 − Q̇2, (42)

where

Q̇1 := μ1〈(∂1U )2〉 − σ 2
1

2
〈∂11U 〉, (43)

Q̇2 := μ2〈(∂2U )2〉 − σ 2
2

2
〈∂22U 〉. (44)
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For stationary statistics, 〈U 〉 is time independent, so Q̇1 and
−Q̇2 have a common value, which we denote by Q̇. In the
formula (43) for Q̇1, we interpret μ1〈(∂1U )2〉 as the rate of
heating of bath 1 by dissipation and 1

2σ 2
1 〈∂11U 〉 as the rate at

which bath 1 induced noisy fluctuations impart energy to the
mass. Hence, Q̇ is the net rate of energy transfer into bath 1
and we can express Q̇ as the rate of change of the ensemble
average of the stochastic line integral

q(t ) := −1

2

∫
C(t )

∂1Udx1 − ∂2Udx2. (45)

Carrying out the ensemble and using (29) with g1 = − 1
2∂1U

and g2 = 1
2∂2U , we have

d

dt
〈q〉 = −1

2

∫
R2

(∂1U j1 − ∂2U j2)dx. (46)

Substituting

j1 = −μ1∂1Uρ − σ 2
1

2
∂1ρ, j2 = −μ2∂2Uρ − σ 2

2

2
∂1ρ,

we readily find

d

dt
〈q〉 = 1

2
(Q̇1 − Q̇2) = Q̇. (47)

Alternatively, we substitute j1 = ∂2ψ and j2 = −∂1ψ into
(46) to find

Q̇ = d

dt
〈q〉 =

∫
R2

dx ψ∂12U, (48)

and we see that there is no heat transfer if the degrees of
freedom are uncoupled or the temperatures of the baths are
equal. For linear coupling with ∂12U := −k < 0, Eq. (48)
reduces to

Q̇ = −k
d

dt
〈A〉, (49)

where d〈A〉/dt is the rate of change of ensemble-averaged
stochastic area. For T1 > T2 we have d〈A〉/dt > 0 and Q̇ < 0,
and for T1 < T2, Q̇ < 0, as expected. It is interesting to note
that the expression (48) also applies to the case of nonlinear
coupling spring. For a variety of different nonlinear couplings
(e.g., cubic, quartic, and Lennard-Jones) there will be a cor-
responding set of stochastic line integrals that utilize distinct
vector g functions.

In principle, d〈A〉/dt , and hence Q̇, is a function of the
noise amplitudes σ1 and σ2 or, equivalently, the bath tempera-
tures T1 and T2. We first consider linear stochastic dynamics,
with

u1(x) = u2(x) = K

2
x2. (50)

From the theory of linear stochastic dynamics worked out in
[20], we readily find

d

dt
〈A〉 = k2

k + K

μ2σ
2
1 − μ1σ

2
2

μ1 + μ2
. (51)

Using (31), we can then express d〈A〉/dt in terms of temper-
atures as

d

dt
〈A〉 = μ1μ2

μ1 + μ2

k

K + k
kB(T1 − T2). (52)

Now we use (49) to write the heat transfer rate as

Q̇ = μ1μ2

μ1 + μ2

k2

K + k
kB(T1 − T2), (53)

and it can be seen that the rate of heat transfer from bath 1
to bath 2 is simply proportional to the temperature difference
T2 − T1.

We test (52) by direct numerical solution of the SDE for the
spring-coupled masses (30). For numerical work, we use di-
mensionless units and we take μ1 = μ2 = μ (common value).
We assume x1 and x2 are dimensionless and we let E denote
a characteristic energy associated with U (x1, x2). The unit of
time is (μE )−1 and noise amplitudes are measured in units of√

μE . Working with dimensionless units, we set μ1 = μ2 = 1
in the SDE (30). Then the dimensionless energy [cf. (40)] for
linear stochastic dynamics is

U (x1, x2) = 1

2
x2

1 + 1

2
x2

2 + ε

2
(x2 − x1)2, (54)

where ε := k
K . We can also write (52) for d〈A〉/dt in dimen-

sionless form as

d

dt
〈A〉 = 1

2

ε2

1 + ε

(
σ 2

1 − σ 2
2

)
. (55)

Now let x1[t] and x2[t] be discrete time series of x1 and
x2 obtained by standard Euler-Maruyama iterations with time
step τ , starting from zero initial conditions. The discrete
Stratonovich approximation to the stochastic area at time t =
Nτ , N a positive integer, is

A(t ) =
N−1∑
n=0

dA(nτ ), (56)

where

dA(t ) := 1

2τ
[x1(t )x2(t + τ ) − x1(t + τ )x2(t )]. (57)

Figure 3 presents numerical results for A(t )/t for two in-
dependent trials associated with distinct realizations of the
noisy term but with common statistics. The parameter values
are ε = 1.0, σ1 = 2.0, and σ2 = 1.0. We perform two inde-
pendent runs, the first of which has 106 time steps with step
size τ = 0.01. The second, with twice as many time steps and
half the step size, provides a straightforward confirmation of
numerical convergence. Given a numerical time series of A(t ),
we plot A(t )/t versus elapsed time t (logarithmic scale). The
(blue) circles are obtained from the first run with 106 time
steps. In the limit of large times, we observe convergence to
a constant value A(t )/t ≈ 0.747 for t � 1. The (red) squares
are obtained from the second run with 2 × 106 time steps. The
initial transient is different, since noise forcings for different
simulations are independent. The second run gives A(t )/t ≈
0.750 for t � 1, consistent with the value from the first run.
Furthermore, both values are consistent with the theoretical
prediction based on (55), which evaluates to d〈A〉/dt = 3/4
for the indicated parameters.

Figure 4 displays the dependence of d〈A〉/dt upon the
noise amplitude σ := σ1 with fixed ratio r := σ2/σ1 = 0.5.
Numerical calculations are carried out for a sequence of σ1

values in the range 0–2.0. The circles represent estimates of
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t
A(t)

tlog
10

FIG. 3. Plot of A(t )/t vs t computed for two independent
stochastic trials for the two-dimensional system described by (30)
with potential energy given by (54) and with parameter values ε =
1.0, σ1 = 2.0, and σ2 = 1.0. For large t , both trials converge to a
common value corresponding to the stationary state.

d〈A〉/dt based upon computed values of A(t )/t for elapsed
time t = 104. The solid curve represents the theoretical de-
pendence of d〈A〉/dt upon σ1 with σ2/σ1 = 0.5 evaluated
according to (55). Numerical data are clearly consistent with
quadratic scaling that is predicted by (55). In contrast, the
square data points associated with the lower curve are ob-
tained with a nonlinear restoring force and discussed in the
following section.

FIG. 4. Dependence of time rate of change of stochastic area as
a function of noise amplitude σ1 for linear (circles) and nonlinear
(squares) restoring forces; cf. potential energy expressions (54) and
(58), respectively. The ratio σ2/σ1 = 0.5 is fixed. In the linear case,
the solid theoretical curve is obtained by direct evaluation of (55).

FIG. 5. Stationary probability density histograms for systems
driven by identical noise amplitudes: (a) linear restoring force de-
rived from (54) and (b) nonlinear restoring force derived from (58),
both with parameter choice ε = 1.

VI. EFFECTS OF NONLINEARITY: SCALING OF
STOCHASTIC AREA WITH NOISE INTENSITY

The dependence of d〈A〉/dt upon noise amplitudes is mod-
ified by nonlinearity. Related to this, the square data points
in Fig. 4 represent numerical values of d〈A〉/dt obtained by
using a potential energy function

U (x1, x2) = u(x1) + u(x2) + ε

2
(x2 − x1)2, (58)

with u(x) given by

u(x) = 1
2 x2 + 1

4 x4. (59)

This corresponds to a stiff spring; at small vibrational ampli-
tude the restoring force is linear, while at larger amplitudes the
positive quartic term is associated with a increasing effective
spring constant. As σ increases from 0 to 2.0, the dependence
of d〈A〉/dt upon σ transitions from quadratic to approxi-
mately linear, a trend that can be understood qualitatively
as follows. For increasing noise amplitude, characteristic de-
viations from the mechanical equilibrium x1 = x2 = 0 also
increase. Trajectories induced by sufficiently strong noise
preferentially sample the nonlinear part of the restoring force
which is more confining than the linear part, and thus the
stochastic area growth rate is inhibited relative to a purely
linear restoring force. The nonlinearity-enhanced confinement
is also evident by comparing probability density histograms of
linear and nonlinear cases driven by identical noise amplitudes
(cf. Fig. 5).
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We now turn to analyzing the dependence of stochastic area
upon noise amplitudes using the stream function. In particular,
we want to quantitatively understand the aforementioned con-
finement effect, whereby hard spring nonlinearity reduces the
increase of heat transfer as the noise temperatures increase.
We work in the dimensionless formulation with μ1 = μ2 = 1
with dimensionless energy landscape given by (58) and (59).
In order to implement a scaling argument we focus here on
the case of weak coupling 0 < ε � 1 and u(x) homogeneous
of degree n > 0 so that

u(ax) = anu(x) (60)

for all x and a > 0. We take the noise amplitudes to be

σ1 = σ, σ2 = σ r, (61)

where σ is any positive constant and r denotes the ratio of
noise amplitudes σ2/σ1 [35]. For ε = 0, the stationary prob-
ability density is proportional to the product of the effective
Boltzmann factors of the two decoupled degrees of freedom,

ρ ∼ ρ0 ∝ exp

(
−u(x1)

σ 2
1

)
exp

(
−u(x2)

σ 2
2

)
. (62)

The leading ε → 0 approximation to the stream function ψ (x)
then satisfies

−∂1

(
1

ρ0
∂1ψ

)
− r2∂2

(
1

ρ0
∂2ψ

)
= ε(1 − r2). (63)

This equation is obtained by setting μ1 = μ2 = 1 in (36),
substituting (61) for σ1 and σ2, replacing ρ by ρ0, and setting
∂12U = −ε as follows from (58). Notice the cancellation of
the factor σ 2 from both sides.

In analogy with certain boundary layer problems in two-
dimensional fluid systems, we note that the solutions of (63)
possess a scaling symmetry [32]. Thus, letting R(x) denote
the probability density (62) for σ = 1, we can express the
probability density for any σ > 0 as

ρ0(x) = 1

σ 4/n
R
(
ξ := x

σ 2/n

)
. (64)

Now let �(ξ) denote the stream function for σ = 1. We
seek the stream function for any σ > 0 as

ψ (x) = b�(ξ), (65)

where the constant b is to be determined. Substituting this
form into (63), we have

−b

[
∂

∂ξ1

(
1

R

∂�

∂ξ1

)
+ σ 2 ∂

∂ξ2

(
1

R

∂�

∂ξ2

)]
= ε(1 − r2), (66)

which has the exact form of the original equation (63) for ψ

when σ = 1 provided we choose b = 1. Hence, we conclude
that

ψ (x) = �
( x
σ 2/n

)
. (67)

Using this result, we can now write the rate of change of
stochastic area (34) as

d

dt
〈A〉 =

∫
R2

�
( x
σ 2/n

)
dx = σ 4/n

∫
R2

�(ξ)dξ (68)

and hence d〈A〉/dt scales as

d

dt
〈A〉 ∝ σ 4/n. (69)

For linear stochastic dynamics associated with a quadratic
potential energy function (n = 2), we have d〈A〉/dt ∝ σ 2,
a quadratic dependence on noise amplitude. However, for
the case of quartic confining potential with n = 4, we find
d〈A〉/dt ∝ σ , so area growth grows only linearly with noise
amplitude. Recall that the numerical graph of d〈A〉/dt versus
σ1 with σ2/σ1 = 0.50 in Fig. 4 is apparently linear for σ1 > 1.
Since temperatures T1 and T2 are proportional to σ 2

1 = σ 2 and
σ 2

2 = σ 2r2, we rewrite (69) as

d

dt
〈A〉 ∝ (σ 2)2/n. (70)

For linear stochastic dynamics with n = 2, we see that
d〈A〉/dt increases linearly with increasing temperatures, con-
sistent with (45). For stiff nonlinearity with n > 2, the
increase of d〈A〉/dt with temperatures is sublinear.

VII. CONCLUDING DISCUSSION

A general framework has been presented for understanding
the use of stochastic line integrals to quantitatively char-
acterize dynamical behavior in noise-driven nonequilibrium
systems. The concept of SLI has been shown to apply both
at the level of high-dimensional phase space associated with
Hamiltonian flow that includes all the microscopic degrees of
freedom and in the reduced phase space typically described
by a SDE. The implementation has been shown to be robust
and numerical implementation schemes have been described.
We have also shown how general results play out in detail
for a paradigmatic model system: two coupled mass-spring
elements at different temperatures. Along the way, SLIs were
developed that correspond to physically meaningful quanti-
ties such as heat flow. We have shown that the stochastic
line integral of any nonexact differential form vanishes in a
detailed balance system, so its nonvanishing is a clear impri-
matur of irreversibility. In summary, stochastic line integrals
are robust indicators of irreversibility which can be calculated
directly from experimental time series. Collateral deductions
of heat transfer (if appropriate) readily follow. For many ex-
perimental systems (e.g., biophysical systems) this route may
be more accessible than carrying out calorimetry. A recent
example of determination of stochastic area directly from ex-
perimental data is found in [9], which examines the dynamics
of two coupled electronic circuits driven by nonequilibrium
noise sources. More generally, determination of an SLI from
experimental data requires access to the time series of the
coordinates that define the particular SLI. We note that, in
addition to noise-driven electronic circuit systems, the appro-
priate type of data is also available for biological systems
using time-dependent microscopy [1,2].

We have also shown how the average growth rate of
stochastic line integrals on two-dimensional state spaces can
be evaluated with the aid of stream functions. However,
there are certainly straightforward approaches that do not
require use of stream functions. For example, one can solve
the Fokker-Planck equation, extract the collateral probability
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current, and then determine the average growth of the desired
stochastic line integral by explicit evaluation of (29). What
then are the relative advantages to using a stream-function
approach? Among them, we have shown how the stream-
function formulation clearly connects to essential physical
properties such as area growth rate and heat transport. In
the elliptic equation (37) for ψ , the source term on the RHS
contains the product (T1 − T2)∂12U , so one can see directly
why the temperature difference and actual coupling (∂12U not
identically zero) are both essential for irreversibility. Another
benefit of the stream-function formulation is that scaling ar-
guments like the one presented in Sec. VI are vastly more
accessible.

Strictly speaking, the stream-function analysis of prob-
ability current is limited to systems with two degrees of
freedom. However, in practice, experimentalists often probe
high-dimensional statistics by various two-dimensional pro-
jections [1]. For any such projection, there is a stream function
for the probability current in the plane of the projection. To
see this, note that the probability density f (x) for x ∈ Rn with
n > 2 satisfies the continuity equation

∂t f + ∂1 j1 + · · · + ∂n jn = 0. (71)

Here j1, . . . , jn are components of the probability current in
Rn. The marginal with respect to two variables, say, x1 and x2,
is

ρ(x1, x2, t ) :=
∫
Rn−2

f (x)dx3 · · · dxn. (72)

It satisfies the two-dimensional continuity equation

∂tρ + ∂1J1 + ∂2J2 = 0, (73)

where

J1(x1, x2, t ) :=
∫
Rn−2

j1(x)dx3 · · · dxn (74)

and similarly for J2(x1, x2, t ). The projected current

J =
(

J1

J2

)
(75)

in the (x1, x2) plane is generally not expressible as a drift-
diffusion functional determined only by the marginal density
ρ. Nevertheless, certain general conclusions apply. For sta-
tionary statistics with ∂tρ = 0, the projected current (75) is
divergence-free, so it has a stream function ψ (x1, x2). The
integral curves of the projected current are level curves of
this stream function. Assuming the usual boundary condition
ψ → 0 as |x1| or |x2| → ∞, we typically have closed, nested
level curves of ψ . We also note that the expressions for various
SLIs in terms of stream functions, e.g., (33) and (34), remain
valid when one uses stream functions determined using the
aforementioned projection procedure. Additionally, we note
that, provided an experiment can measure time series for at
least two independent variables, the determination of SLIs
such as stochastic area is possible. If one has access to more
than two variables in a higher-dimensional system, one can
measure SLIs corresponding to all possible pairwise combina-
tions or, equivalently, different two-dimensional projections.
Then the observation of a nonzero time rate of change in
any one of the SLIs thus constructed implies that the higher-
dimensional system is irreversible.

Finally, we point to one conspicuous direction for future
work: the case of state-dependent noise. There are physical
contexts in which it appears unavoidable, such as circuits
containing elements with nonlinear current-voltage relations
[10]. Presumably, one still has recorded time series of state
variables and its natural to ask whether (suitably modified)
stochastic line integrals of nonexact differential forms allow
us to read irreversibility and calculate heat transfer and en-
tropy production in such situations.
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