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Using Green’s function method, we study thermal transport properties of magnons transmitting through a
magnetic nanowire at a certain temperature. In a small part of the nanowire in the middle, we are supposed
to have two types of local and nonlocal magnon-phonon interactions. The self-energies for this part due to
the other parts of the wire are analytically derived. First, we calculate the phonon mode-dependent magnon
transmission coefficient in the classical canonical ensemble. Then, by taking an average of the phonon modes,
we obtain the total magnon transmission coefficient and use it for computing magnon thermal conductance.
We use the model to investigate four configurations of magnetic nanowires composed of ferromagnetic and/or
antiferromagnetic parts. The results show that, when the scattering region has an antiferromagnetic alignment,
the magnons transfer in the structure more weakly than for ferromagnetic alignment. There is a phonon-assisted
mechanism for tunneling of magnons which are transmitted through the gap or between magnon quasifrequencies
of the scattering region. Generally, in the same values for local and nonlocal strengths of magnon-phonon
interaction, the nonlocal one has a greater effect on the magnonic thermal transport properties. We found the
fitting functions in order to relate the macroscopic quantities of the magnon transmission coefficient and thermal
conductivity to microscopic parameters of the strengths of the local and nonlocal magnon-phonon interaction.
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I. INTRODUCTION

In the last decade, technological advances, especially in
the fields of quantum computation and spintronics, have been
accomplished by the use of the electron and its spin [1,2]. The
study of low-dimensional quantum ferromagnets and antifer-
romagnets [3,4], the coherent scattering of elementary spin
excitations or magnons [5], and the importance of magnetic
anisotropy [6] in nanostructures have attracted great interest
from theoretical and experimental scientists because of their
strange physical properties [7]. The plurality of these re-
lated research activities has been directed toward the reach of
quantum transmission in low-dimensional magnetic systems
including one-dimensional (1D) spin chains [8–10], spin lad-
ders [11], two-dimensional (2D) quantum magnets [12–14],
and quasi-2D-layered van der Waals materials [15]. An im-
portant class of materials that host such quantum magnets is
formed by copper oxides [16], for instance SrCuO2 [17] in
1D and La2CuO4 [18] in 2D magnetic systems. The strength
of the interaction between magnetic moments or exchange
coupling in these materials depends on their structures. As
mentioned, the important advantage of utilizing magnons is
that they transport information and heat in classical spin
waves. The quanta of this spin-wave energy are h̄ω and
its frequency, ω, can reach the terahertz range [19,20]. To
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obtain the energy transport in Heisenberg chains, inelastic
neutron scattering as an experimental method is available [21].
Thermal transport by phonons and electrons has been compre-
hensively studied [22,23]. The magnetothermal conductivity
in magnetic systems was initially predicted by H. Frohlich in
1936 [24], but it took several years to be experimentally af-
firmed and become established as a novel contribution to total
thermal conductivity [25,26]. Most of the experiments were
interesting for revealing the spin Hall [27] and spin Seebeck
effects [28] and the Wiedemann-Franz law [29]. Development
of fascinating applications of insulating materials with large
thermal conductance due to magnetic excitations [30], the
interaction of spinons with structural defects, electrons, and
quasiparticles such as phonons [31–34] and magnons [35,36]
demonstrates intriguing features in spintronic-based sys-
tems [37,38]. For example, recent research has demonstrated
that electron-magnon interaction in high fields can cause a
decrease in the high-field resistivity of ferromagnetic mate-
rials [39].

Theoretical calculations of the 1D Heisenberg model
were highlighted as a key to realizing thermal transport
in ferromagnet- and antiferromagnet-based magnon de-
vices [40,41]. The main focus of this paper has been on
computing the magnon transmission coefficient and thermal
conductance for an extended magnetic chain using Green’s
function technique. Some magnetic moments in the middle of
the chain are assumed to be vibrating, and the consideration
of magnon-phonon interaction will be interesting. We perform
our calculations in the presence of a dissipative environment
at a certain temperature.
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FIG. 1. Schematic picture of magnon propagating (solid wavy
line) in (a) ferromagnetic and (b) antiferromagnetic chains. The
magnetic moments are represented by vectors and their precession
in the xy plane is shown by dotted circles. In the middle of the chain,
the moments, which are displayed by empty bullets, can vibrate via
springs, leading to the magnon-phonon interaction. The filled bullets,
which are connected by solid lines, are used for the sites in the
nonvibrating leads.

The scheme of the paper is as follows. With this brief
introduction (Sec. I), in Sec. II, we describe the model and
theoretical framework. In Sec. III, we discuss the numerical
results for some examples. Finally, we conclude our study in
Sec. IV.

II. MODEL AND FORMALISM

Consider the magnon transfer through a nanowire includ-
ing N vibrating magnetic moments, which are connected
to two semi-infinite similar rigid magnetic leads via two
rigid contacts. The leads and the wire are supposed to have
ferromagnetic (F) or antiferromagnetic (A) alignments. For
example, Figs. 1(a) and 1(b) display the schematic pictures
corresponding to FFF and AAA configurations, respectively.
We label the magnetic moment sites with integer p so that the
ranges of [−∞, . . . , 0], [1, . . . , N], and [N + 1, . . . ,∞] for
p respectively distinguish the sites on the left lead (L), center
wire (W ), and right lead (R). The pth dimensionless magnetic
moment obeys the following Bloch-type equation [42]:

d �Sp

dt
+ �Sp

τp
= Jp−1

h̄
�Sp × �Sp−1 + Jp+1

h̄
�Sp × �Sp+1, (1)

where Jp±1 is the exchange integral between p and p ± 1
moments and τp = γ −1

p is the magnon relaxation time. We

set �Sp = [Sp,x, Sp,y, (−1)δ (p+1)] in which |Sp,x| and |Sp,y| are
significantly smaller than one [42–44]. Here, in the third coor-
dinate, δ takes the values zero and one for ferromagnetic and
antiferromagnetic alignments, respectively. To explain it fur-
ther, the definition of normal collective modes such as magnon
in ferromagnetic and antiferromagnetic materials originated
from the superposition principle that means the governed
wave equation on the magnetic behavior of the system should
be linear. By definition of S+

p = Sp,x + iSp,y = S̃+
p e−iωt , where

S̃p and ω are amplitude and frequency of the propagating
magnon, we have

[(−1)δ(p+1)(h̄ω + ih̄γp) + (−1)δ+1(Jp−1 + Jp+1)]S̃+
p

+ Jp−1S̃+
p−1 + Jp+1S̃+

p+1 = 0. (2)

From the above equation, working with Dirac notation, we can
arrive directly at the following definition for Green’s function
matrix of isolated center wire, G(n)

0 , as follows:

1

G(n)
0

=
N∑

p=1

fp|S̃+
p 〉〈S̃+

p | +
N−1∑
p=1

Jp+1|S̃+
p 〉〈S̃+

p+1|

+
N+1∑
p=2

Jp−1|S̃+
p 〉〈S̃+

p−1| + H.c., (3)

where

fp = (−1)δ(p+1)(h̄ω + ih̄γp) + (−1)δ+1(Jp−1 + Jp+1).

H.c. is the Hermitian conjugate of two previous sums and
n refers to the phonon because the magnon-phonon inter-
action is present. Since the moments in the center wire are
assumed to be vibrating, the phonons play an important role in
transferring magnons due to the phonon-magnon interaction.
The scenario in which the exchange integral varies by the
distance between charge distributions is described by some
authors [45–47]. Here, we explain the origin of this content
by the following bielectronic exchange integral for the neigh-
boring moments [48]:

Jp,p±1 = 1

4πε0

∫
φ∗

p(r1)φ∗
p±1(r2)

× −e2

|r1 − r2|φp±1(r1)φp(r2)dr1dr2,

where φ∗
p(r)φp±1(r) is charge distribution, r1 = rp − upx̂, and

r2 = rp±1 − (a + up±1)x̂, in which up is the displacement
from the equilibrium position of the pth moment. Here, rp

represents the electron positions in the pth site of the chain and
a is the lattice constant. One can expand the above exchange
energy as

Jp±1 = JW + ∂Jp,p±1

∂Xp

∣∣∣
Xp=a

(up±1 − up), (4)

where Xp = a + up±1 − up is the relative displacement vari-
able. Therefore, the exchange integrals in terms of dimension-
less phonon-mode (n) dependent moment displacements can
be written as follows:

Jp±1 = JW
[
1 + λ

(
ũ(n)

p − ũ(n)
p±1

)]
, (5)

where JW is the exchange integral between moments in the
absence of vibration. Its typical value is on the order of
0.01 eV [49]. Also, λ is the strength of the nonlocal magnon-
phonon interaction and compared with Eq. (4) reads λ =
−a(∂Jp±1/∂Xp)Xp=a/JW . Consequently, we separate the fre-
quency dependence of the magnon-phonon interaction in the
exchange integral as well as admit the λ remains the only am-
plitude of this interaction. In Eq. (5), ũ(n)

p is the dimensionless
displacement from the equilibrium position of a pth moment
at the nth phonon mode [50,51],

ũ(n)
p = ξ

√
2√

N + 1
sin

npπ

N + 1
, (6)

where ξ is a dimensionless variable for displacements in the
center wire. Moreover, it is also a temperature-dependent pa-
rameter, and by the help of the equipartition theorem we have
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〈ξ 2〉 = kBT/mω2
na2, in which m is the mass of each moment

and ωn is the phonon frequency of mode n. By substituting
Eq. (6) into Eq. (5), we found that Jp±1 is explicitly tempera-
ture dependent (via ξ parameter) and mode dependent (via n).
When the vibration amplitudes increase by increasing the tem-
perature, then the magnon-phonon interaction increases. In
the following, we suppose that the dissipative magnon energy
is proportional to the vibrating kinetic energy of the moments.
Indeed, we suppose that the magnon passing from a local atom
will be scattered by ion vibration. More atomic vibrations
lead to increased magnon scattering. We quantify this event
as follows: Whenever the kinetic energy of the located atom
rises, the magnon scatters more [h̄γp ∝ m(vion

p )2 in which vion
p

is the velocity of the pth atom] and it behaves like a dissipa-
tive environment for the magnon. In another way [52], γp is
proportional to kBT, which demonstrates that our assumption
is credible and plausible physically. Therefore, we have

γp = γω
ph
0

N + 1

(
ξ 2

max − ξ 2
)

sin2 npπ

N + 1
sin2 nπ

2(N + 1)
, (7)

where γ is the magnon damping coefficient or the strength
of the local magnon-phonon interaction, ξmax is the maximum
value of ξ , and ω

ph
0 = √

2C/m in which C is the force constant
between the moments in the center wire. When the center wire
is connected to the magnetic leads, its Green’s function matrix
for the nth phonon mode is rewritten as

G(n)
W = G(n)

0

1 − G(n)
0 (�L + �R)

, (8)

where �L(R) is the self-energy matrix due to the existence of
left (right) lead of which its elements read

(�L(R) )p,q = �L(R)δp,1(N ), (9a)

where for ferromagnets

�L(R) = J2
W L(R)

2J2
L(R)

(2JL(R)− h̄ω−
√

h̄2ω2− 4h̄ωJL(R) ), (9b)

and for antiferromagnets

�L(R) = J2
W L(R)[4JL(R) + 2h̄ω(ζL(R) )N ]

4J2
L(R) − h̄2ω2 + h̄ω

√
h̄2ω2 − 4J2

L(R)

, (9c)

where ζL = 1 and ζR = −1. The above functions are ob-
tained by using Eq. (2) for a semi-infinite ideal lead with
the help of surface Green’s function matrices and dispersion
relations for ferromagnetic and antiferromagnetic chains [53].
Their derivations are similar to the electronic ones in the
tight-binding approach. For ferromagnetic and antiferro-
magnetic cases they correspond to simple and alternating
on-site/hopping chains. Using the formulas in Ref. [50], for
the ferromagnetic case, we substitute on-site energy by 2JL(R)

and the hopping by −JL(R). Correspondingly, for the antifer-
romagnetic case in self-energy formulas in Refs. [54,55], we
substitute alternating on-site energies by 2JL(R) and −2JL(R)

and the alternating hoppings by JL(R) and −JL(R). Now, we can
calculate the mode dependence of the magnon transmission
coefficient by

Tn(ω, ξ ) = 4 Im �L Im �R

∣∣(G(n)
W

)
1,N

∣∣2
. (10)

To use the above relation, for ferromagnetic and antiferromag-
netic leads, one should choose �L(R) in Eqs. (9b) and (9c),
respectively. Also, (G(n)

W )1,N must be written for the corre-
sponding structure that is located between leads. For example,
for FAF configuration, both �L and �R are from Eq. (9b), and
for (G(n)

0 )1,N in Eq. (8), which is given by Eq. (3), δ is zero.
The following thermal average in the canonical ensemble
eliminates the phonon degrees of freedom, leading to

〈Tn(ω)〉 = 1

Zn

∫ ξc

−ξc

Tn(ω, ξ ) exp
( − βmω2

na2ξ 2/2
)

dξ, (11)

where ξc is the cutoff of ξ that usually takes the value of
0.4 (see, e.g., Lindemann criterion of melting [48]), ωn =
ω

ph
0 | sin nπ/2(N + 1)|, and a is the lattice constant. Moreover,

Zn is the partition function that is

Zn =
∫ ξc

−ξc

exp
( − βmω2

na2ξ 2/2
)

dξ . (12)

Finally, the total magnon transmission coefficient is obtained
by the following average:

Ttot = 1

N

N∑
n=1

〈Tn(ω)〉. (13)

Also, the magnon thermal conductance can be calculated by

κ = kBβ2h̄2

2π

∫ ωmax

0
Ttot (ω)

ω2eβ h̄ω

(eβ h̄ω − 1)2
dω. (14)

The quasi-one-dimensional density of states is used in the
above relation. In the next section, we apply our model for
the magnetic chains with FFF, AAA, FAF, and AFA config-
urations to compute and compare their magnonic transport
properties.

III. RESULTS

Here, we present the results of our calculation regarding
the magnonic transport properties of some infinite magnetic
chains with FFF, AAA, FAF, and AFA configurations in which
the magnon-phonon interaction exists only on a small part
of them, which is called the center part. The other parts,
which are named left and right leads, are assumed to be
similar and ideal, without any interaction. We investigate how
the magnon transmission coefficient and thermal conductance
can be influenced by magnon-phonon interaction. Consider-
ing that λ = −a(∂Jp±1/∂Xp)Xp=a/JW , when Jp±1 is a rapidly
descending function like J ≈ JW exp(−Xp/a) for the electron
in s-wave orbitals, λ takes the value of 1. As a result, we
expect that values of 0–1 for λ at least have a correct order
and may lie in a realistic scenario. During our calculations,
we set JW = JL = JR = J0 and, for the sake of observing con-
finement effects, we fix the values of JW L(R) at 0.8J0. To avoid
complexity and achieve better physical conceptions, in most
figures, we choose the typical number of ten for the number
of magnetic moments in the center wire, N . Moreover, we
perform the calculations for the case in which J0 = h̄ω

ph
0 . Fi-

nally, since the phonons are excited at higher temperatures, we
prepare the plots for T = T0 = J0/kB, which exhibits partly
high temperature (T0 is nearly 120 K for J0 ≈ 0.01 eV).
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FIG. 2. Magnon transmission coefficient as a function of fre-
quency for a ferromagnetic chain that is connected to two ferro-
magnetic leads (FFF), an antiferromagnetic chain that is connected
to two antiferromagnetic leads (AAA), an antiferromagnetic chain
connected to two ferromagnetic leads (FAF), and a ferromagnetic
chain connected to two antiferromagnetic leads (AFA). The curves
are plotted for high temperatures (T = T0) and for different values
of the strength of nonlocal magnon-phonon interaction λ. The nu-
merical values of needed parameters are chosen as follows: N = 10,
JW L(R) = 0.8J0, JL(R,W ) = J0,, and γ = 0. The inset in the FAF plot
shows the logarithm of transmission coefficient in the tunneling
region: [2,4]ω0.

In Fig. 2, we plot the magnon transmission coefficients
of the mentioned configurations as functions of incoming
magnon frequency for different values of strength of nanolo-
cal magnon-phonon interaction in the absence of a local one.
The range of magnon frequencies for FFF and FAF configura-
tions is [0,4ω0], while for AAA and AFA it is [0,2ω0]. In fact,
the allowed frequency windows are determined by magnon
band frequencies of leads, which are ω = 4ω0 sin2(ka/2) and
ω = 2ω0| sin(ka/2)| for ferromagnetic and antiferromagnetic
leads, respectively. Here, k is the magnon wave number and
a is the lattice constant. Generally, around the resonance
peaks, the magnon conductance decreases by increasing λ. In
the tunneling regions and low frequencies (see the plots for
the FAF and AAA cases), the magnons transmit better
through the system for larger values of λ. This may refer to
the phonon-assisted tunneling effect which implies that the
phonons help the magnons to tunnel through the magnonic
gap or outside of the center wire magnonic band. In the FAF
case, for the tunneling region [2ω0, 4ω0], we present the loga-
rithm of magnon transmission coefficient at high frequencies
in the inset of Fig. 2. We redrew the plots of Fig. 2 for
JW L(R) = 0.4J0 in Fig. 3 and found an interesting result. The
transmission in the regions between the peaks behaves like
that in the tunneling regions, namely, the behavior increases
with increasing λ. In fact, in these regions, the overlapping
of neighboring magnon quasilevels is reduced and they be-

FIG. 3. The same as Fig. 2 except that here JW L(R) = 0.4J0.

have like quasifrequency gaps in which the magnon tunnels.
Therefore, the phonon-assisted effect will occur.

Two plots in Fig. 4 display the logarithm of the magnon
transmission coefficient of FAF structure versus frequency for
two different cases: One in a fixed λ for some small values
of N and the other for the fixed N in some different values
of λ. The tunneling transmission in the range of [2ω0, 4ω0]
exponentially decreases by increasing the length of the center
chain. When the length of the center chain is fixed, corre-
sponding to the previous figure, the phonon-assisted effect is
notable in higher values of λ.

In Fig. 5, the magnon transmission coefficients of FFF,
FAF, AAA, and AFA configurations are presented as functions
of magnon frequency for different values of magnon damp-
ing coefficient at temperature T0 in the absence of nonlocal
magnon-phonon interaction. The number of moments in the
region in which the damping is presented is chosen as ten.
The magnon conductance of the systems with ferromagnetic
leads (FFF and FAF) is more affected by magnon damping
with respect to the systems including antiferromagnetic leads
(AAA and AFA). Generally, in all cases, the magnon trans-
mission coefficient decreases exponentially by increasing γ

in resonance peaks while being independent of the value of γ

in the tunneling regions.
In order to give a general overview, here we fit a function

for T (λ, γ ) at a fixed frequency corresponding to a peak in the
middle of the system conductance spectra, which reads

T (λ, γ ) ≈ Tmaxe−bγ

(
1 − cλn

λn
c + λn

)
, (15)

where Tmax is the maximum value of T at the selected peak.
Also, b, λc, and n are fitting parameters whose values depend
on the system configuration and are tabulated in Table I. The
values of b show that in uniform FFF and AAA configurations,
the local magnon-phonon interaction (γ ) has less effect on
magnon conductance concerning the uniform FAF and AFA
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FIG. 4. The logarithm of magnon transmission coefficient as a
function of frequency for an antiferromagnetic chain connected to
two ferromagnetic leads (FAF) for two cases: One in fixed λ = 0.4
for different values of N and the other for fixed N = 3 in different
values of λ. Here, we set JW L(R) = 0.8J0, JL(R,W ) = J0, and γ = 0.

configurations. According to the obtained data for c, λc, and
n, the influence of nonlocal magnon-phonon interaction (λ)
becomes weaker, respectively, on FFF, FAF, AFA, and AAA.
The small obtained values for b indicate that with compression
of γ , λ makes a decrease in T . The last point from Table I is
that the values of n depend only on the configuration of leads.
The magnon thermal conductances of FFF, AAA, FAF, and
AFA configurations versus temperature are shown in Fig. 6 for
several different values of λ when the γ is set to zero. Here,
κ0 is a constant with a value of kBJ0/(2π h̄). Generally, this
figure demonstrates that the increase in temperature causes
better thermal conductance in all configurations. Also, as ex-
pected due to the low phonon excitations, the magnon-phonon
interaction has no significant influence at low temperatures.
Remarkably, at higher temperatures in the uniform systems
of FFF and AAA compared with nonuniform FAF and AFA
systems, the magnon thermal conductance is more affected by
increasing λ. We find the following fitted function for κ (λ, γ )
at the fixed temperature of T = T0:

κ (λ, γ ) ≈ κmaxe−bγ

(
1 − cλn

λn
c + λn

)
, (16)

FIG. 5. Magnon transmission coefficient as a function of fre-
quency for the systems of FFF, AAA, FAF, and AFA, at different
values of γ in the absence of nonlocal magnon-phonon interaction
(λ = 0). The numerical values of parameters are chosen as follows:
N = 10, JW L(R) = 0.8J0, JL(R,W ) = J0, and T = T0.

where κmax is the maximum value of κ at T = T0. Also,
b, λc, and n are fitting parameters which are tabulated in
Table II. This table shows that in the absence of nonlocal
magnon-phonon interaction, when the center part has anti-
ferromagnetic alignment, the magnon conductance is more
affected by γ . In the absence of local interaction, the
magnon thermal conductance in the AAA configuration is
more destroyed by λ. In this situation, for small values of
λ, Eq. (16) reduces to κ = κmax exp(−bγ − cλn/λc

n). This
means that according to Table II the magnon thermal con-
ductance in AAA, AFA, FFF, and FAF, respectively, decrease
more with increasing λ. When γ is zero one can find λ =
λc[ln(κmax/κ )/c]1/n, which gives the strength of nonlocal
magnon-phonon interaction in terms of measured magnon
thermal conductance. In this way, the microscopic parame-
ter may be understood by proper measurements of magnon
thermal conductance in the mentioned systems. n is an impor-
tant fitting parameter to determine the behavior of κ . Since,

TABLE I. The fitting parameters for T (λ, γ ) in Eq. (15) at a
fixed frequency, which is distinguished at the parentheses in the first
column, presented for FFF, AAA, FAF, and AFA configurations. In
calculation, the following numerical values are chosen for the needed
parameters: T = T0, N = 10, JW L(R) = 0.8J0, and JL(R,W ) = J0.

No. ω/ω0 b c λc n

FFF 2.9 0.077 0.50 0.82 1.85
FAF 1.14 0.12 0.63 0.83 1.65
AFA 0.97 0.21 0.74 0.65 1.54
AAA 0.85 0.013 0.80 0.67 1.54
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FIG. 6. Magnon thermal conductances of FFF, AAA, FAF, and
AFA versus temperature for different values of λ in the absence
of local magnon dissipative coefficient (γ = 0). The numerical val-
ues of parameters are chosen as follows: N = 10, JW L(R) = 0.8J0,
and JL(R,W ) = J0.

according to Table II, its value depends on the system configu-
ration, we can conclude that type of structure, dimensionality,
and interaction range play a major role in distinguishing the
value of n. Next, we plotted in Fig. 7 the magnon thermal
conductance as a function of the number of magnetic moments
in the central part of the chain. Here, we take λ = 0.4, γ = 0,
and T = T0. This figure demonstrates that the magnon ther-
mal conductance has the most variation when the number of
moments in the center part changes from two to ten. Here,
the number of ten distinguishes the length of the center wire
corresponding to the magnon wavelength. Since the effective
mass of magnons (m∗) in ferromagnetic and antiferromagnetic

TABLE II. The fitting parameters for κ (λ, γ ) in Eq. (16) at the
fixed temperature of T = T0 for configurations of FFF, AAA, FAF,
and AFA. The following numerical values are used in calculations:
N = 10, JW L(R) = 0.8J0, and JL(R,W ) = J0.

No. b c λc n

FFF 0.09 0.59 1.15 1.68
FAF 0.21 1.27 1.81 1.92
AFA 0.10 0.51 1.06 1.82
AAA 0.21 0.83 1.00 1.68

FIG. 7. Magnon thermal conductances of FFF, AAA, FAF, and
AFA versus the number of moments in the center part when
γ is taken as zero. Here, JW L(R) = 0.8J0, JL(R,W ) = J0, λ = 0.4,
and T = T0.

materials is on the order of ten times the electron mass [49],
at the temperature T = T0 ≈ 120 K, the value of the ther-
mal magnon wavelength (=h/

√
2πm∗kBT ) is on the order

of nanometers. It seems that for large N , the thermodynamic
limit occurs and the magnon thermal conductance tends to a
constant. Indeed, due to the short-range nature of magnon-
phonon interaction that we considered here, the increase in
system length moves the conductance rapidly to the ther-
modynamic limit. The case of FAF has two different curves
for even and odd N and consequently two thermodynamic
limits. In this configuration, adding a magnetic moment in
the antiferromagnetic parts creates a symmetric (if N becomes
even) or asymmetric (if N becomes odd) structure. The results
show that the symmetric one has higher thermal conductance
with respect to the asymmetric one.

IV. CONCLUSION

In this paper, we studied the magnonic transport properties
of a magnetic chain in the presence of the magnon-phonon in-
teraction. The chain is connected to two semi-infinite magnon
rigid leads. We considered four configurations of FFF, FAF,
AFA, and AAA built by ferromagnetic (F) and antiferromag-
netic structures in the rules of center wire and leads. The
magnon transmission coefficient, which depends on phonon
modes, is calculated by means of the equilibrium Green’s
function technique. Then, the thermal average of the magnon
transmission coefficient is obtained within the canonical en-
semble at a certain temperature. Also, the magnon thermal
conductance is computed using this quantity after taking the
average of the phonon modes. Two types of local (γ 
= 0) and
nonlocal (λ 
= 0) terms are investigated for magnon-phonon
interaction. The local one causes a dissipative coefficient for
magnons and the nonlocal term changes the coupling coeffi-
cient between the neighboring moments.

The results show that generally the magnon conductance
decreases in the presence of magnon-phonon interaction,
and the greatest effect is experienced by antiferromagnetic
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nanowires. In more detailed consideration, we found that
when the incoming magnon frequency lies in the range of
magnon quasifrequencies of the center wire, the magnon
conductance decreases, while in the tunneling region it is
improved. By analyzing the fitting data on the middle peaks of
the magnon transmission curve, we find that the transmission
coefficient exponentially decays by the dissipative coefficient.
The fitting procedure shows that it has decreasing behav-
ior as a Hill function in terms of nonlocal magnon-phonon
interaction strength. The same scenario is also established

for magnon thermal conductance at a certain temperature.
The major result is obtaining a relation between finding
the microscopic quantity of nonlocal magnon-phonon inter-
action strength and the observable macroscopic quantity of
magnon thermal conductance. Finally, the relationship be-
tween magnon thermal conductance and its scattering length
is presented. In addition, it is understood that at the same
taking values, the nonlocal magnon-phonon interaction has
more influence on the transport properties of magnon with
respect to the local one.
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[45] A. Kwaśniowski and J. Adamowski, J. Phys.: Condens. Matter

20, 215208 (2008).
[46] M. M. Bezerra-Neto, M. S. Ribeiro, B. Sanyal, A. Bergman,

024122-7

https://doi.org/10.1103/PhysRevB.81.020405
https://doi.org/10.3390/cryst9020093
https://doi.org/10.1143/JPSJ.77.034607
https://doi.org/10.1103/PhysRevB.105.094401
https://doi.org/10.1088/1742-6596/568/4/042013
https://doi.org/10.1103/PhysRevB.64.054412
https://doi.org/10.1038/nphys3347
https://doi.org/10.1103/PhysRevB.62.R6108
https://doi.org/10.1016/j.jmmm.2019.04.022
https://doi.org/10.1016/j.jmmm.2020.166494
https://doi.org/10.1103/PhysRevLett.90.197002
https://doi.org/10.1038/s41598-019-51646-3
https://doi.org/10.1038/s41567-021-01421-x
https://doi.org/10.1103/PhysRevB.105.064424
https://doi.org/10.1143/JPSJ.73.2358
https://doi.org/10.3390/condmat4030075
https://doi.org/10.1088/1742-6596/200/2/022023
https://doi.org/10.7566/JPSJ.88.064708
https://doi.org/10.1103/PhysRevB.101.214412
https://doi.org/10.1038/s42005-022-00840-3
https://doi.org/10.1002/adfm.202001637
https://doi.org/10.1016/j.physleta.2006.12.003
https://doi.org/10.1103/PhysRevB.66.195304
https://doi.org/10.1103/PhysRevB.15.1489
https://doi.org/10.1016/j.jmmm.2021.168391
https://doi.org/10.1109/TMAG.2013.2262947
https://doi.org/10.1103/PhysRevB.89.014416
https://doi.org/10.1103/PhysRevB.95.125429
https://doi.org/10.1063/1.5005992
https://doi.org/10.1103/PhysRevB.105.104401
https://doi.org/10.1016/j.mtphys.2017.05.003
https://doi.org/10.1063/1.5057381
https://doi.org/10.1103/PhysRevB.104.064408
https://doi.org/10.1103/PhysRevB.73.104407
https://doi.org/10.1103/PhysRevB.102.100403
https://doi.org/10.1140/epjst/e2007-00363-8
https://doi.org/10.1103/PhysRevB.66.024433
https://doi.org/10.1103/PhysRevB.72.140402
https://doi.org/10.1103/PhysRevB.72.104423
https://doi.org/10.1007/BF01339661
https://doi.org/10.1103/RevModPhys.30.1
https://doi.org/10.1088/0953-8984/20/21/215208


SHOJAEI, MARDAANI, AND RABANI PHYSICAL REVIEW E 106, 024122 (2022)

R. B. Muniz, O. Eriksson, and A. B. Klautau, Sci. Rep. 3, 3054
(2013).

[47] M. Zare, F. Parhizgar, and R. Asgari, J. Magn. Magn. Mater.
456, 307 (2018).

[48] G. Grosso and G. P. Parravicini, Solid State Physics, 2nd ed.
(Academic Press, New York, 2013).

[49] J. R. Hook and H. E. Hall, Solid State Physics, 2nd ed. (Wiley,
New York, 1995).

[50] M. Mardaani, H. Rabani, E. Esmaili, and A. Shariati, J. Appl.
Phys. 118, 054306 (2015).

[51] M. Mardaani and H. Rabani, Phys. Status Solidi B 251, 1001
(2014).

[52] K. Wang, X. Xu, Y. Cheng, M. Zhang, J. S. Wang, H. Wang,
and G. Zhang, Appl. Phys. Lett. 118, 023102 (2021).

[53] S. Datta, Quantum Transport: Atom to Transistor (Cambridge
University Press, Cambridge, 2005).

[54] E. Esmaili, M. Mardaani, and H. Rabani, Superlattices
Microstruct. 113, 110 (2018).

[55] M. Mardaani and H. Rabani, J. Magn. Magn. Mater. 331, 28
(2013).

024122-8

https://doi.org/10.1038/srep03054
https://doi.org/10.1016/j.jmmm.2018.02.049
https://doi.org/10.1063/1.4928084
https://doi.org/10.1002/pssb.201350177
https://doi.org/10.1063/5.0037081
https://doi.org/10.1016/j.spmi.2017.10.022
https://doi.org/10.1016/j.jmmm.2012.11.002

