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Equilibrium return times of small fluctuating clusters and vacancies
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The expected return time of a fluctuating two-dimensional cluster or vacancy to a given configuration is
studied in thermodynamic equilibrium. We define a family of bond-breaking models that preserve the number
of particles. This family includes edge diffusion and surface diffusion inside vacancies in the limit of fast
particle diffusion and slow attachment-detachment kinetics. Within the frame of these bond-breaking models,
the expected return time is found to depend on the energies of the configurations and on the energies of the
excited states formed by removing a single particle from the cluster. High- and low-temperature regimes are
studied. We clarify the conditions under which the return time is a nonmonotonous function of temperature: a
minimum is found when the energy obtained by the average over the excited states of the configuration weighted
by their attachment probabilities is lower than the energy averaged over all states. In addition, we show that the
optimal temperature at which the return time is minimum is shifted to a higher temperature as compared to the
temperature at which the equilibrium probability is maximum. This shift is influenced by the average curvature
of the cluster edge, and is therefore larger for vacancies.

DOI: 10.1103/PhysRevE.106.024120

I. INTRODUCTION

Two-dimensional monolayer clusters of atoms or particles
have been studied extensively in the past decades. Since the
1990s, advances in visualization techniques such as scanning
tunnelling microscopy for atomic monolayer clusters [1,2]
and confocal microscopy for colloid monolayer clusters [3]
have enabled their accurate observation up to the the atom or
particle scale. These observations led to the characterization
of equilibrium shape fluctuations [1,2,4,5] that are caused by
the random diffusion of their constituent atoms or particles,
both for monolayer clusters [4–6], and monolayer vacan-
cies [6–13].

The static equilibrium properties of these fluctuations obey
well-known equilibrium statistical mechanics [14], and their
experimental observation can be used to determine energetic
properties of the cluster edge in atomic clusters [15,16] and
colloid clusters [17,18]. In contrast, the dynamical properties
of the fluctuations are sensitive to the kinetics of the relevant
mass transport mechanisms. Theoretical investigations of the
dynamics of fluctuations have been developed using Langevin
models [19–21] or kinetic Monte Carlo simulations of lattice
models for clusters [6,22–28] and vacancies [29–31]. These
modeling studies mostly aimed at predicting the diffusion of
the whole cluster or the time correlation functions of edge
fluctuations. In the following, we focus on a different kinetic
property of small fluctuating clusters: their time of return to
a given configuration. This focus is motivated by our recent
attempt to describe first passage times from one arbitrary
configuration to another [32]. These first passage times were
evaluated numerically using iterative evaluation techniques in
Ref. [32]. The expected return time from a configuration to
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itself exhibits similar properties as the first passage times [32]
and is an easier starting point for numerical and analytical
approaches.

In the present paper, we therefore report on the evaluation
of the equilibrium’s expected return time to a given con-
figuration. We work with an extended class of models that
allows us to discuss not only the case of clusters with edge
diffusion (ED) [32] but also the case of particle diffusion in-
side vacancies with slow attachment-detachment kinetics. The
expressions derived here lead to simpler and faster estimates
of the expected return times as compared to the numerical
evaluation based on iterative evaluation [32]. They also lead to
an easier and generalized analysis of the high-temperature ex-
pansion discussed in Ref. [32]. Furthermore, they allow us to
perform low-temperature expansions to determine activation
energies. Finally, the analysis of the expression of the return
time provides a simple interpretation for the appearance of an
optimal temperature at which the return time is minimum for
configurations with low energy.

We start in Sec. II by showing that the expected return time
depends on the expected residence time in the configuration
and on the equilibrium distribution via the well-known Kac
lemma [33,34]. We distinguish two different definitions of the
return time that differ only by the fact of taking into account
the time spent on the configuration itself.

In section Sec. III, we define a class of broken-bond dy-
namical models with single particle moves that preserve the
cluster area. We focus on two specific models belonging
to this class, namely, clusters with ED and vacancies with
detachment, diffusion inside the vacancy, and reattachment
(DDA) of atoms or particles in the limit of slow interface
kinetics.

A discussion of the equilibrium distribution is then re-
ported in Sec. IV. High- and low-temperature expansions
are presented. We notice that configurations with low energy
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exhibit an optimal temperature for which their equilibrium
probability is maximum. This optimal equilibrium tempera-
ture corresponds to the temperature at which the energy of
the configuration is equal to the thermodynamic average of
the energy. The maximum exists only when the energy of the
configuration is lower than the average of the energy over all
configurations.

The return time to a given configuration is discussed in
Sec. V. Within the broken-bond models, the expression of the
residence times can be written as a function of the energies of
the excited states that are obtained by removing a single atom
from the cluster. High- and low-temperature expansions of the
return times are discussed. We clarify the physical origin of
the optimal temperature at which large enough low-energy
clusters were found to exhibit a minimum return time in
Ref. [32]. We show that a minimum is present when the aver-
age energy of the excited states of the configuration weighted
by attachment probabilities is lower than the average energy
over all configurations. This return time optimal temperature
is found to be shifted to higher temperatures as compared
to the optimal temperature of the equilibrium distribution.
In addition, we show that the change of sign of the edge
curvature between clusters and vacancies leads to an increased
shift toward high temperatures for vacancies. Finally, the two
different definitions of the return time are seen to be similar
in most cases, except for very small clusters and for square
islands of arbitrary size at low temperatures.

II. RELATION BETWEEN MEAN RETURN TIME,
RESIDENCE TIME, AND EQUILIBRIUM DISTRIBUTION

Let us start with some general and standard relations to
define our cluster as a dynamical stochastic system at equilib-
rium.

In the following, the configuration (or shape) of the cluster
is called the state of the cluster, and denoted by s. The physical
behavior of the system is described by the rates γ (s, s′) for
the transition from a state s of the cluster to a state s′. We
assume Markovian dynamics, and the system obeys the master
equation

∂t P(s, t ) =
∑
s′∈Bs

[γ (s′, s)P(s′, t ) − γ (s, s′)P(s, t )], (1)

where P(s, t ) is the probability that the system is in state s at
time t , and Bs is the set of all states different from s that can
be reached in one transition from s.

In equilibrium, the probability Peq(s) to be in state s is
independent of time and obeys

Peq(s) = e−Hs/T∑
s′∈S

e−Hs′ /T
, (2)

where Hs is the Hamiltonian, i.e., the energy of the state s, T
is the temperature in units where the Boltzmann constant is
equal to 1, and S is the set of all states, which is assumed to
be finite.

We assume that the cluster dynamics is constrained by
detailed balance,

Peq(s)γ (s, s′) = Peq(s′)γ (s′, s), (3)

which directly enforce stationarity in Eq. (1). In addition, we
have from the combination of Eqs. (2) and (3):

γ (s, s′)e−Hs/T = γ (s′, s)e−Hs′ /T . (4)

Let us now consider a situation where we observe the
system during a long time, paying particular attention to a
given state s. Due to ergodicity, state s will be reached. After
reaching state s, the cluster will visit other states different
from s. Later, the system will come back again to s, and so on.
Let us denote tobs the total observation time and t tot (s) the total
time spent on state s during this observation time. It is clear
that since we are in equilibrium, the equilibrium probability
Peq(s) is the fraction of time spent in state s, and is therefore

Peq(s) = lim
tobs→∞

t tot (s)

tobs
. (5)

Then, let us define the loop number n� as the number of times
the system passes on the state s. The expected residence time
t (s) in state s obeys [35]

t (s) = lim
tobs→∞

t tot (s)

n�

. (6)

Remark that the expected residence time of a state s is the
average of the time before a transition to a different state
s′ �= s. As a consequence, the transitions that directly take the
system from s to itself are discarded and are not considered as
loops.

Moreover, we define the expected loop time τ �(s) as the
average period of the return to the state s, so

τ �(s) = lim
tobs→∞

tobs

n�

. (7)

Combining Eqs. (5)–(7), we obtain a form of the well-known
Kac lemma [33,34],

τ �(s) = t (s)

Peq(s)
, (8)

which relates the loop time τ �(s) to the stationary distribution
Peq(s). In the literature, τ �(s) is often called the expected
return time to state s. However, following the definition of
Ref. [32], we define the expected return time τ r (s) as the
expected time spent outside state s before returning to it. We
therefore have

τ r (s) = τ �(s) − t (s) = t (s)

(
1

Peq(s)
− 1

)
. (9)

In Eqs. (8) and (9), the equilibrium distribution is given by
Eq. (2), and the residence time can be written directly as a
function of the rates:

t (s) = 1∑
s′∈Bs

γ (s, s′)
. (10)

Note that our definitions imply that physical events that do not
change state s of the system are not listed in the transitions in
Eq. (10).

As a summary, the knowledge of the energies Hs and of the
rates γ (s, s′) allows one to determine the expected return time.
To analyze the consequences of this simple result for thermal
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fluctuations of few-particles clusters, we need to define more
precisely the kinetics of the model, which is determined by
the rates γ (s, s′).

III. BROKEN-BOND MODELS

A. Model definitions

We consider a two-dimensional cluster on a square lattice
with lattice parameter a and nearest-neighbor bond energy J .
A cluster is defined as a part of the lattice composed of N sites
that are connected to each other through nearest neighbors.
Two cluster configurations are considered to be different if
they cannot be obtained one from the other via translations.
This makes our definition of cluster states identical to that of
free polyominoes or free lattice animals [36]. Vacancies are
defined in a similar way as a set of empty connected sites in a
full monolayer.

The dynamics is assumed to result from moves that involve
only one particle at a time. The number of different moves
that can take the system from state s to state s′ is denoted as
kss′ . These moves from s to s′ are indexed by k = 1, .., kss′ . We
assume that each move has a reverse move. Hence, the reverse
moves can also be indexed by the same index k, and the total
number of moves between states s and s′ is the same as the
number of reverse moves:

kss′ = ks′s. (11)

Following the usual models for activation of particle or atom
diffusion [37–39], the rate of the transition from state s to
state s′ due to the kth one-particle move is assumed to take
an Arrhenius form

γk (s, s′) = ν bss′;k e−nss′ ;kJ/T , (12)

where ν is an attempt frequency, nss′;k is the number of in-
plane nearest neighbors of the moving particle in state s before
hopping, and bss′;k is a model-dependent attachment probabil-
ity. The total transition rate from s to s′ therefore reads

γ (s, s′) =
kss′∑
k=1

γk (s, s′). (13)

In addition, for consistency, the rates vanish for moves that are
not authorized, i.e., γ (s, s′) = 0 when kss′ = 0.

The rates Eq. (12) define a family of models which cor-
respond to different ways of setting the possible moves and
the associated parameters bss′;k . Each physical model for the
re-attachment of the particles after detachment provides a
specific expression of bss′;k . Here we consider four basic
constraints on the reattachment rules. First, particles always
reattach after detachment, so the number of particles in the
cluster is not changed. Second, particles reattach instanta-
neously. This means that we assume that the time needed
for the reattachment process is negligible as compared to the
time of detachment. Third, we assume that all detachment-
reattachment moves have a reverse move. This condition is
necessary to enforce detailed balance at equilibrium Eq. (3).
Finally, the detachment-reattachment moves do not break the
cluster into disconnected clusters.

Within this family of detachment reattachment processes,
we wish to focus on two types of dynamics described

ED

DDA

FIG. 1. Schematics of particle moves within the two broken-
bond models discussed here. In red, cluster with edge diffusion (ED).
In blue, vacancy with particle detachment-diffusion-reattachment
(DDA). In each case, the arrows in the leftmost schematic indicate
the possible moves of the atom in lighter color. Intermediate states
after the detachment of one particle are called excited states. The
states after one move are shown in the rightmost panels. Note that
the final state in the lower right panel is identical to the initial state.

schematically in Fig. 1. The first model is ED dynamics of par-
ticle clusters. Various models have been developed to describe
ED in atomic monolayer clusters (see, e.g., Refs. [23,40] and
references therein). Here, we choose to use a simple model
following the rules of Refs. [32,41]. In this case, the particles
reattach to nearest-neighbor or next-nearest neighbor sites
along the edge of the cluster, i.e., to sites that have at least
one nearest-neighbor bond with another particle of the cluster.
Moreover, we choose

bss′;k = 1. (14)

With this choice, we aim at describing the different possible
moves of a particle as independent processes.

The second model accounts for DDA of particles inside
vacancies. In this case, the moves are composed of a chain
of three processes: first detachment, then diffusion, and then
reattachment. Reattachment can occur on any site at the
edge inside the cluster with the same probability. This model
corresponds to a regime where reattachment is slower than
diffusion, so particles have ample time to diffuse inside the
cluster before reattaching. In such a situation, the probability
of presence of the atom inside the cluster has time to relax to
a spatially homogeneous probability and, as a consequence,
we can choose an attachment probability that is independent
of the position of the attachment site [42]. We therefore have

bss′;k = 1

�
†
ss′;k

, (15)

where �
†
ss′;k is the number of sites for the particle to reattach

along the edge of the cluster. As an example, for the move of
the dimer vacancy on Fig. 1, there are two possible attachment
sites (described by the red arrows) so that �

†
ss′;k = 2.

For consistency, we also forbid configurations where an
isolated, nonmobile particle is inside the vacancies. This
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FIG. 2. Different particle moves can lead to the same transition.
Here, we consider a dimer cluster N = 2 with edge diffusion. The
transition from one state to the other can be achieved in four different
ways. Hence kss′ = 4.

condition adds novel constraints on the moves that are im-
posed in addition to the nonbreaking constraints. It also leads
to a reduced number of states for vacancies as compared to
clusters.

The total number of moves kss′ from state s to state s′
depends on the model and can be larger than 1. For example,
there are four possible moves for the transition of a dimer
cluster with ED shown in Fig. 2. The dependence of kss′ on
N is summarized in Fig. 3. In the cluster ED model, kss′ = 4
for the two transitions of the dimers with N = 2 particles,
and kss′ = 1 for N � 3, as already noted in Ref. [32]. In the
vacancy DDA model, kss′ is decreasing as N increases, but
there are moves with kss′ = 2 for any N . However, as seen
in Fig. 3, these moves are rare in the sense that the average
〈〈kss′ 〉s′∈Bs〉s∈S over all possible moves tends quickly to 1 as
the number N of particles in the cluster increases. For any set
of states Z , we have defined the average of a state-dependent
function fs as

〈 fs〉s∈Z = 1

|Z|
∑
s∈Z

fs, (16)

with |Z| the cardinal of Z . Moreover, we recall that S is the
set of all possible states for a fixed size N , and Bs is the set of
all states different from s that can be reached in one transition
from s.

FIG. 3. Number of different moves kss′ to go from a state s to
another state s′ as a function of cluster size N . The symbols show all
possible values of kss′ within the two models, cluster ED and vacancy
DDA. The solid lines correspond to the average value 〈〈kss′ 〉s′∈Bs 〉s∈S
of kss′ over all possible moves.

B. Hamiltonian and excited states

The broken bond model is directly related to the Ising or
lattice-gas lattice models. As discussed, e.g., in Refs. [14,43],
the energy of a cluster in state s is simply related to the length
Ls of its edge:

Hs = J

2

Ls

a
. (17)

A simple intuitive interpretation of this result is that the
breaking of a bond costs an energy J and increases the length
of the edge by 2a. The energy cost for the formation of an
elementary segment of the edge of length a is therefore J/2,
and we recover Eq. (17).

As seen from Fig. 1, an atomic move which allows for
the transition from state s to state s′ can be decomposed into
two stages. In the first stage, we create an excited state by
breaking all the bonds that the atom has in its initial condition.
This excited state can be interpreted as the situation where the
particle is brought to the saddle point of the diffusion energy
landscape. In the second stage, we reattach the atom.

Let us denote excited states with a † symbol. We define the
Hamiltonian of the excited state H†

ss′;k as the Hamiltonian of
the state obtained by removing the detaching particle during
the kth particle move that leads to the transition from s to s′.
We then have

H†
ss′;k = J

2

L†
ss′;k

a
+ 2J, (18)

where L†
ss′;k is the length of the edge of the cluster obtained

by removing the moving atom. In the examples shown in
Fig. 1, L†

ss′;k = 10 for cluster ED and L†
ss′;k = 8 for vacancy

DDA. The additional constant 2J in Eq. (18) accounts for
the energy of the detached particle. Indeed, since a detached
particle has four broken bonds and each broken bond costs an
energy J/2, its total broken-bond energy is 4J/2 = 2J . Note
that the excited state for the kth transition s → s′ is the same
as the excited state for the kth transition s′ → s. We therefore
have

L†
ss′;k = L†

s′s;k, H†
ss′;k = H†

s′s;k . (19)

The change of cluster edge length when removing a single
atom is related to the number bonds nss′;k that are broken
via [14]

L†
ss′;k − Ls = 2a(nss′;k − 2). (20)

As a consequence, the activation energy of Eq. (12) reads

nss′;kJ = 2J + J

2a
(L†

ss′;k − Ls) = H†
ss′;k − Hs. (21)

This latter equation indicates that the product nss′;kJ can be
decomposed into two parts: the excited state energy H†

ss′;k
which is identical for the move and its reverse, and the energy
of the initial state Hs. In other words, the energy barrier for
detachment is the difference between the energy of the excited
state, which play the role of an effective saddle point for
the energy, and the energy of the initial state. Combining

024120-4



EQUILIBRIUM RETURN TIMES OF SMALL FLUCTUATING … PHYSICAL REVIEW E 106, 024120 (2022)

Eqs. (12), (13), (21), the rates may now be written as

γ (s, s′) = ν eHs/T
kss′∑
k=1

bss′;k e−H†
ss′ ;k/T

. (22)

Moreover, the cluster ED and vacancy DDA models both
obey the symmetry relation

bss′;k = bs′s;k . (23)

This relation is trivially valid for cluster ED as seen from
Eq. (14). In the case of vacancy DDA, the number of sites �

†
ss′;k

to which detached particles can be reattached is a property of
the kth excited state between states s and s′. As a consequence,
we have �

†
ss′;k = �

†
s′s;k in Eq. (15) and the symmetry property

Eq. (23) follows.
Since Eq. (22) is the product of eHs/T with a factor that

is invariant under the exchange of indices s ↔ s′, the rates
γ (s, s′) are seen to obey detailed balance Eq. (4). Hence, the
broken-bond models exhibit a well-defined equilibrium state
characterized by the energies Eq. (17).

In the following, we will use units where J = 1, a = 1 and
ν = 1.

IV. EQUILIBRIUM DISTRIBUTION

A. Energy levels

The energy of a cluster can only explore a finite number
of energy levels indexed by i = 0, 1, ..., imax, with energy H(i)

corresponding to a given edge length L(i) = 2H(i). The energy
levels obey

L(i) = L(0) + 2i, H(i) = L(i)

2
= H(0) + i, (24)

where the ground-state energy H(0) = L(0)/2 depends on the
size N of the cluster.

The number of states that correspond to the energy level i
is denoted as G(i). We also define the total number of states:

SN =
imax∑
i=0

G(i). (25)

For N = 2 and N = 3, there is only one energy level and
imax = 0. We have G(0) = S2 = 2 for N = 2, and G(0) = S3 = 6
for N = 3. The values of G(i) and SN obtained by explicit
enumeration for 4 � N � 12 are reported in Fig. 4. These
numbers are different for clusters and vacancies because of the
prohibition of isolated particles inside vacancies which appear
for N � 7. However, the difference is small as compared to
G(i) itself, as seen from Figs. 4(b) and 4(c). When N 
 1,
we expect SN to be well approximated by the asymptotic
form [36]:

SN ≈ cλN/N. (26)

The parameters of this asymptotic form are well-known for
free polyominoes, which correspond exactly to our clusters:
λ ≈ 4.0626 and c ≈ 0.3169 [44]. Vacancies have a slightly
lower SN , the asymptotic form of which is not known. How-
ever, we expect that clusters and vacancies should have the
same value of λ [45].

FIG. 4. Degeneracy G(i) of different energy levels i. Each symbol
corresponds to a different value of energy, reported in the scale in (a).
(b) Degeneracies G(i). Red empty symbols and blue full symbols,
respectively, correspond to clusters and vacancies. The total number
of states SN is also reported as a dashed line. (c) Difference between
the degeneracies G(i) of clusters and vacancies.

In Fig. 5, the equilibrium probability distribution Peq(s)
given by Eq. (2) is plotted as a function of the inverse temper-
ature for various energy levels i. The case reported in Fig. 5
corresponds to a vacancy octamer N = 8, with four energy
levels i = 0, 1, 2, 3. The case of a cluster with N = 8 is not
plotted but is very similar.

As expected, the equilibrium distribution decreases as i
increases. However, the temperature dependence of Peq is less
trivial. In Fig. 5, Peq is seen to increase monotonously as
the temperature is decreased for the ground state i = 0, and
decreases monotonously for large i. Interestingly, Peq exhibit
a maximum for intermediate values of i. This nonmonotonic
behavior can be understood intuitively. Indeed, at very low
temperatures the cluster stays in the ground states i = 0. As
the temperature increases, higher energy levels are populated
and the corresponding values of Peq increase. In contrast, in
the limit of very high temperatures, all states are populated
equally and Peq → P∞ as 1/T → 0, with

P∞ = 1

SN
. (27)

When the temperature is decreased from this high temperature
limit, the states with a lower energy become more probable
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)

FIG. 5. Equilibrium probability distribution for vacancies with
N = 8. The solid lines correspond to Peq. There are four energy
levels with i = 0, 1, 2, 3 from top to bottom, corresponding to en-
ergies H(i) = H(0) + i where H(0) = 6 is the ground-state energy.
The dashed and dotted lines, respectively, report the high- and low-
temperature expansions. Symbols indicate the maximum of Peq.

while those with a higher energy become less probable. Thus,
since their probability increases when starting both from the
very low temperature limit and from the very high temperature
limit, low-energy states that are not the ground state must
exhibit a maximum at some finite temperature. We call this
temperature the optimal equilibrium temperature T eq

m because
this corresponds to the temperature where the probability of
observing a given state is highest. The position of the maxi-
mum is marked by a symbol in Fig. 5.

B. High- and low-temperature expansions

A high temperature expansion of Eq. (2) to first order in
1/T leads to

Peq(s) −−−→
T →∞

P∞

[
1 + Meq(s)

T

]
,

Meq(s) = 〈Hs′ 〉s′∈S − Hs, (28)

where the infinite temperature equilibrium distribution
P∞ = 1/SN is independent of the state s.

In the opposite limit at low temperatures, we have

Peq(s) −−→
T →0

1

G(0)
e(H(0)−Hs )/T , (29)

where H(0) is the ground-state energy of the cluster of size N
and G(0) is the number of different states that have the ground
state energy H(0).

C. Equilibrium optimal temperature

As seen from Fig. 5 and discussed above, the ground state
exhibits a monotonously increasing Peq when decreasing the
temperature. Thus, combining Eqs. (28) and (29), a simple cri-
terion for the presence of a maximum at finite temperature is
that the energy of the state is lower than the average energy
over all states:

H(0) < Hs < 〈H ′
s〉s∈S . (30)

This inequality indicates that clusters with a low energy
exhibit a finite temperature T eq

m (s) that maximizes the

equilibrium probability Peq(s). Note that this temperature de-
pends only on the energies of the system, not on the kinetics.

In general, the condition of a maximum of Peq(s) reads
∂T Peq(s) = 0, leading to an implicit equation for the optimal
equilibrium temperature:

Hs = Heq|T =T eq
m (s), (31)

where we have defined the thermodynamic average of the
energy:

Heq =
∑
s′∈S

Hs′Peq(s′). (32)

A first estimation of the temperature T eq
m (s) at which

Peq(s) is maximum can be obtained from a comparison of
the high- and low-temperature expansions Eqs. (28) and (29).
Assuming that T eq

m (s) corresponds to the temperature T eq
a (s),

where both expressions are equal, and reformulating the
high-temperature expansion as Peq(s) ≈ S−1

N exp[Meq(s)/T ],
we find

T eq
a = 〈Hs′ 〉s′∈S − H(0)

ln
[ SN

G(0)

] . (33)

Such a temperature corresponds to the crossing of the high-
and low-temperature approximations shown in Fig. 5. Note
that this approximate expression does not depend on state s,
and depends only on the cluster size N . As seen from Fig. 6,
the inverse temperature 1/T eq

a provides a fair account of the
average of 1/T eq

m (s) over the energy levels for a given cluster
size N . However, T eq

a is not an accurate estimate as it does not
account for the strong dispersion of the optimal temperatures
depending on the energy-level i.

A high-temperature expansion of Eq. (31) to first order
in the inverse temperature 1/T leads to another approximate
expression of the optimal equilibrium temperature of a state s
belonging to the energy level i:

T eq
HT =

〈
H2

s′
〉
s′∈S − 〈Hs′ 〉2

s′∈S
〈Hs′ 〉s′∈S − H(0) − i

. (34)

As expected, this estimate is seen to account well for the op-
timal temperature when 1/T eq

m is small in Fig. 6(a). However,
this expression underestimates lower optimal temperatures,
which corresponds to larger values of 1/T eq

m .
In the opposite limit of low temperatures, we first notice

that the ground state can be considered as a state with an
optimal temperature at zero temperature. This statement is
indeed in agreement with Eq. (31) and is intuitively associated
to the presence of a horizontal tangent of the curve Peq(s) in
Fig. 5. For states in higher energy levels i � 1, an expansion of
Eq. (31) to first order in the low-temperature small parameter
exp[−1/T ] suggests

T eq
LT = 1

ln G(1)

iG(0)

. (35)

However, note that the smallness exp[−1/T ] requires that
iG(0)/G(1) � 1. In general, low-temperature expansions are
delicate because they require a precise knowledge of the vari-
ation of G(i) with i an N , which is still an open problem [36].
The comparison reported in Fig. 6(b) shows a fair a agreement
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FIG. 6. Equilibrium optimal temperature T eq
m as a function of N

for different energy levels i. We show the case of vacancies (clusters
are very similar). The optimal temperature T eq

m is in blue (dark)
symbols. The symbols correspond to the energies in the scale at the
top of Fig. 4. The dashed lines represent 1/T eq

a from Eq. (33), and the
dotted line is the average of the inverse optimal temperatures over
energy levels. In (a), the optimal temperatures are compared to the
high-temperature approximation Eq. (34) in orange (light) symbols.
In (b), the optimal temperatures are compared to the low-temperature
approximation Eq. (35) in cyan (light) symbols.

between Eq. (35) and the lowest optimal temperatures corre-
sponding to i = 1. However, T eq

LT is not accurate for higher
energy levels.

V. RETURN TIMES

A. Expression of τr(s)

Combining Eqs. (2), (9), (10), and (22), we obtain an
expression of the expected return time,

τ r (s) =
∑

s′∈S\s e−Hs′ /T

∑
s′∈Bs

∑kss′
k=1 bss′;k e−H†

ss′ ;k/T
, (36)

where S\s is the set of all states but the state s. We recall that
our definition of the residence time discards the moves that
take the system from a state s to itself. An example of a move
that does not change state s is shown at the bottom of Fig. 1.

In the limit where T → ∞, all exponential terms in
Eq. (36) are equal to 1. Then Eq. (36) leads to a generalization

2 4 6 8 10 12
N

0

5

10

15

〈 s〉
−

〈b s
〉

〈ls〉s∈S vancacy DDA

〈bs〉s∈S vancacy DDA

〈ds〉s∈S cluster ED

〈ls〉 − 〈bs〉

FIG. 7. Average b degree as a function of N . For cluster ED, we
have 〈ds〉s∈S = 〈bs〉s∈S . For vacancy DDA, we show both 〈bs〉s∈S and
the average number of particles 〈�s〉s∈S that can be detached in state
s as a function of N .

of the well-known formula [46] for return times τ r
∞(s) on

graphs with equal rates,

τ r
∞(s) = SN − 1

bs
, (37)

where we have defined the b degree:

bs =
∑
s′∈Bs

kss′∑
k=1

bss′;k . (38)

The b degree bs differs from the standard graph theoretic
definition of degree ds of state s. The degree ds is defined on
a graph where the vertices are the states and the edges are
the moves [32]. Then the degree ds is the number of edges
incident to a given vertex s, which corresponds to the total
number of single-particle moves from state s [32] [47]:

ds = kss +
∑

s′∈ Bs

kss′ . (39)

Note that kss′ � 1 for s′ ∈ Bs by definition. However, we can
have kss = 0 when s′ = s. There are two differences between
Eqs. (39) and (38). The first difference is that bs is a weighted
sum with weight bss′;k for each move. The second difference is
that the sum over Bs discards moves that take the system back
to the starting state s in Eq. (39).

In the case of cluster ED, we have bss′;k = 1 and there is
no move which takes the system directly back to the initial
state s (i.e., kss = 0). Hence, bs is equal to the degree ds. Then
Eq. (37) reduces to the well-known formula [32,46] τ r

∞(s) =
(SN − 1)/ds. The average 〈ds〉s∈S for clusters is shown in
Fig. 7 as a function of N .

In the case of vacancy DDA, the values of bs and ds are
different. Some intuition on the physical meaning of bs can be
gained by combining Eqs. (15) and (39), leading to [48]

bs = �s −
�s∑

q=1

1

�
†
s;q

, (40)

where �s is the number of particles that can be detached in
state s, and q = 1, .., �s is an index for these particles. We have
also defined the number �†

s;q of possible attachment sites in the
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FIG. 8. Expected return time τ r (s) for two clusters with N = 10
as a function of the inverse temperature 1/T . (a) Vacancy DDA.
(b) Cluster ED. The dashed and dotted lines correspond, respectively,
to high- and low-temperature expansions. The green empty symbols
correspond to the loop time τ �(s). In the left panels, Hs = 7 and
i = 0. I the right panels, Hs = 8 and i = 1.

excited state obtained by removing the qth particle. We expect
�†

s and �†
s;q to be of the same order of magnitude because they

both increase with edge length. However, many attachment
sites are forbidden in very ramified vacancies because they
would lead to breaking, so, on average, �†

s;q is smaller than �†
s .

We therefore expect that the second term on the right-hand
side of Eq. (40) to be larger than 1. As seen in Fig. 7, the
difference �s − bs grows slowly as N increases, and reaches
maximum values around 4 in the range N � 12 than we have
investigated.

Using Eq. (37), the return time to target is rewritten as

τ r (s) = τ r
∞(s)

〈e−Hs′ /T 〉s′∈S\s

〈〈e−H†
ss′ ;k/T 〉〉k,s′∈Bs

, (41)

where we have defined a new averaging notation for any
quantity fss′;k ,

〈〈 fss′;k〉〉k,s′∈Bs
= 1

bs

∑
s′∈Bs

kss′∑
k=1

bss′;k fss′;k, (42)

that corresponds to a weighted average over all possible
moves from state s with weights bss′;k .

In Fig. 8, the return time evaluated from the equivalent
expressions Eqs. (36) and (41) is shown for different cluster

shapes and for the two models. The expressions Eqs. (36)
and (41) are in quantitative agreement with numerical esti-
mates based on the iterative evaluation method reported in
Ref. [32] for ED. Here, we have implemented this iterative
method both for cluster ED and vacancy DDA. Perfect agree-
ment is found between iterative evaluation and the expressions
based on Kac’s formula Eqs. (36) and (41). Technical details
on the implementation of iterative evaluation and a compari-
son between the two methods are reported in Appendix A.

In Ref. [32], we have noticed that τ r (s) can exhibit a
minimum as a function of temperature T for particle cluster
ED. In Fig. 8(a), we see that this minimum can also be present
for vacancy DDA.

B. High-temperature expansion

A high-temperature expansion of Eq. (41) to linear order in
1/T leads to

τ r (s) −−−→
T →∞

τ r
∞(s)

(
1 + Mr (s)

T

)
,

Mr (s) = 〈〈H†
ss′;k〉〉k,s′∈Bs − 〈Hs′ 〉s′∈S\s

= 〈〈H†
ss′;k〉〉k,s′∈Bs − 〈Hs′ 〉s′∈S

+ 1

SN − 1
(Hs − 〈Hs′ 〉s′∈S ). (43)

In the case of cluster ED, this expression is in agreement
with the result of Ref. [32]. However, this result was not
written as a function of energies in Ref. [32]. The derivation of
Eqs. (43) using the method presented in Ref. [32] is discussed
in detailed in Appendix B.

One of the main statements of Ref. [32] was that the
expected return time for large and compact states exhibits a
minimum at a finite temperature. Such a minimum is associ-
ated to the condition of a negative slope at high temperature
(1/T → 0) in the plots of Fig. 8, i.e., Mr (s) < 0. As N in-
creases, SN grows exponentially and the terms in the last line
of the expression of Mr (s) in Eq. (43) should be negligible.
In addition, the contribution of the state s to the average
〈Hs′ 〉s′∈S\s should be negligible, so that 〈Hs′ 〉s′∈S\s ≈ 〈Hs′ 〉s′∈S .
Hence, the criterion Mr (s) < 0 for the presence of a minimum
can be written approximately as

〈〈H†
ss′;k〉〉k,s′∈Bs < 〈Hs′ 〉s′∈S . (44)

This condition is one of our main results.
In Figs. 9(a) and 9(b), we have reported the average energy

〈Hs′ 〉s′∈S as a function of N . Since higher energy levels have
higher degeneracy G(i) (as seen from Fig. 4), the value of
〈Hs′ 〉s′∈S is close to the maximum possible value of the energy
Hmax = H(imax ) = N + 1.

In addition, the values of 〈〈H†
ss′;k〉〉k,s′∈Bs for all possible

transitions to states s′ are shown in Fig. 9(a) when starting
from a ground state s with i = 0, and in Fig. 9(b) when starting
from the first excited state s with i = 1. As a first remark, due
to the average curvature of the interface, atoms that detach
from the edge of vacancies have, on average, more bonds to
break. Thus, the excited state energies of vacancies are higher.
This is seen for i = 0 and i = 1 in Fig. 9.
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FIG. 9. Comparison of different energies as a function of N
(a) for ground states with i = 0 and (b) for states in the first en-
ergy level with i = 1. Cyan pluses: Energy H(i) of the states. Blue
and red circles: average energy 〈Hs′ 〉s′∈S for vacancies and clusters,
respectively (these data points are almost identical). Orange pluses:
Maximum energy Hmax = N + 1. Blue and red crosses: All possible
values of 〈〈H†

ss′ ;k〉〉k,s′∈Bs .

A close inspection of Figs. 9(a) and 9(b) shows that for
a given i, a given N , and a given model (cluster ED or va-
cancy DDA), the values of 〈〈H†

ss′;k〉〉k,s′∈Bs are either all above
〈Hs′ 〉s′∈S , or all below 〈Hs′ 〉s′∈S . Moreover, the value of N
above which 〈〈H†

ss′;k〉〉k,s′∈Bs is below 〈Hs′ 〉s′∈S depends on i
and on the model. For cluster ED, a minimum is predicted
when N � 8 with i = 0, and when N � 9 with i = 1. For
vacancy DDA, a minimum is predicted when N � 9 with
i = 0, and when N � 11 with i = 1.

These conditions for i = 0 and i = 1 are in agreement with
the observation of a minimum in the return time of the ground
states. For example, let us consider Fig. 8, where N = 10,
i = 0 in the left panels, and i = 1 in the right panels. A
minimum is observed for clusters with i = 0 and i = 1 and
for vacancies only when i = 0, in agreement with the above
statements.

C. Low-temperature expansion

The expression Eq. (36) also allows one to obtain an
asymptotic low-temperature expression for the expected
return time. For states s that are not a ground state,

i.e., Hs > H(0), we have

τ r (s) −−→
T →0

G(0)

G†
s(0)

e(H†
s(0)−H(0) )/T , (45)

where we recall that G(0) is the number of different configu-
rations that correspond to the ground state with energy H(0).
Moreover, we have defined H†

s(0) as the lowest energy over all
excited states of a state s, and

G†
s(0) =

∑
s′∈Bs

∑
k | H†

ss′ ;k=H†
s(0)

bss′;k, (46)

where the sum on k is performed only on the moves that take
the cluster to the excited state with the lowest energy, i.e.,
H†

ss′;k = H†
s(0).

When the state s is a ground state, i.e., Hs = H(0) the
contribution that dominates the denominator of Eq. (36) at low
temperature depends on the fact that the ground state is unique
or not. If the ground state is not unique, i.e., if G(0) � 2, then

τ r (s) −−→
T →0

G(0) − 1

G†
s(0)

e(H†
s(0)−H(0) )/T . (47)

However, if the ground state is unique, i.e., G(0) = 1, the
contribution that dominates the denominator of Eq. (36) at low
temperatures is the energy level i = 1 just above the ground
state. Using Eq. (24), we then find

τ r (s) −−→
T →0

G(1)

G†
s(0)

e(H†
s(0)−H(0)−1)/T . (48)

Since this latter case of a unique ground state only occurs for
square clusters, Eq. (48), only applies in the specific case of
square clusters.

The low-temperature expansions Eqs. (45) and (47) are
shown in Fig. 8 for a state in the energy level i = 1 (right
panel) and for a nonunique ground state (left panels).

D. Return time optimal temperature

The optimal return time temperature is the temperature at
which τ r (s) is minimum. This temperature is a kinetic quan-
tity that depends on the dynamical properties of the system.
When τ r (s) exhibit an optimal temperature T r

m(s) where it
is minimum, then ∂T τ r (s) = 0. Applying this condition on
Eq. (41) leads to〈

Hs′e−Hs′
/

T r
m (s)

〉
s′∈S\s〈

e−Hs′
/

T r
m (s)

〉
s′∈S\s

= Heq − HsPeq(s)

1 − Peq(s)

∣∣∣∣
T =T �

m (s)

=

〈〈
H†

ss′;k e−H†
ss′ ;k

/
T r

m (s)
〉〉

k,s′∈Bs〈〈
e−H†

ss′ ;k

/
T r

m (s)
〉〉

k,s′∈Bs

, (49)

where the expression in the right hand side of the first line is
a direct rewriting of the left-hand side. In Fig. 10, the optimal
return time inverse temperature 1/T r

m(s) is plotted for various
states s with different size N . These temperatures are obtained
by means of a direct numerical estimate of the temperature at
which τ r (s) is minimum.
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FIG. 10. Inverse optimal return time temperature 1/T r
m (s) for the

states listed in the top panel. Blue (dark) symbols: Vacancy DDA.
Red (empty) symbols: cluster ED. Violet (lighter) symbols: Inverse
of the equilibrium optimal temperature 1/T eq

m when it is finite (T eq
m

exhibits very similar values for vacancy DDA and cluster ED). For
ground states (i = 0), corresponding to the first, second, fifth, and
sixth clusters on the top panel, 1/T eq

m → ∞ is not shown.

We observe that the values of T r
m(s) in Fig. 10 are actually

higher than the corresponding equilibrium optimal temper-
atures T eq

m (s). This can be explained from an inspection of
Eq. (9) which states that τ r (s) is the product of t (s) with
1/Peq(s) − 1. Indeed, T eq

m (s) corresponds to a minimum of the
factor 1/Peq(s) − 1. Since Peq(s) is very similar for particle
clusters and vacancy clusters as discussed in Sec. IV, this
factor can be considered to be identical in these two cases
for our qualitative discussion. In addition, all rates γ (s, s′)
decrease with temperature due to their Arrhenius form, so
t (s) which is the inverse of a sum of rates from Eq. (10),
increases with decreasing temperature. In general, the product
of a monotonic function with a function with a minimum leads
to a function with a shifted minimum. Here, due to the mono-
tonic decrease of the residence time t (s) with temperature, the
minimum T r

m(s) of the product t (s)(1/Peq(s) − 1) is shifted to
a higher temperature as compared to the minimum T eq

m (s) of
(1/Peq(s) − 1). As a consequence, T r

m(s) is always higher than
T eq

m (s):

T r
m(s) > T eq

m (s). (50)

This inequality is confirmed by Fig. 10, where the inverse
equilibrium temperature 1/T eq

m (s) is either infinite for ground
states (as discussed in Sec. IV C, a ground state can be consid-
ered as a state with T eq

m (s) = 0) or finite and plotted in purple
for non-ground states. We see in Fig. 10 that the associated
inverses of the return time optimal temperatures 1/T r

m(s) are
always smaller than 1/T eq

m (s).
Because of this shift toward higher temperatures, low-

temperature approximations for T r
m(s) are not accurate.

Nevertheless, a high-temperature expansion can be performed

from Eq. (49). Its detailed expression and a comparison with
the true optimal temperature is reported in Appendix C.

Finally, another general feature of T r
m(s) can be observed.

Indeed, as already noted in Sec. V B, the excited state energies
of vacancies are higher due to the curvature of the edge.
As a consequence of their higher excited state energies, the
decrease of t (s) with temperature [see Eqs. (10) and (22)] is
actually faster for vacancies. Hence, the shift of the optimal
temperature toward higher temperatures is stronger for va-
cancies, leading to a higher return time optimal temperature
T r

m(s). This effect is systematically observed in Fig. 10.

E. Comparison between τr (s) and τ�(s)

The expected loop time exhibits an expression similar to
that of the return time,

τ �(s) = τ �
∞(s)

〈e−Hs′ /T 〉s′∈S

〈〈e−H†
ss′ ;k/T 〉〉k,s′∈Bs

, (51)

where the infinite temperature expected loop time is

τ �
∞(s) = SN

bs
. (52)

Moreover, the high-temperature expansion

τ �(s) −−−→
T →∞

τ �
∞(s)

(
1 + M�(s)

T

)
,

M�(s) = 〈〈H†
ss′;k〉〉k,s′∈Bs − 〈Hs′ 〉s′∈S (53)

is very similar to that of the return time. The two expansions
Eqs. (43) and (53) are actually identical to leading order in
1/SN . Thus, the condition for the presence of an optimal tem-
perature Eq. (44) is also valid for the loop time (it is actually
exact for the loop time, while it was only an approximation
for the return time).

At low temperatures, the asymptotic behaviors of τ �(s) and
τ r (s) are also identical, except when s is the ground state.
For all states including the ground states, we have at low
temperatures:

τ �(s) −−→
T →0

G(0)

G†
s(0)

e(H†
s(0)−H(0) )/T . (54)

Furthermore, there is also an optimal temperature at which
the loop time can be minimum. The equation for T �

m (s) is
similar to Eq. (49) and reads

Heq

∣∣
T =T �

m (s) =

〈〈
H†

ss′;k e−H†
ss′ ;k

/
T �

m (s)
〉〉

k,s′∈Bs〈〈
e−H†

ss′ ;k

/
T �

m (s)
〉〉

k,s′∈Bs

. (55)

Globally, τ �(s) and τ r (s) are expected to be similar when N is
large enough, and when s is not a unique a ground state.

In Fig. 11, we focus on cases where a significant differ-
ence can be found between τ �(s) and τ r (s). The cases of
dimers N = 2 and trimers N = 3 are reported in Fig. 11(a). In
these special cases with a single energy level (i.e., imax = 0)
we have a simple relation independent of the state and of
the temperature τ �(s)/τ r (s) = 1/(1 − 1/SN ), which leads to
τ �(s)/τ r (s) = 2 for N = 2 and τ �(s)/τ r (s) = 6/5 for N = 3.
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FIG. 11. Differences between expected return time τ �(s) and
loop time τ r (s). (a) Small vacancies with N = 2 and N = 3, vacancy
DDA. (b) Square cluster with N = 9, cluster ED.

Another case where τ �(s) and τ r (s) can be different is that of
square islands at low temperature, as shown in Fig. 11(b).

VI. DISCUSSION AND CONCLUSION

To conclude, we have reported on the properties of the
expected return time τ r (s) to a given cluster configuration
s in equilibrium. We have focused on a broken-bond model
that allows one to describe ED for clusters and DDA inside
vacancies within a unified framework. The evaluation of τ r (s)
from the residence time and the equilibrium probability dis-
tribution is much faster numerically than the evaluation based
on the iterative evaluation method presented in Ref. [32]. In
addition, the analysis of this expression leads to simple and
intuitive expansions in the high and low temperature regimes,
and allows one to study the optimal temperature at which
τ r (s) is minimum. The origin of this optimal temperature
can be traced back to the equilibrium optimal temperature at
which the probability of observing a given low-energy state is
maximum. The return time optimal temperature is found to be
shifted to higher temperatures as compared to the equilibrium
optimal temperature. This shift is larger for vacancies than for
islands.

We hope that the investigation of the properties of cluster
return times will provide useful hints for a better understand-
ing of first passage times. Indeed, their properties are similar
to those of first passage times but are much simpler to analyze.

We hope that our work will motivate theoreticians and ex-
perimentalists to investigate cluster return times with various
types of mass transport kinetics.

APPENDIX A: RECURSION RELATION FOR FIST
PASSAGE TIMES AND ITERATIVE EVALUATION

The expected first passage time τ (s, s̄) from state s to state
s̄ obeys a recursion relation [32]

τ (s, s̄) = t (s) +
∑
s′∈Bs

p(s, s′)τ (s′, s̄), (A1)

where

p(s, s′) = t (s)γ (s, s′). (A2)

In Ref. [32], we have reported on the study of first passage
times from an arbitrary state s to another arbitrary state s̄,
called the target state.

The expected return time τ r (s̄) to state s̄ can be written as
a sum of the first passage times over the neighbors of s̄ [32]:

τ r (s̄) =
∑
s∈Bs̄

p(s̄, s)τ (s, s̄). (A3)

As discussed in Ref. [32], a numerical solution of τ (s, s̄)
can be obtained via a simple iterative evaluation of Eq. (A1).
Then, τ r (s̄) is obtained from Eq. (A3). In Fig. 12, this iterative
method is shown to be in quantitative agreement with Kac’s
formula Eq. (9) for the cluster ED and vacancy DDA models.
However, the iterative method is slower because it requires to
determine τ (s, s̄) for all states s.

APPENDIX B: HIGH TEMPERATURE EXPANSION
LINK TO THE RESULTS OF REF. [32]

1. High-temperature expansion

In Ref. [32], we have derived an expression that is conve-
nient for the study of the high-temperature regime:

τ r (s̄) = t (s̄)(SN − 1)

+ t (s̄)
∑

s

τ (s, s̄)
∑
s′∈Bs

(γ (s′, s) − γ (s, s′)). (B1)

FIG. 12. Comparison of the return time τ r (s) from Kac’s formula
Eq. (9) and the value obtained by iterative evaluation.
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Following the same lines as in Ref. [32], we perform an
expansion to linear order in 1/T to obtain the first correction
to Eq. (37). We start with the expansion of the rates

γ (s, s′) = bss′ − nss′

T
, (B2)

where for the sake of concision, we have defined

bss′ = bs′s =
kss′∑
k=1

bss′;k, (B3)

nss′ =
kss′∑
k=1

bss′;k nss′;k . (B4)

Inserting this expression in the expected return time
Eq. (B1), we obtain to linear order in 1/T

τ r (s̄) = τ r
∞(s̄)

(
1 + Mr (s̄)

T

)

Mr (s̄) = 1

bs̄

∑
s∈Bs̄

ns̄s + 1

SN − 1

∑
s

τ∞(s, s̄)
∑
s′∈Bs

(nss′ − ns′s),

(B5)

where τ∞(s, s̄) is the value of τ (s, s̄) when T → ∞.

2. Expression of Mr(s) as a function of energies

Using Eq. (21), Mr is rewritten as

Mr (s̄) = −Hs̄ + 1

bs̄

∑
s∈Bs̄

H†
s̄s

− 1

SN − 1

∑
s

∑
s′∈Bs

bss′ (τ∞(s, s̄)Hs − τ∞(s, s̄)Hs′ ),

(B6)

where we have used Eqs. (19), and we have defined

H†
ss′ =

kss′∑
k=1

bss′;kH†
ss′;k . (B7)

We now notice that the double sum in the last line of
Eq. (B6) corresponds to a sum over all possible physical
moves from s to s′. We can therefore exchange s and s′ in
the last term of the sum, leading to

Mr (s̄) = −Hs̄ + 1

bs̄

∑
s∈Bs̄

H†
s̄s

− 1

SN − 1

∑
s

Hs

∑
s′∈Bs

bss′ (τ∞(s, s̄) − τ∞(s′, s̄)).

(B8)

Now, we notice that the recursion relation Eq. (A1) can be
rewritten as

1 =
∑
s′∈Bs

γ (s, s′)(τ (s, s̄) − τ (s′, s̄)) (B9)

9 10 11 12
N

0

1

2

3

1/
T

r m

FIG. 13. Optimal return time inverse temperature 1/T r
m(s) for

various states with vacancy DDA. The prediction from the high-
temperature expansion Eq. (C1) is shown in orange (light) symbols.

for any s �= s̄. In the limit of infinite temperatures, this equa-
tion reads

1 =
∑
s′∈Bs

bss′ (τ∞(s, s̄) − τ∞(s′, s̄)). (B10)

The last term Eq. (B8) is seen to be equal to 1 from Eq. (B10)
for all s �= s̄, so

Mr (s̄) = −Hs̄ + 1

bs̄

∑
s∈Bs̄

H†
s̄s − 1

SN − 1

∑
s

Hs + 1

SN − 1
Hs̄

+ 1

SN − 1
Hs̄

∑
s′∈Bs̄

bs̄s′τ∞(s′, s̄). (B11)

From Eq. (B2), the rate at infinite temperature is
γ∞(s, s′) = bss′ , and the residence time is t∞(s) =
1/(

∑
∈Bs

bss′ ) = 1/bs. Thus, using Eqs. (37), (A2), and (A3),
we have ∑

s′∈Bs̄

bs̄s′τ∞(s′, s̄) = bs̄

∑
s′∈Bs̄

p∞(s̄, s′)τ∞(s′, s̄)

= bs̄τ
r
∞(s̄) = SN − 1. (B12)

Using this relation in Eq. (B11), we find

Mr (s̄) = 1

bs̄

∑
s∈Bs̄

H†
s̄s + 1

SN − 1
(Hs̄ −

∑
s

Hs). (B13)

Recombining the terms of this latter equation leads to
Eq. (43).

APPENDIX C: HIGH-TEMPERATURE EXPANSION
OF THE OPTIMAL TEMPERATURES

A first-order expansion of Eq. (49) in 1/T r
m(s) leads to

T r
m,HT (s) = 〈H2

s′ 〉s∈S\s − 〈Hs′ 〉2
s∈S\s − 〈〈H†2

ss′;k〉〉k,s′∈Bs + 〈〈H†
ss′;k〉〉2

k,s′∈Bs

〈Hs′ 〉s∈S\s − 〈〈H†
ss′;k〉〉k,s′∈Bs

. (C1)
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In Fig. 13, the resulting estimate of the optimal temperature
is seen to be in reasonable agreement with the observed min-
imum of τ r (s) for vacancy DDA, and to be become better as
the optimal temperature increases. This agreement is expected
because the optimal temperatures are rather high. For the same

reason, the other estimates based on a low-temperature expan-
sion and on the matching between low- and high-temperature
expansions are inaccurate in the range of size N that we have
explored.
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