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Bounds on skewness and kurtosis of steady-state currents
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Current fluctuations are a powerful tool to unravel the underlying physics of the observed transport process.
This work discusses some general properties of the third and the fourth current cumulant (skewness and kurtosis)
related to dynamics and thermodynamics of a transport setup. Specifically, several distinct bounds on these
quantities are either analytically derived or numerically conjectured, which are applicable to (1) noninteracting
fermionic systems, (2) noninteracting bosonic systems, (3) thermally driven classical Markovian systems, and
(4) unicyclic Markovian networks. Finally, it is demonstrated that violation of the obtained inequalities can
provide a broad spectrum of information about the physics of the analyzed system; e.g., it can enable one
to infer the presence of interactions or unitary dynamics, unravel the topology of the Markovian network, or
characterize the nature of thermodynamic forces driving the system. In particular, relevant information about
the microscopic dynamics can be gained even at equilibrium when the current variance—a standard measure of
current fluctuations—is determined mostly by the thermal noise.
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I. INTRODUCTION

Dynamics at the nanoscale level is inherently stochastic
which leads to fluctuations of the observed currents. A no-
table example is the electronic shot noise resulting from the
discrete nature of the electric charge [1]. Multiple studies have
demonstrated that current fluctuations are not only a nuisance
but may reveal important information about physics of the
underlying transport process. Due to this fact they have been
investigated, both experimentally and theoretically, in a vari-
ety of physical contexts, including electronic transport [2–16],
chemical reactions [17–21], and optical systems [22–24].

Though current fluctuations are strongly sensitive to details
of microscopic dynamics, some of their properties can be
characterized by certain physical laws with different ranges of
applicability. A notable example is the steady-state fluctuation
theorem [25,26]

P(σ )

P(−σ )
= eσ/kB , (1)

which is valid (in the long-time limit) for an arbitrary
open quantum system with time-independent parameters; here
P(σ ) is the probability of the entropy production σ . The
other important law is the thermodynamic uncertainty rela-
tion bounding the minimum value of current fluctuations,
which is applicable to classical Markovian systems with time-
independent parameters. This relation reads [27–34]

〈〈 j2〉〉
〈〈 j1〉〉2

� 2kB

σ̇
, (2)

where σ̇ is the entropy production rate while 〈〈 j1〉〉 and
〈〈 j2〉〉 are the first and the second cumulants of an arbitrary
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thermodynamic current (the average current and the current
variance, respectively); see Sec. II for a detailed definition of
current cumulants. The thermodynamic uncertainty relation,
in its range of validity, can be used to infer the minimum
value of energy dissipation. On the other hand, breaking of
Eq. (2) implies violation of the underlying assumption of
classical Markovianity due to either a classical underdamped
dynamics [35–38] or quantum effects [35,39–41]. Finally,
another important relation states that the Fano factor of the
particle current F = 〈〈 j2

p〉〉/|〈〈 j1
p〉〉| does not exceed 1 in

noninteracting fermionic systems in the high-voltage regime
[1]; therefore, noise enhancement to super-Poissonian values
(F > 1) implies the presence of interactions [4,5]. Addition-
ally, interactions can be also revealed by factorial cumulants
of the charge current [6].

While most studies so far focused on the properties of the
second current cumulant, namely, the current variance, this
paper deals with the third and the fourth cumulant. More
specifically, the quantities analyzed are the normalized skew-
ness and kurtosis

S = 〈〈 j3〉〉
〈〈 j1〉〉 , (3)

K = 〈〈 j4〉〉
〈〈 j2〉〉 , (4)

where 〈〈 jn〉〉 is nth current cumulant; depending on the
considered current, they can be either dimensional or dimen-
sionless quantities. The first quantity measures the asymmetry
of probability distribution and the second one the weight of
distribution tails. Skewness and kurtosis have been previously
theoretically applied to investigate phenomena such as quan-
tum interference [42–44], Kondo effect [45], non-Markovian
effects [46], cotunneling [47], Andreev tunneling [48,49],
spin blockade [50], or detector-induced back-action [51] in
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nanoelectronic systems. Most notably, in tunnel junctions the
third and the first cumulants of the charge current have been
found to be directly proportional to each other as 〈〈 j3

q〉〉 =
e2〈〈 j1

q〉〉, where e is the particle effective charge. In con-
trast to the current variance, this relation is not affected by
the thermal noise which enables one to determine the effec-
tive charge even in close-to-equilibrium conditions [52]. On
the experimental side, though measurement of higher-order
current fluctuations is still challenging, it has been already
employed to explore the role of intrinsic and environmen-
tal contributions to current fluctuations in tunnel junctions
[53,54] and their dynamics under AC driving [54–56], charge
multiplication in avalanche diodes [57], or crossover from
elastic to inelastic transport in short diffusive conductors [58].
Furthermore, characterization of a full probability distribution
of the transmitted charge has been realized in quantum dot
systems by means of electron counting methods [8–12].

Only a few studies so far investigated the universal prop-
erties of higher current cumulants. Most notably, using the
fluctuation theorem (1) universal relations between higher-
order current cumulants and nonlinear transport coefficients
have been derived [59]. These relation imply, for example, that
the third cumulant 〈〈 j3〉〉 vanishes in time-reversal symmetric
systems, while it may be finite for a broken time-reversal sym-
metry [60]. Furthermore, in time-reversal symmetric systems
skewness in the linear-response regime Slin is equal to the
equilibrium kurtosis Keq. Both quantities have been further
demonstrated to be non-negative in classical Markovian sys-
tems,

Slin = Keq � 0, (5)

which is a direct consequence of the thermodynamic uncer-
tainty relation (2) [41]; see Sec. IV A for further details.
Additionally, Barato and Seifert [61] obtained bounds on
skewness and kurtosis of waiting times between succes-
sive stochastic transitions dependent on the topology of the
Markovian network; similar inequalities related to system
thermodynamics have been also later conjectured [62].

This article, in Sec. III, presents bounds on skewness
and kurtosis applicable to (1) noninteracting fermionic sys-
tems, (2) noninteracting bosonic systems, (3) thermally driven
classical Markovian systems, and (4) unicyclic Markovian
networks. They are obtained using either analytical deriva-
tions or a strong numerical conjecture. Section IV presents the
exemplary systems in which these bounds can be violated by
going beyond their range of applicability. This demonstrates
how breaking of the obtained inequalities can be used to infer
useful information about the physical system underlying the
observed transport process, such as presence of interactions,
nature and number of thermodynamic forces driving the sys-
tem, topology of the Markovian network, or presence of a
unitary component of the dynamics. Finally, Sec. V brings
conclusions following from the results.

II. DEFINITIONS

Before presenting the results, let me first define the quan-
tities of interest. The paper will consider fluctuations of a
generic stochastic current j(t ), for example, charge, heat,
or particle current. It is useful to define the time-integrated

current:

Jt =
∫ t

0
j(τ )dτ. (6)

An important quantity characterizing the current fluctua-
tions is the cumulant generating function

G(λ, t ) = ln
∫ ∞

−∞
ρ(Jt )e

λJt dJt , (7)

where ρ(Jt ) is the probability density distribution of the inte-
grated current in the moment t . It has been demonstrated that
in the long-time limit the cumulant generating function grows
linearly in time as G(λ, t ) = tχ (λ), where

χ (λ) = lim
t→∞

G(λ, t )

t
(8)

is referred to as the scaled cumulant generating function [63].
It can be expressed as a power series

χ (λ) =
∞∑

n=1

〈〈 jn〉〉λn

n!
, (9)

where coefficients 〈〈 jn〉〉 are known as the scaled cumulants;
since the paper deals solely with the steady-state properties,
they will be referred to as cumulants for simplicity. The scaled
cumulants can be calculated using χ (λ) as

〈〈 jn〉〉 =
[

∂n

∂λn
χ (λ)

]
λ=0

. (10)

The physical meaning of the scaled cumulants can be
revealed through their relation to central moments of the inte-
grated current [64]

〈〈 j1〉〉 = lim
t→∞ t−1〈Jt 〉, (11)

〈〈 j2〉〉 = lim
t→∞ t−1

〈
�J2

t

〉
, (12)

〈〈 j3〉〉 = lim
t→∞ t−1

〈
�J3

t

〉
, (13)

〈〈 j4〉〉 = lim
t→∞ t−1

(〈
�J4

t

〉 − 3
〈
�J2

t

〉2)
, (14)

where �Jt = Jt − 〈Jt 〉. In particular, the first scaled cumulant
is the average current while the second is the current variance.

III. BOUND ON SKEWNESS AND KURTOSIS

I will now present the obtained bounds on skewness and
kurtosis. Section III A will summarize the results while the
next sections will provide their justification and deeper dis-
cussion.

A. Summary

The obtained bounds read as follows:
(1) For noninteracting fermionic systems (dimensionless)

kurtosis of the particle current jp obeys the relation

Kp ∈ [− 1
2 , 1

]
. (15)

Here index p refers to the particle current. Additionally, for
junctions driven only by a single voltage,

S p ∈ [− 1
2 , 1

]
. (16)
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(2) For noninteracting bosonic systems kurtosis of the
particle current jp and the heat current jh are always non-
negative:

Kp,Kh � 0. (17)

Here index h refers to the heat current. Additionally, for sys-
tems driven only by a single thermodynamic force (difference
of either bath temperatures or chemical potentials) also skew-
ness is non-negative:

S p,Sh � 0. (18)

The same relations apply to heat transport in classical har-
monic systems, which are a classical limit of noninteracting
bosonic systems.

(3) In classical Markovian systems driven only by tem-
perature differences kurtosis of the heat current is always
non-negative:

Kh � 0. (19)

Additionally, for systems driven by a single temperature dif-
ference also skewness of the heat current is non-negative:

Sh � 0. (20)

(4) For unicyclic Markovian networks skewness and kur-
tosis of the winding number (i.e., number of rotations around
the cycle) obey the relations

S ∈
[
− 1

16
, 1

]
, (21)

K ∈
[
−

√
5 + 1

10
, 1

]
, (22)

K − S ∈ [−0.15, 0.465], (23)

K + S ∈
[
− 8

27
, 2

]
, (24)

K × S ∈ [−0.054, 1]. (25)

Here the values denoted with decimal numerals are approxi-
mate.

B. Noninteracting fermionic systems

This section provides a justification of Eqs. (15) and (16).
In particular, in Sec. III B 1 these inequalities will be analyt-
ically derived for time-reversal symmetric systems, whereas
in Sec. III B 2 a numerical verification of Eq. (15) for systems
with a broken time-reversal symmetry will be presented.

1. Time-reversal symmetric case

Here I consider transport in a generic multiterminal
fermionic junction consisting of a scattering system (for ex-
ample, quantum dot) coupled to L baths (or leads) α with
temperatures Tα [inverse temperatures βα = 1/(kBTα )] and
chemical potential μα . Such systems are commonly analyzed
in the context of mesoscopic electronic transport [2]. When
the interelectron interactions can be neglected, the whole
system (including scattering region and the baths) can be

described by a quadratic Hamiltonian of a general form

HNF =
∑

i j

(ti jd
†
i d j + H.c.), (26)

where d†
i (di) is the fermionic creation (annihilation) operator.

The section will focus on scaled cumulants of the particle
current jp, which is defined as the number of particles (e.g.,
electrons) transmitted per unit of time. All scaled cumulants
of the particle current 〈〈 jn

p〉〉 have a dimension of 1/s, which
makes S and K dimensionless. By definition, they are directly
related to the cumulants of the charge current jq as 〈〈 jn

q〉〉 =
en〈〈 jn

p〉〉, where e is the particle charge. In the noninteracting
case cumulants of the particle current flowing to the bath α,
denoted as 〈〈 jn

p,α〉〉, are sums of cumulants of currents flowing
from different baths γ �= α, denoted as 〈〈 jn

p,γ→α〉〉:
〈〈

jn
p,α

〉〉 =
∑
γ �=α

〈〈
jn
p,γ→α

〉〉
. (27)

This is no longer true in interacting systems due to the pres-
ence of electron correlations.

For time-reversal symmetric systems cumulants can be
calculated using the equation

〈〈
jn
p,γ→α

〉〉 =
[

∂n

∂λn
χ p

αγ (λ)

]
λ=0

, (28)

with the scaled cumulant generating function χ
p
αγ (λ) given by

the Levitov-Lesovik formula [65]

χ p
αγ (λ) =

∫ ∞

−∞

dω

2π
ln{1 + Tαγ (ω)[(eλ − 1) fγ (ω)gα (ω)

+ (e−λ − 1) fα (ω)gγ (ω)]}, (29)

where Tαγ (ω) is the transmission function taking values
within the range [0,1], fα (ω) = 1/{1 + exp[βα (ω − μα )]} is
the Fermi distribution function of the bath α, and gα (ω) =
1 − fα (ω). Here and from here on h̄ = 1 is taken. For
time-reversal symmetric systems the transmission function is
invariant under the index exchange: Tαγ (ω) = Tγα (ω). Using
Eqs. (28) and (29) one gets

〈〈
jn
p,γ→α

〉〉 =
∫ ∞

−∞

dω

2π
Cαγ ,n(ω), (30)

where Cαγ ,n(ω) are functions of Tαγ (ω), fα (ω), and fγ (ω).
Let me now express first four functions Cαγ ,n(ω) using a

simplified notation Tαγ (ω) = Tαγ and fα (ω) = fα:

Cαγ ,1(ω) = Tαγ ( fγ − fα ), (31)

Cαγ ,2(ω) = Tαγ ( fα + fγ − 2 fα fγ ) + T 2
αγ ( fα − fγ )2, (32)

Cαγ ,3(ω) = Tαγ ( fγ − fα ) − 3T 2
αγ ( fγ − fα )( fα + fγ − 2 fα fγ )

+ 2T 3
αγ ( fγ − fα )3, (33)

Cαγ ,4(ω) = Tαγ ( fα + fγ − 2 fα fγ )

− T 2
αγ [4( fγ − fα )2 + 3( fα + fγ − 2 fα fγ )2]

+ 12T 3
αγ ( fγ − fα )2( fα + fγ − 2 fα fγ )

− 6T 4
αγ ( fα − fγ )4. (34)
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Bound (15) will be now derived using a general inequality
bounding the ratio of sums of two sequences,

min
i

ai

bi
�

∑
i ai∑
i bi

� max
i

ai

bi
, (35)

which is valid when all coefficients bi are of the same sign.
Let me denote

Kp
α =

〈〈
j4
p,α

〉〉
〈〈

j2
p,α

〉〉 , (36)

Kp
αγ ,ω = Cαγ ,4(ω)

Cαγ ,2(ω)
. (37)

Using Eqs. (27), (30), and (35) and the inequality Cαγ ,2(ω) �
0, which can be easily verified, one gets

min
(
Kp

αγ ,ω

)
� Kp

α � max
(
Kp

αγ ,ω

)
. (38)

One further finds

min
(
Kp

αγ ,ω

) = − 1
2 for Tαγ = 1, fα = fγ = 1

2

max
(
Kp

αγ ,ω

) = 1 for Tαγ → 0,
(39)

which implies −1/2 � Kp
α � 1 and thus proves Eq. (15).

The analogous expression

min
(
S p

αγ ,ω

)
� S p

α � max
(
S p

αγ ,ω

)
(40)

with

S p
α =

〈〈
j3
p,α

〉〉
〈〈

j1
p,α

〉〉 , (41)

S p
αγ ,ω = Cαγ ,3(ω)

Cαγ ,1(ω)
, (42)

is, in general, no longer true since the sign of Cαγ ,1(ω) can
be different depending on ω and γ . It is valid, however,
in a two-terminal setup when both leads α and γ have the
same temperature Tα = Tγ = T . The sign of Cαγ ,1(ω) is then
independent of ω,

sgn[Cαγ ,1(ω)] = sgn(μγ − μα ), (43)

and thus Eq. (35) can be applied to obtain Eq. (16).
Let us now discuss how Eq. (40), and thus Eq. (16), can be

broken beyond its range of validity. First, in a three-terminal
setup with leads α, γ , and δ one can tune the chemical po-
tentials to get 〈〈 j1

p,γ→α〉〉 ≈ −〈〈 j1
p,δ→α〉〉, such that 〈〈 j1

p,α〉〉 is
equal or close to 0 while 〈〈 j3

p,α〉〉 remains finite. Therefore, S p
α

can take an arbitrary value from −∞ to ∞. Second, inequality
(40) can be broken even in a two-terminal junction when
temperatures of the leads are different. In particular, for equal
chemical potentials of both leads (μα = μγ = μ) the sign of
Cαγ ,1(ω) is a step function of ω:

sgn[Cαγ ,1(ω)] = sgn

(
ω − μ

Tγ − Tα

)
. (44)

One can then choose μ in such a way that 〈〈 j1
p,α〉〉 ≈ 0,

since the energy-resolved currents for different ω compensate,
while 〈〈 j3

p,α〉〉 remains finite. This again results in a diverging
S p

α .

2. Time-reversal asymmetric case

Let us now turn our attention to the case when the time-
reversal symmetry is broken (e.g., due to magnetic field). The
current fluctuations can be then described by the scaled cu-
mulant generating function χ p(λ), where λ = (λ1, . . . , λL )T

is the vector of counting fields associated with different baths
α. It is given by the equation [65]

χ p(λ) =
∫ ∞

−∞

dω

2π
χ p

ω (λ), (45)

where

χ p
ω (λ) = ln det(1L − F + FS†S̃). (46)

Here 1L is the L × L identity matrix, F = diag( f1, . . . , fL ) is
the diagonal matrix of Fermi distributions, and S is the scat-
tering matrix being an L × L unitary matrix (which becomes
Hermitian in the time-reversal symmetric case). Finally, S̃ is
the counting-field-dependent scattering matrix with elements

S̃αγ = Sαγ eλα−λγ . (47)

Cumulants of the particle current to the bath α can be calcu-
lated as

〈〈
jn
p,α

〉〉 =
∫ ∞

−∞

dω

2π
Cα,n(ω), (48)

where

Cα,n(ω) =
[

∂n

∂λn
α

χ p
ω (λ)

]
λ=0

(49)

with 0 = (0, . . . , 0)T . As in the previous paragraph, to prove
Eq. (15) it is sufficient to show that

Kp(ω) = Cα,4(ω)

Cα,2(ω)
∈

[
−1

2
, 1

]
. (50)

This has been numerically verified by simulating more than
100 000 random scattering systems with number of baths L �
6. In particular, the random scattering matrices have been gen-
erated as S = exp(iH ) where H is a random Hermitian matrix.
The matrices H have been further generated as H = G + G†,
where Re(Gi j ) and Im(Gi j ) are random numbers taken from
the uniform distribution over the interval [0,1]. The Fermi
distribution functions entering the vector F were also taken
randomly from the interval [0,1]. For illustration, the simula-
tion results for 100 000 random three-terminal junctions have
been presented in Fig. 1. They have been plotted as a function
of the circulation coefficient

C = |S12|2|S23|2|S31|2 − |S21|2|S32|2|S13|2
|S12|2|S23|2|S31|2 + |S21|2|S32|2|S13|2 (51)

characterizing the asymmetry of the transport setup; it takes
value 0 for the time-reversal symmetric case and −1 or 1 for
a maximum asymmetry. As one can observe, neither validity
nor tightness of the bound (15) depends on the asymmetry:
kurtosis takes values within the full range [−1/2, 1] for an
arbitrary value of C.
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FIG. 1. The function Kp(ω) defined in Eq. (50) for 100 000
random three-terminal junctions as a function of the circulation co-
efficient C.

C. Noninteracting bosonic systems

Let us now consider systems of noninteracting bosons de-
scribed by quadratic Hamiltonians of a general form

HNB =
∑

i j

(ti jb
†
i b j + ui jb

†
i b†

j + H.c.), (52)

where b†
i (bi) is the bosonic creation (annihilation) operator.

Such models are most commonly applied to describe heat
transport in harmonic junctions [41,66], though other types
of physical setups, such as junctions of reservoirs of bosonic
cold atoms (referred to as the “atomtronic” junctions) [67],
have been also investigated. The scaled cumulant generating
function of the heat current from the bath γ to α is now given
by the formula [66,68]

χh
α (λ) = −

∑
γ �=α

∫ ∞

0

dω

2π

× ln{1 − Tαγ (ω)[(eλ(ω−μα ) − 1)να (ω)nγ (ω)

+ (e−λ(ω−μα ) − 1)nα (ω)νγ (ω)]}, (53)

where nα (ω) = 1/{exp[βα (ω − μα )] − 1} is the Bose-
Einstein distribution of the bath α and να (ω) = nα (ω) + 1;
note that for noninteracting bosons the chemical potentials
μα are always nonpositive. The scaled cumulant generating
function for the particle current is obtained by replacing
λ(ω − μα ) with λ. Analogously to the fermionic systems,
cumulants of the particle current 〈〈 jn

p,α〉〉 and the heat current
〈〈 jn

h,α〉〉 can be calculated using the equations

〈〈
jn
p,α

〉〉 =
∑

α

∫ ∞

0

dω

2π
Bαγ ,n(ω), (54)

〈〈
jn
h,α

〉〉 =
∑

α

∫ ∞

0

dω

2π
(ω − μα )nBαγ ,n(ω), (55)

where Bαγ ,n(ω) are functions of Tαγ (ω) = Tαγ , nα (ω) = nα ,
and nγ (ω) = nγ . The first four functions Bαγ ,n(ω) read as

Bαγ ,1(ω) = Tαγ (nγ − nα ), (56)

Bαγ ,2(ω) = Tαγ (nα + nγ + 2nαnγ ) + T 2
αγ (nα − nγ )2, (57)

Bαγ ,3(ω) = Tαγ (nγ − nα )

+ 3T 2
αγ (nγ − nα )(nα + nγ + 2nαnγ )

+ 2T 3
αγ (nγ − nα )3, (58)

Bαγ ,4(ω) = Tαγ (nα + nγ + 2nαnγ )

+ T 2
αγ [4(nγ − nα )2 + 3(nα + nγ + 2nαnγ )2]

+ 12T 3
αγ (nγ − nα )2(nα + nγ + 2nαnγ )

+ 6T 4
αγ (nα − nγ )4. (59)

Using the expressions above one can easily verify that (i)
Bαγ ,1(ω) and Bαγ ,3(ω) are of the same sign and (ii) Bαγ ,2(ω)
and Bαγ ,4(ω) are non-negative. Following reasoning presented
for the fermionic case, this proves Eq. (17) for the generic case
and Eq. (18) when Bαγ ,1(ω) is of the same sign independent
of γ and ω; the latter holds when the system is driven only by
a single thermodynamic force, i.e., for a two-terminal junction
with either Tα = Tγ or μα = μγ .

Bound (17) has been also numerically verified for time-
reversal asymmetric systems in a way analogous to that
described in Sec. III B 2 for fermionic systems. In the bosonic
case the scaled cumulant generating function of the heat cur-
rent reads [68]

χh(λ) =
∫ ∞

0

dω

2π
χh

ω(λ), (60)

where

χh
ω(λ) = ln det(1L + N − NS†S̃). (61)

Here N = diag(n1, . . . , nL ) is the diagonal matrix of the
Bose-Einstein distribution and elements of the counting-field-
dependent scattering matrix take a form

S̃αγ = Sαγ eλα (ω−μα )−λγ (ω−μγ ). (62)

Finally, let us here discuss a qualitative difference between
fluctuations of fermionic and bosonic currents. As one may
note, Eq. (53) differs from the fermionic Levitov-Lesovik
formula (29) by the presence of a minus sign before the whole
expression and Tαγ (ω); this is related to different statistical
properties of fermions and bosons (particle antibunching and
bunching for fermions and bosons, respectively). Accordingly,
also expressions for current cumulants have a similar form,
but differ by signs [compare Eqs. (31)–(34) and (56)–(59)].
As a consequence, kurtosis of the fermionic particle current
is confined to a relatively narrow range, while for bosonic
systems it may take arbitrary non-negative values.

D. Thermally driven Markovian systems

In the next step I will consider heat transport in thermally
driven systems evolving according to a classical master equa-
tion describing the stochastic transitions between N discrete
states of the system. Such models are commonly used in
a variety of physical contexts, including electronic transport
[4,5,7,49,69] and chemical reactions [17,18,27,61]. Let pi be
the probability of the system being in state i. The dynamics
of the population vector p = (p1, . . . , pN )T is given by the
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equation

ṗ = W p. (63)

Here W is the rate matrix with elements

Wi j = ki j for i �= j

Wi j = −∑
j �=i ki j for i = j,

(64)

where ki j is the transition rate from the state j to i. The
transition rates can be expressed as a sum of contributions
associated with different baths

ki j =
∑

α

kα
i j (65)

which obey the detailed balance condition [70]

kα
i j

kα
ji

= e−βα (Ei−Ej ), (66)

where Ei is the energy of state i.
To calculate cumulants of the heat current flowing to the

bath α one defines the counting-field-dependent rate matrix
with elements expressed as [7]

[W h(λ)]i j = ∑
α kα

i je
−λα (Ei−Ej ) for i �= j

[W h(λ)]i j = −∑
j �=i ki j for i = j,

(67)

where, as in Sec. III B 2, λ is the vector of counting fields.
The cumulant generating function χh(λ) is then equal to the
dominant eigenvalue of W h(λ) [63]; however, its analytic
calculation is usually not possible for N > 4. Fortunately, the
current cumulants can be determined without direct calcula-
tion of χh(λ) by using a procedure proposed in Refs. [71,72].
Within this approach to obtain first M cumulants one writes
M equations{

∂n

∂λn
α

det[1χh(λ) − W h(λ)]

}
λ=0

= 0, (68)

where n = 1, . . . , M and 1 is the identity matrix. Such equa-
tions are trivially valid since χh(λ) is an eigenvalue of W h(λ)
and thus det[1χh(λ) − W h(λ)] = 0. Upon substituting[

∂n

∂λn
α

χh(λ)

]
λ=0

→ 〈〈 jn
h,α〉〉, (69)

χh(0) → 0, (70)

one obtains an easily solvable system of M linear equa-
tions with M variables 〈〈 jn

h,α〉〉. Bounds (19) and (20) have
been verified by calculating the heat current cumulants for
more than 30 000 random Markovian networks with number
of states N � 6 and number of baths L � 4. Such networks
were generated by choosing random energies Ei, temperatures
Tα , and rates kα

i j for i > j; the rates kα
i j for i < j have been

then determined using Eq. (66). More precisely, the transition
rates have been taken from the interval [0,1], while energies
and temperatures have been generated as Ei = ei/(1 − ei ) and
Tα = tα/(1 − tα ), with ei and tα taken from the interval [0,1].
For illustration, Fig. 2 shows the values of skewness and
kurtosis for randomly generated four-state networks attached
to two thermal baths as a function of the temperature ratio
T1/T2; as one can observe, they can take arbitrary non-negative
value independent of the temperature ratio.

FIG. 2. Skewness and kurtosis of the heat current for 30 000
random four-state Markovian systems attached to two thermal baths
as a function of the temperature ratio T1/T2.

Bound (20) can be broken in the presence of more than a
single temperature difference, for example, in a three-terminal
system. Furthermore, as will be shown in Sec. IV B, both in-
equalities (19) and (20) can be violated in Markovian systems
in the presence of thermodynamic forces other than temper-
ature differences, for example, chemical potentials. In such a
case the detailed balance condition [Eq. (66)] takes a modified
form

kα
i j

kα
ji

= eβαQα
i j , (71)

where Qα
i j = Ej − Ei + Fα

i j is the heat delivered to bath α due
to transition j → i induced by bath α, with Fα

i j being an addi-
tional thermodynamic force. While a clear explanation of this
phenomenon is lacking, this may be related to the fact that for
thermally driven systems the excitation rate to a higher-energy
state is always lower than the relaxation rate; i.e., ki j < k ji

for Ei > Ej . This is no longer true in the presence of other
thermodynamic forces since heat increments Qα

i j associated
with different baths α may have different signs.

E. Unicyclic Markovian networks

Finally, let me present the bounds obtained for unicyclic
Markovian networks, i.e., systems whose states form an or-
dered chain with transitions allowed only between pairs of
neighboring states. Such models can be used, for example,
to describe certain biomolecular reactions [27,61] or elec-
tronic systems [73]. The unicyclicity can be mathematically
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FIG. 3. Schematic representation of a four-state unicyclic
Markovian network. Transitions are allowed between pairs of neigh-
boring states such as 1 and 2, 2 and 3, etc., but not between
non-neighboring states such as 1 and 3.

formulated as a condition for the transition rates:

ki j, k ji �= 0 for i = j + 1 mod N

ki j, k ji = 0 otherwise,
(72)

with j = 1, . . . , N . A scheme of an exemplary unicyclic
network is presented in Fig. 3. In this context the relevant
quantity is the fluctuation of the winding number, i.e., the
number of clockwise rotations around the cycle. It can be
defined as

� = �21 − �12, (73)

where �i j is the number of transitions j → i within a
time interval [0, t]. Depending on the system considered, it
may correspond to physical observables such as number of
biomolecular reactions [27,61] or electron jumps in quantum
dot systems [73]. Scaled cumulants of the winding number
can be calculated using the counting-field-dependent genera-
tor with elements

[W (λ)]i j = k21eλ for i = 2, j = 1

[W (λ)]i j = k12e−λ for i = 1, j = 2

[W (λ)]i j = Wi j otherwise.

(74)

Cumulants can be then calculated using Eqs. (68)–(70).
Inequalities (21)–(25) have been obtained using a com-

bination of analytic and numerical methods. First, analytic
bounds have been derived by considering unidirectional
networks with transitions only in the clockwise direction al-
lowed:

ki j �= 0 for i = j + 1 mod N

ki j = 0 otherwise.
(75)

This is described in Sec. III E 1. Next, their validity to bidirec-
tional networks (with both directions of transitions allowed)
has been verified by means of numerical simulations; see
Sec. III E 2 for details.

1. Unidirectional networks

I will now discuss how the analytic bounds for unidirec-
tional networks have been obtained. First, using numerical
optimization techniques implemented within the Wolfram
Mathematica environment (functions FindMinimum and

FindMaximum) it was inferred that the bounds are always sat-
urated for a specific type of network topology with k21 = ak
and ki j = k for j > 1; the parameter a takes different values
depending on the considered bound and the number of states.
Assuming this type of network topology, the value of a satu-
rating the bounds has been then analytically determined; see
the Appendix for more details. Specifically, the analytic bound
on skewness [Eq. (21)] has been found for an arbitrary number
of states, N :

min(S ) = − 8−8N+N2

16(N−1)2 for a = 1
N−1

max(S ) = 1 for a → 0.
(76)

Taking a limit N → ∞ one gets S � −1/16. The other
bounds have been derived in the asymptotic limit N → ∞ in
which the saturating value of a scales as a = A/N . They read
as

min(K) = − 1+√
5

10 for A = 3−√
5

2

max(K) = 1 for A → 0,
(77)

min(S − K) = 3 107−51
√

17
2048 ≈ −0.15 for A = 5+√

17
4

max(S − K) = 3 107+51
√

17
2048 ≈ 0.465 for A = 5−√

17
4 ,

(78)

min(S + K) = − 8
27 for A = 1

2

max(S + K) = 2 for A → 0,
(79)

min(S × K) ≈ −0.054 for A ≈ 0.23

max(S × K) = 1 for A → 0,
(80)

where more exactly

min(S × K) = min
A

1 − 10A + 22A2 − 12A3

(1 + A)8
. (81)

As one may note, the maximum values of skewness and kur-
tosis maxS = maxK = 1 correspond to the case of a → 0.
In this regime the dynamics of the network is determined
by the slowest timescale of the transition 1 → 2, such that
the probability of the jump taking place within a short time
interval [t, t + dt] is independent of the events occurring in
the other time intervals. In such a case the probability of �

jumps 1 → 2 taking place within the time window [0, t] is
given by the Poisson distribution P(�) = 〈�〉�e−〈�〉/� [74],
and thus all cumulants are equal to each other.

Though I have focused on the limit N → ∞, even more
tighter bounds can be obtained (at least numerically) for a
finite number of states, N . They are presented in Figs. 4–8.
Similarly to the previously obtained bounds on the current
variance [18,75] or fluctuations of waiting times [21,61], such
inequalities can be used to infer a minimum number of states
in the unicyclic Markovian network. Furthermore, as demon-
strated in the next paragraph, the advantage of the obtained
bounds is that they are useful even close to equilibrium, when
the variance of the winding number is dominated by the
thermal noise and thus relatively insensitive to the network
topology.

2. Bidirectional networks

In the next step it was confirmed that the bounds (21)–(25)
are applicable also to bidirectional networks; it has been done
by simulating thousands of random Markovian networks with
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FIG. 4. Minimum value of skewness of the winding number as a
function of the number of states, N .

N � 6. The rates ki j have been taken randomly from the
uniform distribution over the interval [0,1]. As an example,
Figs. 9 and 10 present the simulation outcomes for 30 000
random networks with N = 6. The results are plotted as a
function of the affinity

A = ln

∏N
i=1 ki+1,i∏N
i=1 ki,i+1

, (82)

which measures a distance of the network from equilibrium: it
is equal to the entropy production (in units of kB) during a sin-
gle rotation around the cycle in the clockwise direction [70].
In particular, the affinity takes a value A = 0 at equilibrium
while |A| → ∞ in the unidirectional case.

As shown in Fig. 9, skewness and kurtosis can reach the
Poisson limit S = K = 1 for an arbitrary value of the affinity.
In contrast, the bound for a minimum value is less tight for
a small affinity; this is because skewness and kurtosis can
take only non-negative values close to equilibrium [Eq. (5)],
while far from equilibrium they can be also negative. A similar
behavior is observed for S + K and S × K (Fig. 10). Interest-
ingly, as shown in Fig. 10(b), a most significant dependence
on the affinity is observed for the difference S − K: it can take
values within a much wider range far from equilibrium (large

FIG. 5. Minimum value of kurtosis of the winding number as a
function of the number of states, N .

FIG. 6. Minimum (black dots) and maximum (red dots) value of
S − K of the winding number as a function of the number of states,
N .

|A|) than close to equilibrium (small |A|). Indeed, as implied
by Eq. (5), at equilibrium skewness and kurtosis are equal to
each other, and thus S − K = 0.

IV. COUNTEREXAMPLES

In this section I will present some exemplary systems in
which the obtained bounds can be violated due to going
beyond their range of validity. This demonstrates their use-
fulness for the inference of the underlying physics of the
observed transport process.

A. Negativity of skewness and kurtosis of the heat current

Before presenting the original research, let me first briefly
summarize the relevant results of Saryal et al. [41] show-
ing how inequalities (17)–(20) can be broken in thermally
driven systems with a unitary component of the dynamics. The
authors discussed conditions in which the thermodynamic un-
certainty relation (2), valid for classical Markovian systems,
can be violated beyond its range of validity. For a two-terminal
setup with bath inverse temperatures βH and βC (βC > βH )

FIG. 7. Minimum value of S + K of the winding number as a
function of the number of states, N .
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FIG. 8. Minimum value of S × K of the winding number as a
function the number of states, N .

the thermodynamic uncertainty relation provides a bound on
fluctuations of the heat current,〈〈

j2
h

〉〉
〈〈

j1
h

〉〉 � 2

�β
, (83)

where �β = βC − βH . Saryal et al. showed that in the time-
reversal symmetric systems in the linear-response regime the
following relation holds,〈〈

j2
h

〉〉
〈〈

j1
h

〉〉 = 2

�β
+ Sh

lin

6
�β + O(�β2), (84)

FIG. 9. Skewness and kurtosis of the winding current for 30 000
random unicyclic Markovian networks as a function of the affinity
A.

FIG. 10. Sum, difference, and product of skewness and kurtosis
of the winding current for 30 000 random unicyclic Markovian net-
works as a function of the affinity A.

where Sh
lin is the linear-response skewness of the heat cur-

rent, which is further equal to the equilibrium kurtosis Kh
eq.

This implies that violation of the thermodynamic uncertainty
relation close to equilibrium is equivalent to negativity of
skewness and kurtosis.

The authors further discussed systems in which the ther-
modynamic uncertainty relation can be broken close to
equilibrium. The first one was a noninteracting fermionic
junction. In such a system the cumulants of the heat current
can be calculated as

〈〈
jn
h,γ→α

〉〉 =
∫ ∞

−∞

dω

2π
(ω − μα )nCαγ ,n(ω), (85)

with the functions Cαγ ,n(ω) defined in Sec. III B. Since (as
shown in Sec. III B) the ratio Cαγ ,3(ω)/Cαγ ,1(ω) can be nega-
tive (for a high enough transmission function), skewness (and
thus kurtosis) of the heat current can also be negative. This
is related to the coherent, ballistic nature of the electron trans-
port in the high-transmission regime, which provides a unitary

024119-9
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FIG. 11. (a) Scheme of the dynamical channel blockade model.
Two electronic levels A and B, with energies εA and εB, are coupled
to baths α ∈ {L, R} with chemical potentials μα and temperatures
Tα . �A/B

α denotes the coupling strength of the bath α to state A/B.
(b) Three-state Markovian model of the system dynamics illustrating
its multicyclic nature. Here f A/B

α = fα (εA/B ).

component of the dynamics. The other model discussed was
the spin-boson model attached to baths with structured (non-
Ohmic) spectral densities. The reader is referred to Ref. [41]
for further details.

B. Dynamical channel blockade

Let me now present the original results. First, I will
discuss how the obtained bounds can be violated in a clas-
sical Markovian model of an interacting electronic system.
More specifically, I will focus on a setup consisting of two
Coulomb-interacting electronic levels i ∈ {A, B} (for example,
spin levels) described by the Hamiltonian

HS = εAd†
AdA + εBd†

BdB + Ud†
Ad†

BdAdB. (86)

Here d†
i and di are the creation and annihilation operators,

respectively, εi is the level energy, and U is the Coulomb
interaction strength. The system is coupled to two baths α ∈
{L, R} with temperatures Tα and chemical potentials μα; its
schematic representation is presented in Fig. 11(a). It is further
assumed that due to strong Coulomb interaction U only a
single occupancy of the dot is allowed; this is referred to as
the Coulomb blockade regime. Furthermore, I assume both
levels to be unequally coupled to the baths, i.e., �A

α �= �B
α

where �i
α is the coupling strength of the level i to bath α. Such

a coupling asymmetry has been demonstrated both theoreti-
cally [4,5] and experimentally [8,13,14] to result in the noise
enhancement to super-Poissonian values (〈〈 j2

α,p〉〉/|〈〈 j1
α,p〉〉| >

1) in the high-voltage regime; this phenomenon has been
referred to as the dynamical channel blockade [5].

The state of the system is described by the population
vector p = (p0, pA, pB), where 0 denotes the empty state. The
corresponding counting-field-dependent generator takes the

FIG. 12. Skewness (black solid line) and kurtosis (red dashed
line) of the particle current in the dynamical channel blockade model
with a = 0.65.

form [4,5]

W p(λ) =

⎛
⎜⎝

−�A
in,0 − �B

in,0 �A
out,λ �B

out,λ

�A
in,λ −�A

out,0 0

�B
in,λ 0 −�B

out,0

⎞
⎟⎠, (87)

where

�i
in,λ =

∑
α

�i
α fα (εi )e

−λα , (88)

�i
out,λ =

∑
α

�i
α[1 − fα (εi)]e

λα . (89)

Cumulants of the particle current can be then calculated using
Eqs. (68)–(70). The coupling strengths to the baths will be
parametrized as

�A
α = �α (1 + aα ), (90)

�B
α = �α (1 − aα ), (91)

where aα ∈ [−1, 1] is a parameter describing asymmetry of
the couplings to bath α. For the sake of simplicity, I will
further take εA = εB = ε, �L = �R = �, aL = aR = a, and
fL(ε) = 1 − fR(ε) = f , which holds for TL = TR and μL −
ε = ε − μR. The calculated skewness and kurtosis of the par-
ticle current (which are equal for both baths: S p = S p

L = S p
R ,

etc.) as a function of f are presented in Fig. 12. As one can ob-
serve, they can violate bounds S p,Kp ∈ [−1/2, 1] [Eqs. (15)
and (16)], which is related to the interacting nature of the
system. The violation of bounds for skewness and kurtosis
is observed in slightly different ranges of f ; therefore, these
quantities are complementary indicators of the presence of in-
teractions. Furthermore, one can observe violation of bounds
(21) and (22) derived for unicyclic Markovian networks; as
further shown in Fig. 13 also inequalities (23)–(25) can be
broken. This is related to the multicyclic nature of the system,
with two different cycles describing transitions 0 ↔ A and
0 ↔ B [see Fig. 11(b)]. Therefore, violation of bounds (21)–
(25) can be used to infer the multicyclic nature of the Marko-
vian network underlying the observed transport process.

Let me here note a peculiar merit of the analysis of
skewness and kurtosis. Very often, to infer the presence of
interactions one analyzes the Fano factor F = 〈〈 j2

p〉〉/|〈〈 j1
p〉〉|,
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FIG. 13. Demonstration of the violation of bounds (23)–(25) in
the dynamical channel blockade model with a = 0.65.

which in noninteracting systems in the high-voltage regime
takes values F ∈ [0, 1] [1]. Therefore, F > 1 implies the
presence of interactions [4,5]. However, this bound is not
applicable for small voltages, when the current variance is
dominated by the thermal (Johnson-Nyquist) noise and the
Fano factor can take arbitrarily large values even in the non-
interacting case. In contrast, as Fig. 12 implies, violation of
bounds (15) and (16) can be used to infer the presence of
interactions even at equilibrium ( f = 0.5).

As Fig. 12 further demonstrates, cumulants of the particle
current can be negative in the far-from-equilibrium regime.
This is also true for the heat current, since for εA = εB = ε

one gets 〈〈
jn
h,α

〉〉 = (ε − μα )n
〈〈

jn
p,α

〉〉
, (92)

and thus

Sh
α = (ε − μα )2S p

α , (93)

Kh
α = (ε − μα )2Kp

α. (94)

This implies that bounds (19) and (20), stating the non-
negativity of skewness and kurtosis of the heat current in
thermally driven two-terminal junctions, are no longer ap-
plicable to voltage-driven junctions. As follows, violation of
Eqs. (19) and (20) may be used to infer the presence of
thermodynamic forces other than temperature differences.

C. Normal metal–superconductor junction

In the previous example it was demonstrated that both pos-
itive and negative values of skewness and kurtosis violating
the bounds S p,Kp ∈ [−1/2, 1] [Eqs. (15) and (16)] can be
observed in classical Markovian systems far from equilibrium.
However, as discussed in Sec. IV A, in Markovian networks
close to equilibrium only positive values of skewness and
kurtosis are allowed. Now I will demonstrate that violation
of bounds (15) and (16) for negative values of skewness
and kurtosis (i.e., S p,Kp � −0.5) can be observed in close-
to-equilibrium interacting electronic systems with a unitary
component of the dynamics.

The first model considered will be a junction of the normal
metal N and the superconductor S. I will focus on the wide
superconducting gap regime in which quasiparticle (normal
electron) tunneling between the normal metal and the su-
perconductor can be neglected. When also electron-electron
interactions in the scattering region can be neglected, the
fluctuations of the particle current from the normal to the
superconducting lead can be described by an analog of the
Levitov-Lesovik formula [76],

χ p(λ) =
∫ ∞

−∞

dω

2π
ln{1 + TA(ω)[(e2λ − 1) fN (ω) fN (−ω)

+ (e−2λ − 1)gN (ω)gN (−ω)]}, (95)

where TA(ω) is the transmission function of Andreev tun-
neling (i.e., a conversion of a Cooper pair from the
superconductor into two electrons in the normal metal, or
conversely) and, as before, gN (ω) = 1 − fN (ω); the chemical
potential of Cooper pairs is here fixed at μS = 0. Note that
though the considered model is effectively noninteracting,
the superconducting electron pairing is itself induced by the
electron-electron interactions in the underlying physical sys-
tem.

Following the steps described in Sec. III B, it can be found
that the maximum value of skewness and kurtosis

max(S p) = max(Kp) = 4 (96)

is observed in the tunnel junction regime TA(ω) → 0. It can
be noted that in comparison with the noninteracting systems
the maximum value is four times higher. This corresponds to
independent Poissonian tunneling of Cooper pairs. In such a
case all particle current cumulants scale as 〈〈 jn

p〉〉 = 2n〈〈 j1
p〉〉

instead of 〈〈 jn
p〉〉 = 〈〈 j1

p〉〉 as for the noninteracting, unpaired
electrons. The minimum value

min(S p) = min(Kp) = −2 (97)

is, on the other hand, observed in the equilibrium case of
μN = 0 for a boxcar-shaped transmission function

TA(ω) = 1 for − D/2 � ω � D/2

TA(ω) = 1 otherwise,
(98)
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FIG. 14. Scheme of a spin-degenerate quantum dot coupled to
the normal lead N (with temperature TN and chemical potential μN )
and the superconducting lead S.

in the limit of D → 0. Again, the value −2 corresponds to a
minimum value −0.5, obtained for noninteracting electrons,
multiplied by 4 due to electron pairing. Therefore, for an
effectively noninteracting normal metal–superconductor junc-
tion inequalities (15) and (16) are replaced by a less tight
bound

S p,Kp ∈ [−2, 4]. (99)

Let us now consider a physically relevant case when the
normal and the superconducting lead are coupled through a
quantum dot; a scheme of the system is presented in Fig. 14.
Such setups have been widely studied both theoretically and
experimentally (see review articles [77,78]). For a noninter-
acting spin-degenerate dot the transmission function for the
Andreev tunneling takes the form [79,80]

TA(ω) = �2
N�2

S

4Abs
[
(ω + i�N/2)2 − �2

S/4
] , (100)

where �N and �S are the coupling strengths to the normal
and the superconducting leads, respectively, and the electron
level energy ε = 0 has been taken for the sake of simplicity.
Quite notably, the considered model provides a particularly
elegant qualitative interpretation of the unitary component of
the dynamics which leads to violation of bound (5): It is
related to the coherent oscillations of Cooper pairs between
the quantum dot and the superconductor [81]. More formally,
the quantum dot attached to the superconducting lead can be
described by the effective Hamiltonian [49,82]

Heff =
∑

σ=↑,↓
εd†

σ dσ + �S

2
(d†

↑d†
↓ + d↓d↑), (101)

where the second term describes the coherent oscillations of
Cooper pairs with a frequency �S/2.

The equilibrium kurtosis of the particle current Kp
eq for

a quantum dot model as a function of �S/�N is presented
in Fig. 15. As one can observe, it reaches a tunnel junc-
tion limit Kp

eq = 4 for an asymmetric coupling �S/�N → 0
or �S/�N → ∞; it can be here noted that for �S  �N

the system can be effectively described by an effectively
classical Markovian master equation [49]. Most importantly,
kurtosis can be reduced below −0.5 for �S ≈ �N , which—as
discussed before—implies both the presence of interactions
[violation of bound (15)] and of the unitary component of
the dynamics [violation of bound (5)]. The second fact can
be understood as follows: For �S ≈ �N the tunneling rate
to the normal lead �N is of the same order of magnitude as
the frequency of coherent oscillations of Cooper pairs �S/2,

FIG. 15. The equilibrium kurtosis for the normal metal–quantum
dot–superconductor junction with ε = μN = 0 and kBTN = �N .

which makes the classical Markovian description [providing
the validity of bound (5)] no longer applicable.

Finally, it can be noted that values of skewness and kurtosis
violating inequalities (15) and (16) have been observed in the
strongly correlated quantum dot in which the electron pairing
was a result of the Kondo effect rather than superconducting
correlations [45]. Furthermore, also a less tight bound (99) can
be violated in transport between two superconducting leads
dominated by multiple Andreev reflections [48].

D. Triple quantum dot

Finally, it will be demonstrated that the equilibrium kur-
tosis Kp

eq can be reduced below −0.5 in interacting, quantum
coherent electronic systems without superconducting pairing.
In particular, I will consider a triple quantum dot coupled in
series described by the Hamiltonian

HS =
3∑

i=1

εid
†
i di +

3∑
i=1, j>i

Ui jd
†
i d†

j did j

+ �12(d†
1 d2 + d†

2 d1) + �23(d†
2 d3 + d†

3 d2), (102)

where Ui j and �i j are the Coulomb interaction and the tunnel
coupling between the quantum dots, respectively. A scheme
of the system is presented in Fig. 16. A strong Coulomb
interaction Ui j → ∞ will be further assumed such that only
a zero or a single occupancy of the molecule is allowed. The

FIG. 16. Scheme of the triple quantum dot molecule connected
to two leads 1 and 3 with the same temperature T and chemical
potentials μ1 and μ3.
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system can be then described by the effective Hamiltonian

Heff =
3∑

i=1

εi|i〉〈i| + �12(|1〉〈2| + |2〉〈1|)

+ �23(|2〉〈3| + |3〉〈2|), (103)

where |i〉 denotes the occupied state of the ith dot and |0〉
denotes the empty state. Dots 1 and 3 are connected to baths
1 and 3 with the same temperature T . For �i,�i j � kBT
dynamics of the system can be approximately well described
by a local master equation in the Lindblad form [83,84],

ρ̇ = − i[Heff, ρ] +
∑
i=1,3

�i fi(εi )

(
LiρL†

i − 1

2
{L†

i Li, ρ}
)

+
∑
i=1,3

�i[1 − fi(εi )]

(
L†

i ρLi − 1

2
{LiL

†
i , ρ}

)
, (104)

where ρ is the density matrix of the system, �i is the coupling
strength of dot i to bath i, and Li = |i〉〈0| is the jump oper-
ator; it should be here noted that local master equations of
such type may provide certain unphysical results beyond their
range of validity and therefore should be applied with care
[85–87]. For the sake of simplicity, here I do not treat the level
renormalization induced by the Coulomb interaction [88–90]
explicitly, but rather take the energies εi entering Heff to be the
renormalized values.

As in the classical Markovian systems, current cumulants
can be calculated using the counting-field-dependent gen-
erator W p(λ). It can be defined using the Liouville space
representation in which the N × N density matrix ρ is ex-
pressed as N2 row vector ρ̃ such that element ρi j of the density
matrix corresponds to the (i − 1)N + j element of the vector
ρ̃ [91–93]. The generator takes the form

W p(λ) = − i
(
14 ⊗ Heff − HT

eff ⊗ 14
) +

∑
i=1,3

�i fi(εi )

[
(L†

i )T Lie
−λi − 1

2
14 ⊗ L†

i Li − 1

2
(L†

i Li )
T ⊗ 14

]

+
∑
i=1,3

�i[1 − fi(εi )]

[
LT

i L†
i eλi − 1

2
14 ⊗ LiL

†
i − 1

2
(LiL

†
i )T ⊗ 14

]
, (105)

where the counting fields were introduced following the pro-
cedure presented in Ref. [71]; here 14 is a 4 × 4 identity
matrix while Heff and Li are represented in the matrix form
in the basis {|0〉, |1〉, |2〉, |3〉} as

Heff = diag(0, ε1, ε2, ε3), (106)

L1 =

⎛
⎜⎝

0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠, (107)

L3 =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

⎞
⎟⎠. (108)

The particle current cumulants can be then calculated us-
ing Eqs. (68)–(70). Taking ε1 = ε2 = ε3 = μ1 = μ2, �12 =
�23 = �, and �1 = �3 = � one gets

Kp
eq = 7�4 − 220�2�2 + 160�4

16(�2 + 4�2)2
, (109)

where the kurtosis is equal for both baths: Kp
eq = Kp

1,eq =
Kp

3,eq. The results are presented in Fig. 17. As one can
observe, kurtosis can go below −0.5 at equilibrium, thus
simultaneously violating both bound (15) (which indicates the
presence of interactions) and bound (5) (which indicates the
presence of the unitary dynamics); specifically, it reaches a
minimum value min(Kp

eq) ≈ −0.6 for �/� ≈ 0.48. As noted
in Sec. IV A, negativity of the equilibrium kurtosis is related
to the violation of the classical thermodynamic uncertainty
relation due to the presence of coherent electron oscillations,
which has been already observed for a simpler double-dot
system [39,40]; however, though negative Kp

eq can be already

observed for the double-dot setup, the reduction of Kp
eq below

−0.5 (which indicates the presence of interactions) requires
the triple-dot system.

V. CONCLUSIONS

In conclusion, the paper presents bounds on skewness and
kurtosis of steady-state currents applicable to several classes
of physical systems. The obtained inequalities have been ei-
ther analytically derived or numerically conjectured. It was
also demonstrated how these bounds can be broken by going
beyond their range of applicability, which provides informa-
tion about the underlying physics of the observed transport
setup.

Most importantly, the main value of the obtained bounds
results from their complementarity: the measurement of a

FIG. 17. The equilibrium kurtosis for the triple quantum dot
molecule with ε1 = ε2 = ε3 = μ1 = μ2, �12 = �23 = �, �1 =
�3 = �, and �,� � kBT
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single quantity (skewness or kurtosis) can provide a broad
spectrum of information about the dynamics and thermody-
namics of the system. For example, in the dynamical channel
blockade system analyzed in Sec. IV B skewness and kur-
tosis provide information about three independent facts: the
presence of interactions [violation of bounds (15) and (16)],
the multicyclic nature of the Markovian network [violation of
bounds (21)–(25)], and the presence of thermodynamic forces
other than temperature differences [violation of bounds (19)
and (20)]. Analogously, as shown in Secs. IV C and IV D,
kurtosis of the particle current going below −0.5 at equilib-
rium implies not only the presence of interactions [violation of
bound (15)], but also of a unitary component of the dynamics
[violation of bound (5)].

Furthermore, the presented inequalities have peculiar ad-
vantages in comparison with the already known bounds on
the current noise. As previously demonstrated, the bounds on
the current variance can be used to detect the presence of
interactions in fermionic systems [1,4,5] or infer the mini-
mum number of states in the Markovian network [18,75] in
far-from-equilibrium conditions. However, these inequalities
cease to be useful close to equilibrium, when the current
variance is dominated by the thermal noise. The obtained
bounds on skewness and kurtosis, instead, are applicable for
these purposes arbitrarily close to equilibrium (see Secs. III E
and IV B); indeed, a similar insensitivity of skewness to the
thermal noise has been previously reported by Levitov and
Reznikov [52]. This highlights the merits of the analysis of
higher-order cumulants for the characterization of transport
processes.

ACKNOWLEDGMENTS

The author has been supported by the National Science
Centre, Poland, under Project No. 2017/27/N/ST3/01604,
and by the Scholarships of Minister of Science and Higher
Education.

APPENDIX: DERIVATION OF BOUNDS (21)–(25)

This Appendix discusses the details of derivation of bounds
(21)–(25) for unidirectional unicyclic networks. To this end
the analytic formulas for scaled cumulants of the winding
number have been used. While they can be obtained directly
using Eqs. (68)–(70), it is more convenient to express them as
[94]

〈〈 j1〉〉 = 1

κ1
, (A1)

〈〈 j2〉〉 = κ2

κ3
1

, (A2)

〈〈 j3〉〉 = 3
κ2

2

κ5
1

− κ3

κ4
1

, (A3)

〈〈 j4〉〉 = 15
κ3

2

κ7
1

− 10
κ2κ3

κ6
1

+ κ4

κ5
1

, (A4)

where κn is the nth cumulant of the waiting times between
the subsequent jumps 1 → 2; such relations hold for unicyclic
networks due to the renewal property (the successive waiting
times are uncorrelated). The cumulants κn can be determined
using the Laplace transform of the waiting time distribution

w̃(s) [94],

κn = (−1)n ∂n

∂sn
ln w̃(s), (A5)

where for unicyclic networks [73]

w̃(s) =
N∏

i=1

ki+1,i

ki+1,i + s
, (A6)

with kN+1,N = k1N . Explicitly

κ1 =
N∑

i=1

k−1
i+1,i, (A7)

κ2 =
N∑

i=1

k−2
i+1,i, (A8)

κ3 = 2
N∑

i=1

k−3
i+1,i, (A9)

κ4 = 6
N∑

i=1

k−4
i+1,i. (A10)

As discussed in Sec. III E, it was numerically conjectured that
the minimum and maximum values of S , K, S + K, S − K,
and S × K are always obtained for a specific type of network
topology, with all rates ki j equal to k apart from one (here k21)
equal to ak, with the parameter a depending on the optimized
quantity and the number of states, N . For such a topology the
waiting time cumulants take the form

κ1 = k−1(N − 1 + a−1), (A11)

κ2 = k−2(N − 1 + a−2), (A12)

κ3 = 2k−3(N − 1 + a−3), (A13)

κ4 = 6k−4(N − 1 + a−4). (A14)

Using the equations above skewness and kurtosis can be
expressed analytically. The values of a minimizing or maxi-
mizing the skewness can be found by solving the equation

∂S
∂a

= 0. (A15)

The maximum value max(S ) = 1 corresponds to the limit of
a → 0 when fluctuations are fully determined by the slow-
est timescale of the transition 1 → 2. The minimum value
min(S ) is found for a = 1/(N − 1); it is given by Eq. (76).

Let us now consider the kurtosis. First, as for the skewness,
max(K) = 1 in the limit of a → 0. The problem of finding the
minimum value is more involved, namely, argmina(K) cannot
be found analytically since it is given by the root of a fifth
degree polynomial of a. However, one may numerically infer
that (i) min(K) decreases monotonically with N (see Fig. 5)
and (ii) argmina(K) ∝ 1/N for large N . Upon substituting
a → A/N one gets

lim
N→∞

K = 1 − 8A + 6A2

(1 + A)4
. (A16)

Using the expression above one easily obtains Eq. (77). The
other bounds have been obtained in a similar manner.
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KRZYSZTOF PTASZYŃSKI PHYSICAL REVIEW E 106, 024119 (2022)

[42] S.-K. Wang, H. Jiao, F. Li, X.-Q. Li, and Y. J. Yan, Full counting
statistics of transport through two-channel Coulomb blockade
systems, Phys. Rev. B 76, 125416 (2007).

[43] D. Urban, J. König, and R. Fazio, Coulomb-interaction effects
in full counting statistics of a quantum-dot Aharonov-Bohm
interferometer, Phys. Rev. B 78, 075318 (2008).

[44] N. Ho and C. Emary, Counting statistics of dark-state transport
through a carbon nanotube quantum dot, Phys. Rev. B 100,
245414 (2019).

[45] A. Komnik and A. O. Gogolin, Full Counting Statistics for the
Kondo Dot, Phys. Rev. Lett. 94, 216601 (2005).

[46] H.-B. Xue, H.-J. Jiao, J.-Q. Liang, and W.-M. Liu, Non-
Markovian full counting statistics in quantum dot molecules,
Sci. Rep. 5, 8978 (2015).

[47] C. Emary, Counting statistics of cotunneling electrons, Phys.
Rev. B 80, 235306 (2009).

[48] J. C. Cuevas and W. Belzig, Full Counting Statistics of Multiple
Andreev Reflections, Phys. Rev. Lett. 91, 187001 (2003).

[49] A. Braggio, M. Governale, M. G. Pala, and J. König, Supercon-
ducting proximity effect in interacting quantum dots revealed
by shot noise, Solid State Commun. 151, 155 (2011).

[50] H.-W. Zhang, H.-B. Xue, and Y.-H. Nie, Full counting statistics
of a quantum dot doped with a single magnetic impurity, AIP
Adv. 3, 102116 (2013).

[51] Z.-Z. Li, C.-H. Lam, T. Yu, and J. Q. You, Detector-induced
backaction on the counting statistics of a double quantum dot,
Sci. Rep. 3, 3026 (2013).

[52] L. S. Levitov and M. Reznikov, Counting statistics of tunneling
current, Phys. Rev. B 70, 115305 (2004).

[53] B. Reulet, J. Senzier, and D. E. Prober, Environmental Effects in
the Third Moment of Voltage Fluctuations in a Tunnel Junction,
Phys. Rev. Lett. 91, 196601 (2003).

[54] P. Février, C. Lupien, and B. Reulet, Fundamental and envi-
ronmental contributions to the cyclostationary third moment
of current fluctuations in a tunnel junction, Phys. Rev. B 101,
245440 (2020).

[55] J. Gabelli and B. Reulet, High frequency dynamics and the third
cumulant of quantum noise, J. Stat. Mech. (2009) P01049.

[56] J.-C. Forgues, F. B. Sane, S. Blanchard, L. Spietz, C. Lupien,
and B. Reulet, Noise intensity-intensity correlations and the
fourth cumulant of photo-assisted shot noise, Sci. Rep. 3, 2869
(2013).

[57] J. Gabelli and B. Reulet, Full counting statistics of avalanche
transport: An experiment, Phys. Rev. B 80, 161203(R)
(2009).

[58] E. Pinsolle, S. Houle, C. Lupien, and B. Reulet, Non-Gaussian
Current Fluctuations in a Short Diffusive Conductor, Phys. Rev.
Lett. 121, 027702 (2018).

[59] K. Saito and Y. Utsumi, Symmetry in full counting statistics,
fluctuation theorem, and relations among nonlinear transport
coefficients in the presence of a magnetic field, Phys. Rev. B
78, 115429 (2008).

[60] Y. Utsumi and K. Saito, Fluctuation theorem in a quantum-
dot Aharonov-Bohm interferometer, Phys. Rev. B 79, 235311
(2009).

[61] A. C. Barato and U. Seifert, Skewness and Kurtosis in Statistical
Kinetics, Phys. Rev. Lett. 115, 188103 (2015).

[62] T. Wampler and A. C. Barato, Skewness and kurtosis in stochas-
tic thermodynamics, J. Phys. A: Math. Theor. 55, 014002
(2022).

[63] H. Touchette, The large deviation approach to statistical me-
chanics, Phys. Rep. 478, 1 (2009).

[64] E. A. Cornish and R. A. Fisher, Moments and cumulants in
the specification of distributions, Rev. Inst. Int. Stat. 5, 307
(1938).

[65] L. S. Levitov and G. B. Lesovik, Charge distribution in quantum
shot noise, Pis’ma Zh. Eksp. Teor. Fiz. 58, 225 (1993) [JETP
Lett. 58, 230 (1993)].

[66] K. Saito and A. Dhar, Fluctuation Theorem in Quantum Heat
Conduction, Phys. Rev. Lett. 99, 180601 (2007).

[67] D. B. Gutman, Y. Gefen, and A. D. Mirlin, Cold bosons in the
Landauer setup, Phys. Rev. B 85, 125102 (2012).

[68] P. Gaspard, Scattering approach to the thermodynamics of
quantum transport, New J. Phys. 17, 045001 (2015).

[69] M. V. Fischetti, Theory of electron transport in small semicon-
ductor devices using the Pauli master equation, J. Appl. Phys.
83, 270 (1998).

[70] U. Seifert, Stochastic thermodynamics, fluctuation theorems,
and molecular machines, Rep. Prog. Phys. 75, 126001 (2012).

[71] M. Bruderer, L. D. Contreras-Pulido, M. Thaller, L. Sironi,
D. Obreschkow, and M. B. Plenio, Inverse counting statistics
for stochastic and open quantum systems: The characteristic
polynomial approach, New J. Phys. 16, 033030 (2014).

[72] A. Wachtel, J. Vollmer, and B. Altaner, Fluctuating currents in
stochastic thermodynamics. I. Gauge invariance of asymptotic
statistics, Phys. Rev. E 92, 042132 (2015).

[73] T. Brandes, Waiting times and noise in single particle transport,
Ann. Phys. (Berlin) 520, 477 (2008).

[74] S. M. Ross, Stochastic Processes (Wiley, Hoboken, NJ, 1996).
[75] Z. Koza, Maximal force exerted by a molecular motor, Phys.

Rev. E 65, 031905 (2002).
[76] B. A. Muzykantskii and D. E. Khmelnitskii, Quantum shot

noise in a normal-metal–superconductor point contact, Phys.
Rev. B 50, 3982 (1994).

[77] S. De Franceschi, L. Kouwenhoven, C. Schönenberger, and W.
Wernsdorfer, Hybrid superconductor-quantum dot devices, Nat.
Nanotechnol. 5, 703 (2010).

[78] A. Martín-Rodero and A. Levy Yeyati, Josephson and Andreev
transport through quantum dots, Adv. Phys. 60, 899 (2011).

[79] G. Michałek, B. R. Bułka, T. Domański, and K. I. Wysokiński,
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