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Fluctuations and first-passage properties of systems of Brownian particles with reset
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We study, analytically and numerically, stationary fluctuations in two models involving N Brownian particles
undergoing stochastic resetting in one dimension. We start with the well-known reset model where the particles
reset to the origin independently (model A). Then we introduce nonlocal interparticle correlations by postulating
that only the particle farthest from the origin can be reset to the origin (model B). At long times, models A and
B approach nonequilibrium steady states. In the limit of N — oo, the steady-state particle density in model A
has an infinite support, whereas in model B, it has a compact support, like the recently studied Brownian bees
model. A finite system radius, which scales at large N as In N, appears in model A when N is finite. In both
models, we study stationary fluctuations of the center of mass of the system and of the radius of the system due
to the random character of the Brownian motion and of the resetting events. In model A, we determine exact
distributions of these two quantities. The variance of the center of mass for both models scales as 1/N. The
variance of the radius is independent of N in model A and exhibits an unusual scaling (In N)/N in model B. The
latter scaling is intimately related to the 1/f noise in the radius autocorrelation. Finally, we evaluate the mean
first-passage time (MFPT) to a distant target in model A, model B, and the Brownian bees model. For model A,
we obtain an exact asymptotic expression for the MFPT which scales as 1/N. For model B and the Brownian
bees model, we propose a sharp upper bound for the MFPT. The bound assumes an evaporation scenario, where
the first passage requires multiple attempts of a single particle, which breaks away from the rest of the particles,
to reach the target. The resulting MFPT for model B and the Brownian bees model scales exponentially with
/N. We verify this bound by performing highly efficient weighted-ensemble simulations of the first passage in

model B.
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I. INTRODUCTION

Physicists have always strived for universality, and this
quest is fully present in statistical mechanics of many-particle
systems out of equilibrium. In this paper, we propose a unified
approach to two different families of many-particle models in
space which have attracted much interest in recent years. The
first family of models deals with N independent Brownian par-
ticles which undergo stochastic resetting to a specified point
in space [1-4]. The original motivation behind these models
was to optimize random search of a target. Indeed, the mean
first-passage time (MFPT) to a stationary target is infinite
without reset [5], but it becomes finite once reset is introduced
[1-4]. Apart from the random search optimization, the reset
models provide an interesting example of the emergence of
a nonequilibrium steady state (NESS) [6,7], and this feature
will play a prominent role in most of our paper.

The second and seemingly unrelated family of models
deals with branching Brownian motion (BBM) of N particles
with selection [8—10], where in each branching event the
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particle with the lowest fitness is removed, so that the total
number of particles remains constant [11-14]. The members
of this family of models differ from each other by the choice of
fitness function, which mimics different aspects of biological
selection. A recent example of a simple yet nontrivial model
of this class is the Brownian bees [15-18]. In this model, when
a branching event occurs, the particle which is farthest from
the origin is removed.

A close connection between the two families of models
becomes obvious upon observing that, for example, the Brow-
nian bees model can be easily reformulated as a reset model.
Indeed, the combined process of a branching event and the
removal of the farthest particle is equivalent to resetting the
farthest particle to the exact location of any of the remaining
N — 1 particles.

Here, we study stationary fluctuations in two models. The
first is the classical model (denoted as model A) where
the Brownian particles reset to the origin independently [1,2].
The second is a model (model B) that we introduce here,
which is a relative of both model A and the Brownian bees
model. As in the latter, only the particle farthest from the
origin can undergo reset, yet particles are reset only to the
origin, as in model A. The selection of only the farthest
particles as candidates for reset—both in model B and in
the Brownian bees model—introduces nonlocal correlations

©2022 American Physical Society
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between the particles. This is in contrast to model A, where
the particles are reset independently from each other.

At long times, models A and B approach their NESSs. A
crucial difference between these models appears already in the
hydrodynamic limit N — co. Here, the steady-state coarse-
grained particle density in model A has an infinite support,
while that in model B has a compact support like the Brownian
bees model [15-17]. In model A, a finite system radius, which
scales as In NV, appears only when N is finite. In models A and
B, we study stationary fluctuations of the center of mass of
the system and of the radius of the system due to the random
character of the Brownian motion and of the resetting events.
For model A, we determine exact distributions of these two
quantities. We show that, as in the Brownian bees model [17],
the variance of the center of mass for models A and B scales as
1/N. The variance of the radius in model A is independent of
N, whereas in model B, it exhibits the same anomalous scaling
(InN)/N as the variance of the radius in the Brownian bees
model. This anomalous scaling is intimately related to the 1/ f
noise in the radius autocorrelations, and it originates from the
compact support of the hydrodynamic steady-state solution.
Strikingly, the numerical coefficients of the autocorrelation
functions of the radius in model B and in the Brownian bees
model coincide, which suggests a certain universality of the
distribution of the radius in this class of models.

Finally, we return to the original motivation behind the re-
set models and study the MFPT to a distant target, atx = L, in
models A and B and the Brownian bees model. For model A,
we employ known single-particle results [1] to obtain an exact
asymptotic expression for the MFPT (T') >~ (1/N) e, where
(T) is assumed to be large. For model B and the Brownian
bees model, the MFPT is much longer. We propose a sharp
upper bound for it, determined by repeated attempts of a single
breakaway particle to reach the target. The resulting MFPT
scales exponentially with A/N rather than with N. Therefore,
the single-particle evaporation scenario is exponentially more
efficient than any macroscopic scenario which involves O(N)
effective number of particles. We verify this bound by per-
forming highly efficient weighted-ensemble simulations of
the first passage in model B.

We obtain our analytical results by using exact prob-
abilistic calculations (for model A) and a coarse-grained
Langevin-type description (for both models). The coarse-
grained description is expected to hold at length scales much
larger than the typical interparticle distance and on time scales
much longer than the inverse reset rate. In this sense, the exact
microscopic calculations for model A also provide a good
benchmark for the approximate coarse-grained description.

Here is a layout of the remainder of the paper. Steady-state
fluctuations in models A and B are dealt with in Secs. II and
III, respectively. In Sec. IV, we study the MFPT to a distant
target for models A and B and for the Brownian bees model.
We summarize our results and discuss some unresolved issues
in Sec. V.

II. MODEL A: INDEPENDENT RESETS

We start with the well-known model [1] of N independent
Brownian particles on a line, with a diffusion constant D, each
undergoing resetting to the origin x = 0 at rate r. This reset

FIG. 1. A MC realization of N = 10* noninteracting resetting
Brownian particles (model A, blue bars) is compared with the deter-
ministic steady-state solution in Eq. (5) (solid line) for r = D = 1.
The simulation snapshot is taken at + = 1000. In this and all other
MC simulations reported in this paper, all the particles start atz = 0
from x = 0.

is equivalent to two effective elemental processes, perfectly
synchronized in time: independent death of a particle in the
bulk and a simultaneous arrival of a new particle to the origin.
For N — oo, the coarse-grained spatial density of the parti-
cles u(x, t) in this model [19] is governed by the continuous
deterministic equation:

oru(x,t) = Dafu(x, t) —ru(x,t) +rNSs(x). @))

The same equation describes the evolution of the probability
distribution of the position of a single Brownian particle sub-
ject to reset to the origin [1]. This is a natural consequence
of the particle independence in model A. As to be expected,
Eq. (1) obeys the conservation law:

/ u(x,t)dx = N. 2)
—0oQ0

For convenience, we recast Egs. (1) and (2) in a dimensionless
and normalized form by defining an inverse length scale as
k = +/r/D and the rescaled variables ¥ = kx,f = rt, and it =
uk~'/N. In these variables, Eqs. (1) and (2) become

dii(%, ) = d2a(x, 1) — (%, 1) + 8(%), 3)
/ - (%, ndx = 1. “)

At long times, the solution to Eqgs. (3) and (4) approaches a
unique steady-state density given by

U(%) = Jexp(—|%)) = U(x) = 3Nk exp(—k|x]), (5

which is nothing but the sum over N independent particles of
the NESS of a single particle [1]. Figure 1 compares Eq. (5)
with a long-time snapshot of a Monte Carlo (MC) simulation
of the microscopic model. In the following, unless otherwise
specified, we omit all tildes for brevity.

Now we consider steady-state fluctuations of this system
at large but finite N. One of the quantities of our interest is
the center of mass X (¢). Because of the reflection symmetry
x — —x of the microscopic model, the average value of X ()
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is zero. Therefore, we focus on the two-time autocorrelation
of X (t), defined as gx(t1, 1) = (X(#1)X(t2)). For t1, 6, > 1,
i.e., times much longer than the typical relaxation time, the
NESS is reached, and the autocorrelation depends only on the
time difference T = t; — t:

gx (1) = (X(0)X(7)). (6)

To address typical, small fluctuations of X(¢), one can
continue using a coarse-grained description of the system
in terms of the particle density u(x,t), which now becomes
a stochastic field. This field is governed by the (rescaled)
Langevin equation:

ou(x,t) = Bfu(x, ) —ulx,t)+5x)+R(u,x,t), (7)

which replaces Eq. (3). The noise term R; = Rgm + Ry + R,
includes three contributions:

1
Reym = ﬁax[m x(x, 0], (8)
Ry = % n(x. 1), ©)
_®)

[e ]
R, = / u(x’, )ynx', t)dx', (10)
VN J
where x (x, ¢) and n(x, t) are two independent Gaussian white
noises with zero mean, which satisfy:

(x (1, 1) x (2, 82)) = (NCxy, 1N (X2, 12))
= 8(x; — x2)8(t) — 1). (11)

The term Rgyp is the Brownian motion noise term. It is
best known in the context of a large-scale and long-time
description of the stochastic dynamics of a lattice gas of
independent random walkers [20,21]. The term R, originates
from the exact master equation for the death process. The
derivation procedure (see, e.g., Refs. [22,23]) starts from ap-
plying the van Kampen system-size expansion to approximate
(for typical fluctuations and N >> 1) the exact discrete master
equation by a continuous Fokker-Planck equation. The latter
is equivalent to the Langevin description with noise term R;.
Finally, the term R,—the arrival noise—describes the noise in
the particle arrival at x = 0. Its magnitude is determined by
the demand that the total number of particles be conserved at
any time in the presence of the death process.

The Langevin equation, Eq. (7), is a nonlinear stochastic
integrodifferential equation in partial derivatives for u(x, t).
However, it simplifies dramatically if we exploit the small
parameter 1 /v/N < 1 in the noise terms in Egs. (8)—(10)
and perform a perturbation expansion of u(x,t) around the

deterministic steady state U (x). Setting
u(x, 1) =U(x) + v(x, 1), vl <1, 12)

and linearizing Eq. (7) leads to a linear stochastic partial
differential equation:

ov(x,t) = va(x, t)—v(x,t)+ Ri(x, 1), (13)

where we have denoted R;(x,t) = R;[U (x), x, t]. Being in-
terested in steady-state quantities, we can set the initial
conditions as v(x, o) = 0 and send #y) — —oo. The resulting

(a) 2.09- (b)
100
% 1.5
- —
= X
g § 1.0
10714 S 0.5
, , ‘ 0.01. e,
0 2 4 102 10° 10*
T N

FIG. 2. The steady-state autocorrelation function of the center
of mass of a system of noninteracting Brownian particles under
reset (model A). The simulation results (points) are plotted (a) as
a function of the time delay t for N = 10* and (b) as a function of
N for t = 0. The dashed lines show the predictions of Eq. (17). Note
the logarithmic scale in (a).

solution for v(x, t), for given realizations of the noises, can be
written as
2
. (x—x") ]

oo (o] 1
v(x,t) = / / -
0 Joco AAmt’ 4t

x Ri(x',t —t)dx'dt’. (14)

exp|:—t

The center of mass X (t) = ffooo xu(x, t)dx can be determined
as follows:

[ee]

X(t):f x[U(x,t)—i—v(x,t)]dx:/ xv(x, t)dx. (15)

oo —00
Plugging in Eq. (14) here and performing the integration over
X, we obtain

X@) = /OO /OO X exp(—tOHR; (X', t —t"Ydx'dt’.  (16)
0 —00

Now we plug Eq. (16) into Eq. (6) and perform the averaging
over the noise. The terms proportional to §(x) do not con-
tribute, and after some algebra, we arrive at a simple result:

gx(1) = I%exp(—f)- 7)

Figure 2 shows that Eq. (17) agrees very well with MC simu-
lations for all 7. The variance of the center of mass is given by
(X?) = gx(0) = 2/N. The 1/N scaling of the variance of the
center of mass in model A is to be expected from the law of
large numbers. The same scaling is observed for the Brownian
bees [17] and, as we show below, for model B.

Since the particles in model A are independent, Eq. (17)
can also be obtained from the autocorrelation function for a
single particle that performs Brownian motion and is reset
to the origin, as in the original reset model [1]. The single-
particle autocorrelation function was calculated in Ref. [24],
and our result in Eq. (17) perfectly agrees with their calcula-
tions. As we see, linearization of the Langevin equation yields
an exact result in this case.

The exceptionally simple expression in Eq. (17) for the au-
tocorrelation hints at a possible interpretation of fluctuations
of the center of mass of the system in terms of an effective
Ornstein-Uhlenbeck process. Indeed, multiplying both sides
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of Eq. (13) by x and integrating over x, we obtain
. 1 ©
X(@)=-X@)+ —/ dx
VN J
x VU@IV2x @ 0) +ane 0] (18)

This is the Ornstein-Uhlenbeck equation, and the center of
mass effectively behaves as a single macroparticle undergoing
an overdamped motion in a quadratic potential X?/2 under
properly weighted Gaussian white noises y (x, ¢) and n(x, t).

The independence of the particles in model A also makes
it possible to calculate the exact steady-state probability dis-
tribution of the center of mass. Indeed, the joint probability
distribution P(xy, X2, ..., xy) of the positions of N indepen-
dent resetting particles in the steady state immediately follows
from the single-particle distribution,

N
Per . y) =27V exp (— 3 |xi|), (19)
i=1

see Eq. (5). We are interested in the probability distribution
‘P(a, N) that the observed position of the center of mass:

1 N
X= i;x,-, (20)

is equal to a specified value a. This distribution is given by the
integral:

o0 o0 o0
P(a,N)=2’N/ dxlf dx2-~-/ dxy

N 1 N
X exp (— > |x,~|> (S(N D i a). 1)
i=1 i=1

To evaluate this integral, we use the exponential represen-
tation of the delta-function §(z) = (2)~! ffooo exp(ikz)dz,
leading to

P(a,N) =

2NN o
/ dk exp(—ikNa)
2w _

[e¢]

N o0
< T1 / dv,exp(—ln| + k). (22)

n=1%"

The factorized integrals over x,, are elementary, and the calcu-
lation reduces to a single integration over k:

N
P(G,N)ZE/

o0

dk exp{—Nlika — In(1 + k*)]}. (23)

This integration can be performed exactly, and we obtain the
exact distribution:

2(1/2)—NNN+(1/2)|a|N—(l/2)KN_(1/2)(N|a|)
ﬁ(N — 1! ’

valid for any number of particles. Here, K, (z) is the modified
Bessel function with argument z and index o. Aso@ = N — %
is a half-integer, K,(z) can be expressed as a finite sum of
elementary functions.

The N > 1 limit of P(a, N) can be probed by extracting
the N > 1 asymptotic of Eq. (24). A more aesthetically pleas-

ing alternative, however, is to exploit the large parameter N

P(a,N) = (24)

directly in Eq. (23) and use the saddle point method in the

complex plane. The relevant saddle point is

(1 —a®+ 1)
P .

k=kia)=1i (25)

Ignoring the pre-exponential factors in Eq. (23), this leads to
—InP(a,N > 1) =2 Nd(a), (26)

with the rate function [25]:
2(Wa?+1-1
®(a)=va>+1+1n [#] ~1. @)
a

As to be expected, the rate function vanishes at a = 0. Further,
it is quadratic at small a, ¢(a — 0) ~ a®/4. This corresponds
to the Gaussian part of the distribution of the center of mass
with the variance 2/N, in agreement with the macroscopic
result in Eq. (17). In fact, this result immediately follows from
the law of large numbers and the known variance (equal to 2)
of the single-particle distribution of x. At large a, we obtain
®(a) =~ |a|, which describes exponential large-deviation tails
of the distribution.

Let us now briefly return to the deterministic continuous
description, see Eq. (1). The steady-state density distribution,
predicted by Eq. (5), lives on the whole line |x| < co. How-
ever, the actual system radius £(¢) in the original microscopic
model—the absolute value of the position of the particle far-
thest from the origin—is, of course, finite at all times, and
this effect is missed by the continuous model in Eq. (1).
Still, the average radius of the system in the steady state ()
can be readily found, with logarithmic accuracy, from the
equation f&x; U(x)dx = 1/N, with U (x) given by the contin-
uum equation, Eq. (5). The resultis (/) >~ InN.

In fact, one can not only improve this leading-order esti-
mate of (£) but also calculate the exact steady-state probability
distribution of £ in model A. Indeed, using the probability
p(x) = (1/2) exp(—|x|) of the position of a single resetting
particle in the steady state, we can easily calculate the cumula-
tive probability to observe the particle within a specified range
x| < £:

4
0i1(f) = / dx p(x) =1 — exp(=£). (28)
14

As the N particles are independent, the multiparticle cumula-
tive probability is

On() = 010" = [1 —exp(—0)]". (29)
The exact probability density of ¢ is, therefore,
don(0)

Fy(0) = = Nexp(—=0)[1 —exp(—O1""".  (30)

dae
Figure 3 shows an example of this distribution for N = 50
compared with MC simulations.

The first moment of this distribution (the mean value
of £) is

(0) :/oodMFN(Z)zHN, 31)
0
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FIG. 3. The distribution of the radius of the system in model
A: simulations (blue bars) are compared with Fy(£), Eq. (30) (solid
line), for N = 50.

the Nth harmonic number. For N > 1, we obtain
1

where y = 0.57721 ... is Euler’s constant.
The second moment of the distribution Fy (£) is

2

(%) = foode CFy(0) = (Hy)* — VN + 1) + ’%
0

(33)
where ¢ (U(...) is the polygamma function. At large N,

2 5 72 2 InN
) =1In N+2ylnN+?+)/ + 0 ~ /) (34)
The variance of £:

2
Var(f) = (€2) — (£)? = % —yOWN+1),  35)

behaves at large N as

2
Var(f) = % n 0(%}). (36)

The leading-order term 72/6 coincides with the variance of
the standard Gumbel distribution. This is not surprising in
view of the fact that the single-particle distribution in model
A (the parent distribution) decays exponentially with x [26].

As to be expected, the predictions in Egs. (32) and (36)
agree very well with our MC simulations of model A, see
Figs. 4(a) and 4(c). The steady-state autocorrelation function
of ¢, g¢(t), appears to display a purely exponential decay with
the exponent ~1: g,(t) ~ 1.61 exp(—0.997), see Fig. 4(b).
The fitted coefficient 1.61 is close to the theoretically pre-
dicted variance Var(£) ~ 72/6 ~ 1.64.

III. MODEL B: RESET OF FARTHEST PARTICLE

We now consider model B. To remind the reader, here,
at each random resetting event, the particle farthest from the
origin is reset to zero. In the limit of N — oo, the rescaled

10 .
(a) /,/ 10091 (b)
s 8 e =
) p =
10711
6{
102 103 10 0 2 4
N T
3
(c)
S 2
E -~ —g - — —r->—v-:—h
> 14

0102 103 104
N

FIG. 4. Noninteracting Brownian particles under reset (model
A). (a) The average radius of the system (£) in the steady state.
The simulation results (points) are plotted as a function of N on the
logarithmic scale. The dashed line shows the theoretical prediction in
Eq. (32). (b) The autocorrelation function of the radius of the system
as a function of t for N = 10* (logarithmic scale), fitted by a single
exponential function (dashed line, see text). (c) The variance of ¢

as measured in the simulations (points) vs the prediction 72/6, see
Eq. (36) (dashed line).

and normalized coarse-grained spatial particle density u(x, t)
is governed by the deterministic free-boundary problem:

du(x,t) = afu(x, 1)+ 8(x), lx| < £(t), (37)

u(x,t) =0, |x] > £(1), (38)

170}
f ulx,t)dx =1, 39

—L(t)

where u(x, t) is continuous at x = £(¢) [27]. As in the case of
the Brownian bees model [15,17], here too, the coarse-grained
density u(x, ¢) lives on the compact support |x| < £(¢). The
effective absorbing walls at x = ££(¢) move in synchrony
to maintain a constant number of particles. The emergence,
in the hydrodynamic limit, of compact support is a direct
consequence of the reset of the farthest particle.

At long times, the solution of the problem in Eqgs. (37)—(39)
approaches a unique steady state:

{%(50 = |xD),
Ux) =

0, lx| > £o,

x| < o, (40)
41)

whereas £(¢) approaches (. Here, £( = /2 is the (rescaled)
radius of the system in the limit of N — oo. In Fig. 5 we
compare Egs. (40) and (41) with a late-time snapshot from
MC simulations.

Because of the interparticle correlations in model B, exact
probabilistic calculations are hardly possible. Therefore, we
assume that N is large (but finite) and use the coarse-grained
description of the system in terms of a Langevin equation. The
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FIG.5. A MC realization of N = 10* interacting Brownian
particles (model B, blue bars) is compared with the deterministic
steady state solution in Eq. (40) (solid line) for r = D = 1. The
simulation snapshot is taken at r = 100.

Langevin equation to replace Eq. (37) is

du(x, 1) = d2u(x, 1) +8(x) + R(u, x, 1), x| <€),

(42)

while Egs. (38) and (39) remain unchanged. The noise term
R = Rpm + R, originates from two independent noises given
by Egs. (8) and (10), as discussed in Sec. II. The calculation
procedure below closely follows that used in Ref. [17] for
the Brownian bees model. For convenience, we differentiate
the conservation law in Eq. (39) with respect to time and use
Eq. (42) to arrive at the equation:
)
oeu[—L(t), 1] — dull(t),t] =1 +/ R(u,x,t) dx, (43)
—L(t)
which replaces Eq. (39).
Employing the small parameter 1/+/N < 1 and linearizing
Eq. (42) around the steady state in Eq. (40), we find

u(x,t) =U(x) 4+ v(x, ), v K 1, (44)

0t) = Lo+ 80(t),  |86(1)| < 1. (45)

Plugging these into Eqgs. (38), (42), and (43), we obtain the
following linearized equations:

dv(x, 1) — 3*v(x, 1) = R(x, 1), (46)
v(Ely, 1) = —18L(1), 47)
Lo
d,v(—Lo, 1) — 0, v(Lo, 1) = / R(x, 1) dx, (48)
—fy

where R(x,t) = R(U (x), x, t). Again, at long times, we can
set the initial condition as v(x, fy) = 0 and send 7y — —o0.
We rewrite the conditions in Eq. (47) as

v(—Lo,t) =v(p,t) and 84(t) =2v(y,1). (49)

The first of these relations allows one to continuously extend
v(x, ) and R(x, ) to the whole x axis periodically. While v
is continuous, its x derivative has finite jumps at x = £o(1 +
2m) for any m = 0, £1, ..., see Eq. (48). To account for these

jumps, we need to modify the source term in Eq. (46). We
define R = Rpm + R, with

Lo
Ri = Ri(x, 1) — [/ Ri(x, t)dx] Z S[x — €o(1 + 2m)],
Ly

mez
(50)
for i = {BM, a}, such that Eq. (46) becomes

dv(x, 1) — 3% v(x, 1) = R(x, 1). (51)

Note that the new source term R obeys the equation
f%ﬁA R(x, t)dx = 0 for any real A. We can then further sim-
plify the problem by shifting the interval of interest [—£¢, o]

by an infinitesimal A such that Eq. (48) becomes
o v(—Lo+ A, 1) — 0 v(lo + A, 1) =0, (52)

for A — 0.

The problem defined by Egs. (51), (49), and (52) can be
solved using the Green’s function formalism [17]. We expand
over the eigenfunctions of the linear operator in Eq. (51),
given by {1, cos(mnx/~/2), sin(wnx/~/2)}, with correspond-
ing eigenvalues A, = m2n?/2, for n € N. The solutions for v
and ¢ are

1 & o V2 5
)= —F= — MRt — 1
v(x,t) «/5;/0 /ﬁexp( tHR(x',t —t")

x cos[y/dn(x — x)dx'dr’, (53)
00 00 pa2
80(t) = ﬁZ(—ﬁ”/ / exp(—=At )R, 1 — 1)
n=1 0 -2

x cos(y/A.x)dx'dt'. 54)

We now use these results to determine the autocorrelation
functions for the center of mass and radius of the system.
Plugging Eq. (53) into Eq. (15), we express the center of mass
X(t) as
2.2 o —1)yrt!
X(t) = L— (=1
b4

n=1

fn(®),

n

NS

fut) = f / exp(—Ant’) sin(y/ 2, x)R(x, 1 — t')dt'dx.
-2 Jo

(55

Plugging this expression into Eq. (6), averaging over the
noise, and summing up one of the two sums, we find

32 & 1 n? )
(1) = — X_; G P [ -5+ z] (56)
This autocorrelation is qualitatively similar to that for the
Brownian bees [17]. It is more complicated than that for
model A, see Eq. (17), because of the discrete spectrum of
the linearized operator of model B, in contrast to the con-
tinuous spectrum of model A. Particularly X (¢) of model B
behaves as an Ornstein-Uhlenbeck macroparticle only in the
limit of t > 1, where gx(t) exhibits an exponential decay
~exp(—m?t/2). For T =0, the series in Eq. (56) can be
summed up, leading to the variance (X?) = gx(0) = 1/(3N),
which is smaller than the corresponding result in Eq. (17) for
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FIG. 6. The autocorrelation functions in model B of (a) the center
of mass of the system and (b) the radius of the system (simulations,
points) for N = 10* compared with Eq. (56) in (a) and Eq. (58) in
(b) (dashed lines).

model A by a factor of 6. In Fig. 6(a), we compare Eq. (56)
with simulations and observe very good agreement.

We now turn to the fluctuations in the radius of the system.
Averaging Eq. (54) over the noise, one can see that, within the
linear theory, (§¢) = 0. The two-time autocorrelation of the
radius of the system is thus given by

ge(t) = (L0)L(T)) — (£)* = (8£(0)8¢L(x)).  (57)

Plugging Eq. (54) into Eq. (§7) and averaging over the noise,
we find after some algebra

(v) ZiA L2
T)= — n €X ——n°nT|,
& nanl P 2

A 1 y {Ztanh (%) +coth (%)  nodd,
n

2 58
tanh (%) n even. (58)

For T # 0, the sum in Eq. (58) converges and agrees well with
MC simulations, see Fig. 6(b). However, for t = 0, the infinite
series in Eq. (58) diverges logarithmically because the large-n
asymptotic of A, scales as 1/n:
_ J3/n, nodd,
Ap > {l/n, n even, (59)
implying an infinite variance of £(¢). Needless to say, the
original microscopic model exhibits a finite variance of the
radius of the system, as MC simulations show (see below).
To resolve this contradiction, we follow the line of argument
of Ref. [17], where a similar apparent divergence was ob-
served. We return to Eq. (58) and recall that the coarse-grained
Langevin description is only valid at macroscopic time lags,
7 > 1/N. Therefore, we can introduce a cutoff at T ~ 1 /N
which yields g,(0) with logarithmic (in N) accuracy.

The calculations proceed in the following way. Using the
large n asymptotic of A, given by Eq. (59), we replace
the summation in Eq. (58) by integration and approximate the
results for || « 1, ultimately leading to

= 2 1 ! 60
ge(f)—ﬁ H<m>, (60)

for 1/N « |t| < 1. To evaluate the variance, we introduce a
logarithmic cutoff in Eq. (60) at T = 1/N and arrive at the
variance with logarithmic accuracy:

2InN

x1072
415 @ (b)
3 6
=~ A
= 2 ©
©
2 ; 5]
1_
0l e, 44,
102 103 10 6 8
N In(N)

FIG. 7. The variance of the system’s radius [model B, Eq. (61)]
compared with MC simulation (points). In (a) the variance is plotted
as a function of N. In (b) the variance times N is plotted as a
function of In N. The dashed lines represent the function Nvar(¢) =
(2/m)InN + 0.97, where the factor 0.97 is fitted and corresponds
to a numerical factor under the logarithm. This factor is beyond the
logarithmic accuracy of Eq. (61).

The presence of the large logarithmic factor In N is notewor-
thy. Strikingly, Egs. (60) and (61) are identical, including the
coefficient 2/, to those obtained for the Brownian bees [17].
In Fig. 7, we compare Eq. (61) with MC simulations and
observe good agreement.

Notably, in the frequency domain, the logarithmic scaling
with 7, described by Eq. (60), corresponds to a 1/ f noise, as
was already observed for the Brownian bees [17]. The 1/f
noise has been observed in the power spectral density (PSD)
of a multitude of stochastic processes [28—-30]. We now briefly
describe this connection. For stationary processes, the PSD
is related to the autocorrelation function, Eq. (57), by the
Wiener-Khinchin theorem:

[e.¢]
(S(f) = 2/ ge(t)cos2m frydr. (62)
0
We thus Fourier transform Eq. (58), resulting in
8 — A,n?
S = — —_—, 63
) nN216f2+n4n2 (63)

n=1

with A, given by Eq. (58). Two limits are of particular interest
here: the low-frequency limit f < 1 which corresponds to
long time lags T > 1 and the high-frequency limit | < f <
N which corresponds to short (but still macroscopic) times
lags 1/N < t < 1. In each of these cases, we Taylor expand

Eq. (63), ultimately leading to
sy ~ 2400, <,

~— X

N\ H+00™, >

At long times (small f), the PSD approaches a constant, con-
sistent with uncorrelated (white) noise, while at short times
(large f), the PSD exhibits a 1/ f noise. In Fig. 8, we compare
our theoretical predictions in Egs. (63) and (64) of the power
spectrum of the radius of the system with the power spectrum
as computed from MC simulations. Good agreement is ob-
served over a broad range of frequencies.

(64)

IV. FIRST-PASSAGE TIME TO A DISTANT TARGET

Let us add an additional ingredient to our systems of
Brownian particles with reset. Suppose that there is a static
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FIG. 8. Theoretical prediction in Eq. (63) for the power spectral
density of the radius of the system (solid line) in model B and its
asymptotics in Eq. (64) (dashed lines) are compared with MC sim-
ulation results (red points). The simulation parameters are N = 10°,
the total simulation time is # = 10, the number of simulations is 500,
and the sample rate is N.

target at x = L. Upon the first passage of a particle to the
target, the process is stopped. What is the MFPT? We start
with model A, where the calculation employs the known
single-particle results [1].

A. MFPT for model A

When L is sufficiently large (we will obtain the condition
shortly), the expected MFPT to the target at x = L is much
longer than the characteristic time O(1) of establishment of
the steady state. In this long-time limit, the single-particle
survival probability of the target S(¢) (the probability not to
reach the target until time #) is [1]

S1(t) ~ exp[—t exp(—L)]. (65)
Correspondingly, the single-particle probability density of ar-
riving at the target at time 7 is

dS(t)

fil) = Y =~ exp(—L) exp[—t exp(—L)]. (66)

The probability density of one of the N particles to first reach
the target is, therefore,

v@ =Nf@) SN @)
~ N exp(—L)exp[—t exp(—L)]
x exp[—(N — 1)t exp(—L)]
= N exp(—L) exp[—Nt exp(—L)]. ©67)
The MFPT, (T'), is given by the first moment of fy(¢):

o0 1
(T) = / vt = exp(L). (68)
0

To be consistent with the long-time asymptotic in Eq. (65),
we must demand that (7') > 1, which leads to the condition
L > InN, that is, L must be much larger than the radius of
the system, see Eq. (32). Figure 9 compares the theoretical
prediction in Eq. (68) with simulation results. Very good
agreement is observed for sufficiently large L.

104 x w=20 o % X L=6
< N=30 o 0.051% < L=7
X N=40 o \ =8
—_— N=50 \\ x L=9
E g{ x n=eo )’% T:D 0.04 N\, x L=10
=2 M = X,
E . < 0.03{ .
xay’" \X\\
615" 0.02 L
k4 =~
6 8 10 20 40 60
L N

FIG. 9. Rescaled mean first-passage time (MFPT) to the static
target at x = L as a function of (a) L and (b) N for model A. x marks:
simulations; dashed line: theoretical prediction in Eq. (68).

B. MFPT for model B and for the Brownian bees model

Due to the interparticle correlations in these two models,
the determination of the MFPT is a hard problem. Here, we
obtain an upper bound for the MFPT for these two models
and compare this bound with simulation results for model B.
Let us temporarily reintroduce the original variables, where
the reset rate is r and the diffusion constant is D. For a single
Brownian particle, resetting to x = 0 at rate r, the MFPT to
the target at x = L is exactly given by Ref. [1]:

Ty =1 L) -1 69
(1)_;|:exp< B>—] (69)

If L is smaller than or comparable with £ (the radius of
the system of compact support in the hydrodynamic limit),
the MFPT of our particle systems will strongly depend on
the initial particle positions. Of most interest, therefore, is the
limit of sufficiently large L — £y, when (T') is expected to be
much longer than the characteristic relaxation time ~1/r of
the system to its NESS.

Our upper bound on (7T") assumes, both for model B and
for the Brownian bees model, a breakaway or evaporation sce-
nario. In this scenario, a single particle breaks away from the
rest of the particles to make an unusually large excursion and
reach the target before being reset (to the origin in model B
or to the location of one of the other particles in the Brownian
bees model). Typically, particles which start close to x = £
have the highest chance of reaching the target before being
reset. Still, most of their attempts to reach the target fail be-
cause of the reset. After a resetting event, a different particle,
also from a close vicinity of x = £, breaks away and attempts
to reach the target, etc. The upper bound is obtained when we
restrict the ensemble to such particles. Thus, we arrive at an
effective single-particle process where the effective particle is
reset with rate Nr to the point x = ¢y. The bound is then given
by Eq. (69), with r replaced by Nr and L replaced by L — £,

resulting in
)~ Lexp| M- 1) (70)
~ —ex —(L - ,
Nr p D 0

where we dropped the term —1 inside the square brackets of
Eq. (69) to avoid excess of accuracy. Crucially, (T') as de-
scribed by Eq. (70) scales exponentially with +/N rather than
with N. Therefore, the single-particle evaporation scenario is
exponentially more efficient than any macroscopic scenario
which involves O(N) effective number of particles.
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FIG. 10. The mean first-passage time (MFPT) to the static target
at x = L as a function of L for model B with N = 100, obtained
by direct MC simulation (x marks) and weighted ensemble (WE)
simulations (points).

We must demand for self-consistency that the MFPT in
Eq. (70) be much longer than the relaxation time to the NESS,
that is, (T') > 1/r. Going back to the units where r = D = 1,
this strong inequality yields L — £y >> InN/+/N. For both
model B and the Brownian bees, this condition coincides, up
to a power of InN, with the condition that L — ¢ is much
larger than the standard deviation of the system radius £(¢),
see Eq. (61).

The evaporation scenario that we adopted here is similar
in spirit to the eigenvalue evaporation scenario in random
matrix theory [31-35]. The latter is known to provide exact
asymptotic results for the statistics of the largest eigenvalues.

How close is the upper bound in Eq. (70) to the actual
MFPT? To answer this question, we ran stochastic simulations
of the first passage in model B. For large N and L — ¢,
direct MC simulations are very costly in terms of simulation
time. For this reason, we employed highly efficient weighted
ensemble (WE) simulations [36,37], see the Appendix. As
evidenced by Fig. 10, direct and WE simulations give similar
results in the parameter regimes which both methods can
cover.

The bound in Eq. (70) to the MFPT can be rewritten (in the
units of r = D = 1) as
L—2¥

o
In Fig. 11, we compare this prediction with the WE simula-
tions separately as a function of L and N. As to be expected
from an upper bound, Eq. (70) slightly overestimates the
MFPT for all values of N. Nonetheless, the functional depen-
dence of (T') on L and on N appears to be captured correctly.

A salient feature of Fig. 11 is that the relative accuracy
of Eq. (70) in its description of the simulation results does
not visibly improve with the increase of N. To explain this
feature, we notice that the bound in Eq. (70) can be improved
if one exploits typical steady-state fluctuations of £(z) and
replaces the effective single-particle reset point x = £y by x =
Lo+ aN~'/? with some positive numerical factor a = O(1).
[Here, we ignore the In N factor in Eq. (61).] This gives rise
to an additive term in the exponent which is independent of N.

In(N(T)) ~ (71)

the simulation results for different values of N (100 < N < 400)
(points). (b) In(N(T'))/(L — £y) as a function of /N (dashed line)
is compared with simulations for different values of L (points).

V. DISCUSSION

In this paper, we studied stationary fluctuations in
models A and B which involve N Brownian particles sub-
ject to stochastic reset in one dimension with different
reset rules. We combined exact probabilistic methods with a
coarse-grained, Langevin-type approach, previously derived
for systems of reacting and diffusing particles for N > 1.

Employing linearization of the Langevin equation around
the steady-state solutions, obtained in the hydrodynamic limit
of N — oo, we calculated, for both models, the two-time
autocorrelation function, and particularly the variance, of the
center of mass. Like the previously studied Brownian bees
model [17], the variance of the center of mass for both models
scales as 1/N, as could have been expected from the law
of large numbers. The independent character of particles in
model A enabled us to verify our macroscopic results in exact
microscopic calculations and to extend the results for the
center of mass to its large deviations. We calculated the exact
distribution of the center of mass for any number of particles.

We also studied, in both models, fluctuations of the radius
of the system. In model A, we determined the exact distribu-
tion of this quantity for any N. At large N, the average radius
of the system behaves as In N, whereas the variance of the
radius of the system is N independent. In model B, the average
radius of the system is independent of N, whereas the variance
scales as (1/N)In N. The unusual latter scaling results from a
logarithmic behavior of the two-time autocorrelation function
at steady state which, in the frequency domain, corresponds
to 1/f noise. These behaviors of model B are shared by the
Brownian bees model [17]. This fact hints at universality of
this scenario for a whole class of reset models where only the
farthest particles are subject to reset, while the exact destina-
tion of the reset particle is irrelevant if it is in the bulk of the
system. This issue is presently under detailed study [38].

Finally, we studied the MFPT to a distant target in models
A and B and in the Brownian bees model. For model A, this
quantity directly follows from the known single-particle re-
sults. For model B and the Brownian bees model, we proposed
a sharp upper bound for the MFPT, based on the evaporation
scenario like the one that appears in the random matrix theory.
The bound is determined by a single particle which evaporates
from the bulk of the particles to reach the distant target. Our
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WE simulations of model B showed that this bound also gives
a good approximation to the first-passage time, both as a
function of the distance to the target L and total number of
particles N.

Comparing Egs. (68) and (70) (with r = D = 1), in both
cases, the MFPT to a distant target is exponentially long with
respect to L or L — £y. In model A, however, it is exponen-
tially (in VN ) shorter than in the two other models. This is not
surprising, as the reset rule of model B and of the Brownian
bees model discourages the most efficient explorers of distant
regions.
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APPENDIX: WE SIMULATIONS

In Secs. II and III, we compared our analytical results
with direct continuous-time MC simulations of the micro-
scopic model [3,39]. However, direct simulations become
prohibitively long for the purpose of determining, in Sec. IV,
the MFPT to the stationary target. For the latter, we used
more efficient WE simulations. The idea of the WE method
is to run significantly more simulations in regions of interest
while redistributing the statistical weights of the trajectories

accordingly. To this end, space is divided into bins, which
can be predefined or interactively chosen (on the fly), to
ensure sampling in specific regions of interest. We start the
simulation with m ensembles, each with N particles that are
located in the origin. Each of the m ensembles are given
initial equal weights of 1/m. The simulation consists of two
general steps: (a) Ensembles are advanced in time for time
Twe, Where the time-propagation method follows the Gillespie
algorithm [39,40]. (b) Ensembles are resampled to maintain m
trajectories in each occupied bin, while bins that are unoccu-
pied remain as such. The process of resampling itself can be
done in various ways if the distribution is maintained. In our
simulation, we used the original resampling method suggested
by Huber and Kim [36,37]. Note that twg < 1 is much shorter
than the relaxation time of the system but much longer than
the typical time between elemental processes so as to increase
efficiency. We also emphasize that bins need to be chosen
wisely: If too far apart, trajectories will not reach remote
regions, while if chosen too close together, the computational
cost will be very high. Generally, there is a tradeoff between
the number of bins and the trajectories per bin, assuming some
memory limit. In our simulations, to achieve high efficiency,
we interactively changed the binning.

We checked that the WE simulations results coincide
with brute force MC simulations in parameter regimes where
the latter are applicable, see, e.g., Fig. 10. Notably, WE
simulations were much more efficient than brute-force MC
simulations: While the latter ran for >2 weeks to produce
Fig. 10, the former ran under an hour. We performed error

evaluation numerically by running the simulations for differ-
ent Twg. The maximum error that we encountered was 15%.
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