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Fluid flow at interfaces driven by thermal gradients
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Thermal forces drive several nonequilibrium phenomena able to set a fluid in motion without pressure gradi-
ents. Although the most celebrated effect is thermophoresis, also known as Ludwig-Soret effect, probably the
simplest example where thermal forces are at play is thermo-osmosis: The motion of a confined fluid exclusively
due to the presence of a temperature gradient. We present a concise but complete derivation of the microscopic
theory of thermo-osmosis based on linear response theory. This approach is applied to a simple fluid confined in
a slab geometry, mimicking the flow through a pore in a membrane separating two fluid reservoirs at different
temperatures. We consider both the case of an open channel, where the fluid can flow freely, and that of a closed
channel, where mass transport is inhibited and a pressure drop sets in at the boundaries. Quantitative results
require the evaluation of generalized transport coefficients, but a preliminary check on a specific prediction of
the theory has been successfully performed via nonequilibrium molecular dynamics simulations.
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I. INTRODUCTION

In a bulk fluid at constant pressure a thermal gradient
cannot exert a net force on the fluid particles [1]: Fluid motion
in homogeneous systems can only be induced by external
forces, such as gravity or pressure gradients. However, in the
presence of a confining surface (or, more generally, in an
inhomogeneous environment), a fluid flow develops due to
the thermal gradient. This effect, now referred to as thermo-
osmosis [2], was observed for the first time by Feddersen [3]
in 1873, who measured the temperature-induced motion of air
through a tube fitted with porous plugs of gypsum or spongy
platinum. The gas drift was directed toward the warmer side
as long as a temperature difference between the sides of the
porous partition was present. More quantitative investigations
of thermo-osmosis in gases have been indirectly spurred by
the invention of the radiometer by Crookes [4]. The purpose
of the radiometer [5] was to detect the pressure of light [6].
However, as shown by the work of Maxwell [7], Schuster [8],
and Reynolds [9], its motion is due to the thermo-osmotic
flow which develops near the edges of the vanes [10,11],
and not to the momentum transfer due to the incidend elec-
tromagnetic radiation. More recently, Sone and Yoshimoto
proposed a simple experiment [12] to demonstrate the onset
of thermo-osmosis, showing that, at sufficiently low pressure,
the thermo-osmotic flow which develops near the surface can
even overwhelm convection.

The same effect also occurs in liquids, but the magnitude
of the flow turns out to be much smaller than in gases. This is
probably the reason why it took many years after the discovery
of Feddersen before that Lippman was able to detect the
thermo-osmotic flow of water through a membrane of gelatin
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separating two volumes held at different temperatures [13].
A few years later, Aubert [14] addressed the problem more
systematically and found that, when subject to a temperature
difference, some membranes originate a water flow from the
cold to the hot region whereas other in the opposite direction.
Thermo-osmosis in liquids was rediscovered in the 1940s by
Derjaguin and Sidorenkov [15], who were not aware of the
works of Lippman and Aubert. The group at the Russian
Academy of Sciences studied thermo-osmosis across differ-
ent membranes and capillaries [16], but, as understood later,
their results were strongly influenced by the presence of free
charges in the membrane [17]. A further complication is that
the direction of the thermo-osmotic flow can change depend-
ing on the temperature, as shown by Haase and de Greiff, who
studied thermo-osmosis of water through a cellophane mem-
brane at different temperatures [18] and reported an inversion
of the effect at temperatures higher than 60 ◦C.

Currently thermal osmosis is an accepted phenomenon and
a renewed interest is stimulated in relation to possible applica-
tions to fuel cells, water management, desalination and water
recovery [19,20].

Since the studies by Derjaguin, many authors have mea-
sured the pressure gradient induced by thermo-osmosis
through membranes and capillaries under different condi-
tions, but the experimental results often disagree about the
direction and the magnitude of thermo-osmotic fluxes: The
apparently simple phenomenon of thermal osmosis is not yet
fully characterised (and understood) at a microscopic level.
For a review see Refs. [20,21] and references therein. A recent
work, claiming the first microscale observation of the velocity
field imposed by thermo-osmosis, goes toward this direction
[22], but the results seem to be affected by the presence of
surface charge.

Actually, one of the reasons at the origin of the contra-
dictory results found in the liquid regime is the lack of a
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deep understanding of the phenomenon through a microscopic
theory, able to account for the perturbation on the liquid struc-
ture (and dynamics) in a few molecular layers near the wall.
Thermo-osmosis in rarefied gases [23] is to date accurately
predicted by kinetic theories [10,24]. Maxwell in 1879 ob-
tained the expression [see Eq. (44)] for the thermo-osmotic
velocity of a gas subject to a thermal gradient parallel to
a confining surface [7]. His derivation unravels the mecha-
nism behind thermo-osmosis in gases, namely the longitudinal
transfer of momentum during the collision between the parti-
cle and the surface [10].

In the opposite limit, the liquid regime, thermo-osmosis is
described in the language of (macroscopic) irreversible ther-
modynamics [25]. This approach was proposed many years
ago by Derjaguin [15–17] and identifies the driving force as
the local enthalpy change induced by the confining surface. At
the moment, most of the numerical and experimental works
on thermo-osmosis in liquids essentially rely on this theory
for the interpretation of their results [20,26–28]. In partic-
ular, in molecular dynamics simulations the velocity profile
is obtained by evaluating the excess enthalphy near the wall,
which acts as the force term in the linearized Navier-Stokes
equations. However, the hypothesis underlying continuum
theories is that the relevant observables vary on a length
scale much larger than the typical range of the interaction:
Near a surface this condition is no longer satisfied because
the fluid properties eventually driving the phenomenon may
display strong, but short-ranged, modulations. In addition, the
viscosity, which is assumed to be constant in the whole system
[16,26–28], is perturbed near the the interface [29–32]. For
this reason, the accuracy of the results based on the classi-
cal macroscopic paradigm are still under debate. Recently,
a series of simulations on a model system [33–35], where
spurious effects due to the charge and exotic confining po-
tentials are not present, helped to gain a deeper understanding
of the origin of thermo-osmosis in liquids. The main focus
of the simulations was the direct measure of the “thermal
force” acting on the fluid particles, due to the presence of a
thermal gradient. The results were then compared with avail-
able expressions, coming either from a “mechanical route”
or nonequilibrium thermodynamics, showing that only the
latter approach is able to provide a good agreement with the
numerical simulations.

Prompted by these studies, a microscopic derivation of
the thermo-osmotic flow based on linear response theory was
developed [36]. The first formulation of the theory focused
on thermo-osmosis in the simplest configuration, an infinite
open channel (slit) without boundaries at its ends (see Fig. 1).
In this work we provide a critical derivation of the theory
and we extend our approach to a closed channel (slit), a
geometry particularly relevant for experiments in membranes
and simulations in systems without boundary conditions. We
also deduce the equations in the case of cylindrical geom-
etry, relevant for the description of the flow in pores and
nanotubes. Moreover, a novel physical interpretation of the
equations is presented, demonstrating a close correspondence
between our approach, based on Kubo-Mori formalism, and
the phenomenological expressions derived by Derjaguin [16].
This result sheds light on the interpretation of the numerical
simulations performed in Refs. [33,34]. To test our model,

we derived analytically the scaling of the pressure drop for a
large channel and we verified these results through molecular
dynamics simulations in a closed two-dimensional system.

The paper is organised as follows. In Sec. II we provide a
complete, critical derivation of the theoretical framework. In
Sec. III we derive specific predictions in both open and closed
channel geometry. The results from the numerical simulations
are presented in Sec. IV.

II. MICROSCOPIC THEORY

A. The model

Although the microscopic approach described in this
section applies to general Hamiltonian systems, we will con-
centrate on the most popular model of simple fluid [37]: A
collection of N classical particles mutually interacting via
the spherically symmetric pair potential v(|qi − q j |), possibly
under the effects of an external field V (q) mimicking the
presence of confining walls. The microscopic Hamiltonian
density of such a system can be written as

Ĥ(r) =
∑

i

δ(qi − r) ĥi

=
∑

i

δ(qi − r)

[
p2

i

2m
+ V (qi ) + 1

2

∑
j( �=i)

v(qi j )

]
,

where the shorthand notation qi j = |qi − q j | has been in-
troduced. We note that this definition suffers from some
arbitrariness, due to the nonlocal nature of the interparticle po-
tential v(qi j ): In this expression, the energy of the pair (i, j) is
attributed half to each particle [38]. Here and in the following,
“hat” denotes a function defined in the 6N-dimensional phase
space of the system. The Hamiltonian of the model is then
given by the integrated Hamiltonian density:

Ĥ =
∫

dr Ĥ(r).

The Liouville operator, acting on a function Â defined in
the phase space, is written in terms of the Poisson brackets as
L = {Ĥ, ·} and governs the time evolution of every observ-
able:

dÂ

dt
= ∂Â

∂t
− L Â.

Another important quantity is the phase space distribution
function F̂ (t ) which provides the probability of a given micro-
scopic configuration (q1 · · · qN , p1 · · · pN ). As such, it satisfies
the normalization condition

∫
d� F̂ (t ) = 1, where d� is the

volume element in the phase space. In systems out of equilib-
rium, the phase space distribution F̂ (t ) is generally a function
of time, but in a steady state F̂ becomes time independent.
The time evolution of the phase space distribution is again
expressed in terms of the Liouville operator as

dF̂

dt
= ∂F̂

∂t
+ L F̂ . (1)

In full thermodynamic equilibrium, the distribution F̂ is given
by the Boltzmann expression F̂0 = Z−1 e−βĤ in terms of the
inverse temperature β = (kBT )−1. The normalization factor Z
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is the canonical partition function. Being Ĥ independent of
time, the phase distribution F̂0 is indeed a stationary solution
of the evolution equation.

B. Linear response theory

Our goal is to describe the steady state of a possibly in-
homogeneous fluid in a temperature gradient induced by two
different temperatures at the opposite boundaries of the sam-
ple. Because of the ensuing nonuniform temperature, standard
equilibrium statistical mechanics cannot be straightforwardly
adopted. Even the natural concept of local equilibrium (LE),
a condition where the basic relations among thermodynamic
bulk quantities hold also locally, is just a first approximation
to the actual phase space distribution [39]. This can be proved
by first defining the most general energy density function of
the model

Ê (r) = Ĥ(r) − u(r) · ĵ(r) − μ(r)ρ̂(r) (2)

in terms of the previously defined Hamiltonian density Ĥ(r)
and of the densities of the other microscopic conserved quan-
tities, namely the momentum density

ĵα (r) =
∑

i

pα
i δ(r − qi ) (3)

and the mass density

ρ̂(r) = m
∑

i

δ(r − qi ).

Here u(r) and μ(r) are the fields related to the velocity profile
and the space-dependent chemical potential (per unit mass):
External parameters identifying the local velocity and chem-
ical potential of the LE state. These two fields, together with
the field related to the inverse temperature profile β(r), define
the most general LE distribution function:

F̂LE = Z−1
LE exp

[
−

∫
dr β(r) Ê (r)

]
. (4)

In the special case of uniform external fields β, u, μ this
distribution does indeed describe the equilibrium state of our
system: A fluid flowing at uniform velocity u. Therefore,
for slowly varying fields, it is natural to expect that this LE
distribution will provide a faithful description of the state
of the system. However, in a fluid close to a confining sur-
face, all physical properties, and then also the external fields
β(r), u(r), μ(r), vary considerably on the scale of the correla-
tion length making the LE assumption questionable.

It is well known that F̂LE is not a stationary solution of the
evolution equation (1), as shown by the explicit evaluation of
its time derivative:

dF̂LE

dt
= L F̂LE = F̂LE

∫
dr

{ − β ∂α Ĵα
H

+β uα
[
∂ν Ĵαν

j − ρ̂ ∂αV
] + β μ ∂α ĵα

}
, (5)

where the dependence on the local position r is understood.
Here, ∂α is the partial derivative with respect to rα and the
summation over repeated Greek indices is implied. Mass,

energy and momentum currents ĵα (r), Ĵα
H , Ĵαν

j are defined by
the Poisson brackets:

L ρ̂(r) = {Ĥ, ρ̂(r)} = ∂α ĵα (r), (6)

L Ĥ(r) = {Ĥ, Ĥ(r)} = ∂α Ĵα
H (r), (7)

L ĵα (r) = {Ĥ, ĵα (r)} = ∂ν Ĵαν
j (r) + ρ̂(r)

m
∂αV (r). (8)

The mass current actually coincides with the previously
defined momentum density ĵ(r). Instead, the energy and mo-
mentum currents are not uniquely defined by Eqs. (7) and
(8) providing only their divergence. This ambiguity originates
from the presence of nonlocal terms in the pair interaction
contribution, as thoroughly discussed in the literature [38,40].
The explicit expressions for the energy and momentum cur-
rents are written as

Ĵα
H (r) =

∑
i

pν
i

m

[
ĥi δ(r − qi )δ

αν + 	αν
i (r)

]
, (9)

Ĵαν
j (r) =

∑
i

[
pα

i pν
i

m
δ(r − qi ) + 	αν

i (r)

]
, (10)

where the nonlocal contribution is defined by

	αν
i (r) = 1

2

∑
j( �=i)

∂v(qi j )

∂qα
i

∫
Ci j

dsν δ(r − s) (11)

and depends on the (arbitrary) choice of the path Ci j connect-
ing the position qi of particle i to the position q j of particle j
[40]. Despite this intrinsic ambiguity in the definition of the
energy and momentum currents, we stress that the expression
(5) is well defined, depending uniquely on the divergence of
the currents.

Equation (5) shows unambiguously that F̂LE evolves in
time and then it cannot represent a stationary phase space
distribution: The properties of the stationary state of a fluid
in a thermal gradient cannot be simply evaluated according
to the LE hypothesis [39,41]. To introduce the correction
terms, we follow the classical treatment by Mori under the
assumption that the deviations from LE are small, i.e., that the
effects of the external perturbations keeping the systems out
of equilibrium can be taken into account to linear order (linear
response theory) [39,42,43]. Starting at time t = 0 with a LE
phase distribution, after a long time, the stationary state can be
formally defined, without approximation, by the distribution

F̂ = F̂LE + lim
τ→∞

∫ τ

0
dt eL t L F̂LE. (12)

The limit τ → ∞ requires some care. To be well defined it has
to be performed at the end of the averaging process because
only averaged quantities possess a definite limit at long times,
while in an isolated system, the phase space distribution itself
evolves according to the Hamiltonian dynamics (1). The key
quantity L F̂LE has been evaluated in Eq. (5). By performing
an integration by parts we obtain

L F̂LE ∼ F̂0

∫
dr

{
Ĵα

H ∂αβ − Ĵαν
j ∂ν[β uα]

− ρ̂ ∂αV β uα − ĵα∂α[β μ]
}
, (13)
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where the assumption of small deviations from equilibrium
has been enforced by substituting the equilibrium distribution
function F̂0 in place of F̂LE at the right-hand side in Eq. (5).
Now, by use of Eqs. (12) and (13) we can evaluate the av-
erage of any observable in the stationary state. In particular,
Eq. (12) shows that the LE result has to be corrected with
the contribution coming from the time evolution of the phase
space distribution.

As a first step we evaluate the LE averages of the relevant
quantities previously defined. A straightforward calculation
gives, to first order in the deviations from thermodynamic
equilibrium, all the relevant observables:

(1) mass density:

〈ρ̂(r)〉LE = ρ0(r)|β(r),μ(r), (14)

(2) momentum density (or mass current):

〈 ĵα (r)〉LE = ρ0(r) uα (r), (15)

(3) energy current:

〈
Ĵα

H (r)
〉
LE

= β

∫
dr′ 〈Ĵα

H (r) ĵν (r′)
〉
0 uν (r′), (16)

(4) momentum current:

〈
Ĵαν

j (r)
〉
LE

= pαν
0 (r) −

∫
dr′〈Ĵαν

j (r)[�̂(r′) − 〈�̂(r′)〉0]
〉
0,

(17)

where ρ0(r) and pαν
0 (r) are the mass density and the pressure

tensor at equilibrium, evaluated at the average temperature
and chemical potential, and

�̂(r) = [β(r) − β] Ĥ(r) − [β(r)μ(r) − βμ] ρ̂(r).

One might expect that both the mass density and the mo-
mentum current in LE would coincide with their equilibrium
expressions evaluated at the local temperature and chemi-
cal potential. While this expectation is correct for the mass
density (14) and the diagonal components of the momentum
current, in general Eq. (17) allows for nonvanishing off-
diagonal components of 〈Ĵαν

j (r)〉LE.
Analogously, by use of Eqs. (12) and (13), we can evaluate

the corrections to the LE averages, but we will not report
the general, rather lengthy, expressions because the chosen
geometry will considerably simplify the results.

C. Steady state

Within Mori’s formalism, linear response theory provides
corrections to a known LE phase space distribution F̂LE. This
implies that we need to know the external space-dependent
fields β(r), u(r), μ(r) defining F̂LE via Eqs. (2) and (4). How-
ever, in a real experimental set-up this is not the case: We
can certainly tune the physical parameters, like temperature,
at the boundaries of the system, but the actual temperature
profile in the bulk of the fluid is self-consistently determined,
if the approach to equilibrium is governed by the system’s
Hamiltonian.

To determine the external field we need five additional
equations defining the steady state. The most natural proce-
dure is to impose the vanishing of the time derivative of the

x

z

0

h

h/2
∂xT

FIG. 1. Schematic representation of the slab geometry. The y
direction is perpendicular to the plane of the sheet.

averaged densities 〈ρ̂(r)〉, 〈Ĥ(r)〉, and 〈 ĵ(r)〉 which satisfy the
appropriate continuity equations:

∂t 〈ρ̂(r)〉 + ∂α〈 ĵα (r)〉 = 0, (18)

∂t 〈Ĥ(r)〉 + ∂ν

〈
Ĵν

H (r)
〉 = 0, (19)

∂t 〈 ĵα (r)〉 + ∂ν

〈
Ĵαν

j (r)
〉 + 〈ρ̂(r)〉

m
∂αV (r) = 0, (20)

where the averages are taken with the full steady state phase
space distribution (12). In this way, we have five new equa-
tions enforcing the stationarity of the state. Written in terms
of the spatial divergence of the previously defined currents,
these equations are going to identify the consistent stationary
profile of temperature, velocity, and chemical potential.

III. THERMO-OSMOSIS IN A CHANNEL

Now we apply the previously outlined strategy to the
simplest geometry supporting a three-dimensional flow: An
infinite slab in the (x, y) plane confined by a potential V (z)
in the z direction (see Fig 1). The thermal gradient is set in
the x direction by suitably choosing the boundary conditions
at x → ±∞, i.e., keeping the two boundaries at x → ±∞ at
different temperatures, uniform in the (y, z) plane. Therefore,
it is natural to expect that the system keeps uniform along y:
Both temperature and chemical potential vary linearly along
the x direction, while the velocity field u(r) is directed along
x and changes with z. On this basis, we look for a solution to
the continuity equations (18)–(20) of the form

β(r) = β + x ∂xβ, (21)

β(r)μ(r) = βμ + x ∂x[βμ], (22)

uα (r) = δαx ux(z), (23)

where β = (kBT )−1 and μ correspond to the average value
of the inverse temperature and the chemical potential respec-
tively and ∂xβ, ∂x[βμ] are space independent. It is convenient
to introduce the ratio between these two gradients because it
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is going to play a role in the definition of the velocity profile:

γ = ∂x[βμ]

∂xβ
. (24)

First, we have to evaluate the steady-state averages of the
mass density and mass, energy, and momentum currents. By
exploiting the symmetry properties of the chosen geometry,
several terms disappear. Both static and dynamic equilibrium
correlation functions odd in x or y must vanish by symmetry
after spatial integration, while equilibrium correlation func-
tions odd in z are allowed by the slab geometry. The mass
density therefore reduces to its LE expression (14), while the
non vanishing components of the currents become:

(1) mass current:

〈 ĵx(z)〉 = ρ0(z) ux(z) +
∫ ∞

0
dt

∫
dr′{〈 ĵx(r, t ) Ĵx

Q(r′)
〉
0 ∂xβ

−β
〈
ĵx(r, t ) Ĵxz

j (r′)
〉
0 ∂z′ux(z′)

}
, (25)

(2) energy current:

〈
Ĵx

H (z)
〉 = β

∫
dr′〈Ĵx

H (r) ĵx(r′)
〉
0 ux(z′)

+
∫ ∞

0
dt

∫
dr′{〈Ĵx

H (r, t ) Ĵx
Q(r′)

〉
0 ∂xβ

−β
〈
Ĵx

H (r, t ) Ĵxz
j (r′)

〉
0 ∂z′ux(z′)

}
, (26)

(3) diagonal momentum current:〈
Ĵαα

j (z)
〉 = pαα

0 (z)|β(x),μ(x) (27)

(α is not summed),
(4) off-diagonal momentum current:

〈
Ĵxz

j (z)
〉 = −

∫
dr′ x′ 〈Ĵxz

j (r) P̂ (r′)
〉
0 ∂xβ;

+
∫ ∞

0
dt

∫
dr′{〈Ĵxz

j (r, t ) Ĵx
Q(r′)

〉
0 ∂xβ

−β
〈
Ĵxz

j (r, t ) Ĵxz
j (r′)

〉
0 ∂z′ux(z′)

}
. (28)

Here we have defined the “heat current” operator as

Ĵx
Q(r) = Ĵx

H (r) − γ ĵx(r), (29)

together with the additional conjugate operator

P̂ (r) = Ĥ(r) − γ ρ̂(r). (30)

We stress that, contrary to bulk fluids, in inhomogeneous
systems the odd-rank correlation functions do not necessarily
vanish because isotropy is broken. The explicit expressions for
the currents immediately show that the two continuity equa-
tions ∂α〈 ĵα (r)〉 = 0 and ∂α〈Ĵα

H (r)〉 = 0 are identically satisfied
by our ansatz: Only the x component of the mass and energy
currents does not vanish, but their statistical averages do not
depend on x. The only nontrivial continuity equations are
those involving the momentum current. The continuity equa-
tion for the z component of the momentum density is

∂α

〈
Ĵ zα

j (r)
〉 = −〈ρ̂(r)〉

m

dV (z)

dz

and reduces to the hydrostatic equilibrium condition

d pzz
0 (z)

dz

∣∣∣∣
β(x),μ(x)

= −ρ0(z)

m

∣∣∣∣
β(x),μ(x)

dV (z)

dz
,

which is identically satisfied by the equilibrium normal pres-
sure at any temperature and chemical potential. Therefore,
the remaining continuity equation for the x component of the
momentum density ∂α〈Ĵxα

j (r)〉 = 0 contains the only relevant
information on the structure of the velocity profile:

∂x pxx
0 (z)|β(x)μ(x) − ∂z

∫
dr′ x′ 〈Ĵxz

j (r) P̂ (r′)
〉
0 ∂xβ

+ ∂z

∫ ∞

0
dt

∫
dr′{〈Ĵxz

j (r, t ) Ĵx
Q(r′)

〉
0 ∂xβ

−β
〈
Ĵxz

j (r, t ) Ĵxz
j (r′)

〉
0 ∂z′ux(z′)

} = 0. (31)

Equation (31) allows us to find the velocity field ux(z) in the
fluid, showing the validity of our ansatz. The equation can be
concisely written in the form∫ h

0
dz′K(z, z′) ∂z′ux(z′) = ∂xβ [Ss(z) + Sd (z)], (32)

where the kernel K(z, z′) has the physical meaning of local
viscosity

K(z, z′) = β

∫ ∞

0
dt ′

∫
dr′

⊥
〈
Ĵxz

j (r, t ′)Ĵxz
j (r′)

〉
0. (33)

On the right-hand side, Ss(z) and Sd (z) represent the static
and dynamic source terms

Ss(z) = −
∫ h

2

z
dz′ [∂β + γ ∂βμ]pxx

0 (z′)

−
∫

dr′ x′ 〈Ĵxz
j (r) P̂ (r′)

〉
0, (34)

Sd (z) =
∫ ∞

0
dt

∫
dr′〈Ĵxz

j (r, t ) Ĵx
Q(r′)

〉
0, (35)

where we have chosen the integration constant in the static
source term so to preserve the symmetry of the problem upon
reflection across the middle of the slab and the equilibrium
tangential pressure pxx

0 (z) is taken as a function of the in-
dependent thermodynamic variables β and βμ. Note that all
averages appearing in Eqs. (35)–(35) are performed in thermal
equilibrium.

Summarizing: The ansatz (21)–(23) provides a consistent
solution of the continuity equations in the stationary state.
This means that the thermal gradient ∂xβ is fully determined
by the boundary conditions at x = ±∞, while the gradient
of the velocity field is the solution of the integral equation
(32). The only unknown parameters are the ratio γ (24)
defining the chemical potential gradient and an undetermined
constant shift in the velocity field, coming from the solution
of Eq. (32). Both these apparent arbitrariness have a deep
physical meaning that will be discussed in the next sections.

A. The static source term

The previously derived expression of the static source
term (34) contains the thermodynamic derivatives of the
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transverse component of the pressure tensor plus a static cor-
relation function, whose physical meaning is not transparent.
Moreover, both terms are ill-defined because of the known
ambiguities in the definition of the momentum current Ĵαβ

j (r)
in inhomogeneous environments [38,40]. However, it can be
shown that the sum of these two terms, hence the full static
source term, is a well-defined quantity. This result follows
from the identity (see the Appendix):

∂z Ss(z) = −
∫

dr′ x′ ∂α

〈
Ĵxα

j (r) �P̂ (r′)
〉
0. (36)

with �P̂ (r′) = P̂ (r′) − 〈P̂ (r′)〉0. The divergence of the
momentum current, appearing in Eq. (36), is a well-defined
quantity, as discussed in Ref. [40], showing that the static
source term is indeed unambiguously defined. Similar argu-
ments allow to show that also the dynamic source term is well
defined, as expected.

We can also write Eq. (36) in an alternative, more transpar-
ent way (see the Appendix):

∂z Ss(z) = −kBT
[
hv

0 (z) − γ ρ0(z)
]
, (37)

where

hv
0 (z) =

[
5

2
kBT + V (z)

]
n0(z)

+ 1

2

∫
dr′ n2(r, r′)

[
v(s) − dv(s)

ds

(x − x′)2

s

]
s=|r−r′|

(38)

is the transverse component of the virial enthalpy density in
thermal equilibrium.

Notice that in inhomogeneous environments the enthalpy
density is indeed a tensor: In planar geometry, “transverse”
indicates the xx (or yy) component of the enthalpy tensor. As
in the case of all thermodynamic observables which depend
on the inter-particle potential, the enthalpy density cannot
be defined without ambiguities in nonhomogeneous systems.
Our derivation only shows that this specific expression for the
enthalpy, i.e., the virial one, is mathematically equivalent to
the well-defined form (36) of the static source term. However,
it would be misleading to infer that this is the “correct” def-
inition of the enthalpy density close to a wall: As shown in
Ref. [38], no unique definition for the enthalpy density can be
found in inhomogeneous environments.

Integrating in z, and using the symmetry about the middle
of the channel, we find

Ss(z) = kBT
∫ h

2

z
dz′ [hv

0 (z′) − γ ρ0(z′)
]
. (39)

This simple formula is exact within Linear Response Theory
for a slab geometry and, as it will become clear in Sec. III B,
is closely related to the result for the slip velocity origi-
nally obtained by Derjaguin [16] by use of nonequilibrium
thermodynamics. The static source term originates from the
spatial dependence of the (transverse) fluid enthalpy close to
a confining surface. Note, however, that linear response theory
predicts the presence of an additional “dynamic” source term
(35) and includes in the kernel (33) also the effects of spatial
inhomogeneities on the fluid viscosity.

In this section we refer to a simple slab geometry, but the
results can be easily generalized to a more physical cylindrical
(pore) geometry, as outlined in the Appendix.

B. Open channel

We previously mentioned that our equations allow to de-
termine the velocity profile subject to the definition of two
unknown constants: A uniform shift in the velocity field and
the ratio γ (24). It is not surprising that Eq. (32) provides
the gradient of the velocity field ux(z): The fluid Hamiltonian
is invariant under a Galileo transform in the x direction and
then the absolute fluid velocity is determined by the boundary
condition at the wall surface alone.

Regarding the appropriate value of γ , we observe that to
unambiguously determine the solution, we must supplement
our equations with additional conditions on the physical prop-
erties of the system at x → ±∞. In the geometry we dub
“open channel,” if we want to let the fluid flow freely in
the x direction, then it is natural to impose the vanishing of
the pressure gradient along x, at least far from the confining
surfaces. In this way, the fluid motion will be clearly attributed
to thermal, rather than mechanical, forces. Taking the channel
width h sufficiently large, we assume that the fluid in the cen-
tral region of the channel (z ∼ h

2 ) does not feel the effects of
the confining surfaces. Therefore, in that region, the pressure
tensor, which coincides with the LE result (27), is isotropic
and given by the bulk value p0. The vanishing of the gradient
along x then implies that

∂β p0 + γ ∂βμ p0 = 0.

Using standard thermodynamic relations, this equation allows
to identify the unknown ratio γ which equals the bulk en-
thalpy per unit mass at equilibrium:

γ = ∂x[βμ]

∂xβ
= − ∂β p0

∂βμ p0
= hm. (40)

Moreover, with this choice, the definition of the static source
term (34) simplifies because

[∂β + γ ∂βμ] pxx
0 (z) = ∂β pxx

0 (z)
∣∣

p0
,

where the derivative is taken at constant bulk pressure. Anal-
ogously, also the alternate expression (37) of the static term
simply becomes

Ss(z) = kBT
∫ h

2

z
dz′ �hv

0 (z′),

where �hv
0 (z′) is just the difference between the local virial

enthalpy density and hm ρ(z), which represents the enthalpy
density in the local density approximation.

Having fixed the value of the unknown constant γ , we
can now solve Eq. (32) for the gradient of the velocity field
∂zux(z). Unfortunately, this would require the evaluation of
several dynamical correlation functions. Therefore, an exact
expression for the velocity profile can be found only at low
densities, i.e., in the ideal gas limit. In the opposite limit,
namely in liquids, the dynamical correlations cannot be eval-
uated analytically, and a simplified form can be justified only
in a region sufficiently far from the confining walls.
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1. Liquid phase

The kernel K(z, z′) depends on both coordinates z and z′
because of the broken translational invariance in the z direc-
tion. Sufficiently far from the confining surfaces, it becomes
a function of the single combination ζ = z − z′. Moreover,
its integral

∫
dζ K(ζ ) coincides with the shear viscosity η

defined through the standard Green-Kubo formula [39]. Then,
the integral kernel of Eq. (32) can be physically interpreted
as a local viscosity and, far from the confining surfaces, it
is expected to decay in ζ . Far from the walls, for a slowly
varying velocity field ux(z), the left-hand side of Eq. (32) can
then be identified as η ∂zux(z).

Moreover, the source terms at the right-hand side of
Eq. (32) are nonvanishing only in a neighborhood of the
confining surfaces. With the choice (40) of γ , the static source
term (39) is different from zero only where the wall affects
the equilibrium property of the fluid, i.e., within a distance
of the order of the correlation length or of the range of
the wall-particle interaction. The dynamic source term (35)
vanishes in a bulk fluid, being the integral of an odd-rank
tensor dynamical correlation function, and is expected to be
different from zero only within a few correlation lengths or a
few mean free paths from the walls. Therefore, the gradient
of the velocity field, obtained by solving Eq. (32), will decay
to zero on some microscopic length scale from the wall. This
means that the velocity profile of the fluid, obtained from the
expression of the mass current (25), will tend to a constant far
from the surface.

This asymptotic value is precisely the “creep velocity”
introduced by Maxwell [10]. However, we want to stress that
in our model such a slip velocity is actually undetermined.
The constant pressure boundary condition allows to fix only
one of the two unknown constants, γ , while the other, i.e., the
shift in the velocity field, cannot be established as long as we
do not break the Galileo invariance of the model. For instance,
surface roughness might provide no-slip boundary conditions
at the walls, setting the absolute velocity at z = 0 and z = h
to zero and then fixing the asymptotic fluid velocity far from
the walls.

In a liquid, the particle mean free path is small and then we
expect that the velocity profile will be mainly determined by
the static source term, which embodies the strong local devi-
ation of the fluid properties induced by the confining wall. In
this case, and adopting the previously introduced approximate
form of the kernel (33), we get the equation for the velocity
field:

η ∂zu
x(z) = −

∫ h
2

z
dz′ �h0

v (z′)
∂xT

T
,

whose solution, imposing no-slip boundary conditions at the
wall surface and in the limit of a wide channel, is

ux(z) = −
∫ ∞

0
dz′ Min (z, z′) �hv

0 (z′)
∂xT

ηT
.

With these approximations, the slip velocity therefore ac-
quires precisely the form predicted by Derjaguin:

vs = lim
z→∞ ux(z) = −

∫ ∞

0
dz′ z′ �hv

0 (z′)
∂xT

ηT
. (41)

Note that, within linear response theory, the velocity field
ux(z) coincides with the physical velocity only far from the
surface, where the additional contributions to the mass flux
(25) vanish.

Having established the equations governing thermo-
osmosis (within linear response theory) we can revisit the
numerical results obtained in Refs. [33,34] and the problems
they raised. In these studies a numerical evaluation of the
stress induced by a thermal gradient on a fluid confined in
a slab was attempted. Three possible definitions of the stress
were considered: Two based on the direct evaluation of the
gradient of the tangential component of the pressure tensor
via the Irving-Kirkwood and the virial expression, and and
one based on irreversible thermodynamics. The latter formula
linked the stress to the excess enthalpy in the boundary layer
close to the confining surface, and led to a fluid slip velocity in
agreement with Derjaguin results. In Ref. [33] the three routes
were found to give different results, while the direct numerical
evaluation of the thermal force was obtained in Ref. [34]
showed that only the expression based on irreversible thermo-
dynamics was able to reproduce the simulation results. The
interpretation of these findings directly follows from linear
response theory:

(1) The stress acting on the fluid element, expressed by the
static source term (34), does indeed contain the temperature
derivative of the tangential component of the pressure tensor
but an additional contribution is also present. This further term
is essential to remove the intrinsic ambiguity in the definition
of the pressure tensor, as discussed in Sec. III A. Clearly,
keeping only one of the two terms and evaluating the pressure
according to one of the (infinite) possible definitions of the
pressure tensor [40] leads to inconsistent results.

In addition, in inhomogeneous environments the virial
definition of the stress tensor does not correspond to any
contour in Eq. (11) and, more importantly, does not fulfill the
hydrostatic balance condition [40]. The virial expression is
not an allowed choice for the pressure tensor, although when
the system is homogeneous and isotropic Eq. (11) becomes
path independent and the pressure reduces to the virial
expression [40]. Therefore, any result obtained by applying
the virial definition of the stress tensor turns out to be
inconsistent (also within our exact linear response approach).

(2) In Sec. III A it has been shown that the full static source
term can be written in terms of the excess enthalpy (39). The
resulting microscopic expression of the excess enthalpy (38)
precisely reproduces the virial route adopted in Ref. [34].
On this basis, the good agreement with the simulations is
expected.

(3) When we supplement this expression of the static
source term with the additional approximation of constant
viscosity near the surface, we recover the result by Derjaguin
for the velocity slip (41).

(4) However, we must add that in this macroscopic inter-
pretation of thermo-osmosis the effect of the dynamic source
term (35) has been neglected, as well as the terms expressing
the nontrivial relation between the velocity field ux(z) and
the mass current 〈 ĵx(z)〉 in Eq. (25). As a consequence, we
expect that the macroscopic expression based on Derjaguin’s
result will fail at low density, where the relevant length scale
in thermo-osmosis is given by the mean free path.
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2. Gas phase

Equations (32) and (25) are exact to linear order in the
perturbing fields. In the low-density phase, where the inter-
particle interactions can be neglected, Eq. (32) can be solved
analytically and the evaluation of Eq. (25) far from the walls
provides the same analytical expression for the fluid flow
obtained in Ref. [7].

As stressed in the Introduction, thermo-osmosis in gases
is guided by the specificity of the gas-surface interaction: As
realized by Maxwell [7], in the case of a perfectly reflecting
hard wall, without any momentum exchange between the
particles and the surface, no flow can occur. Therefore, to
obtain a nonvanishing flow, we must introduce in the model
a mechanism able to include an energy loss during the impact.
As shown in Ref. [36], a possible route is to require that
after each collision with the surface the x component of the
particle’s momentum is completely uncorrelated. Under this
assumption, the static source term vanishes and the equilib-
rium dynamical correlations can be evaluated analytically [44]
and Eq. (32) reduces to

∫ +∞

0
dz′ ∂z′ux(z′)e−z′2+2ζ z′ = τkB

2m
∂xT, (42)

where ζ = z
√

mβ/2τ 2 and a finite relaxation time τ has been
introduced, to mimic the behavior of an almost ideal gas,
where some collisions appear. The same hypotheses must be
applied for the evaluation of the contributions arising from the
dynamical correlations in Eq. (25) and the final result reads

〈 ĵx(z)〉 =η

2

∂xT

T
+ η

4

{
erf

(√
3

2

z

�g

)

−
√

3

2π

z

�g
Ei

[
− 3

2

(
z

�g

)2]}
∂xT

T
, (43)

where �g = τ
√

2/(mβ ) and Ei(·) is the exponential integral
function. As already discussed, the solution of Eq. (42) can
be only found up to an additive constant, that has been fixed
by imposing no-slip boundary on the mass current 〈 ĵx(0)〉, in
accordance with the hypothesis introduced above. Far from
the surface, in the limit z � �g, the last contribution in (43)
vanishes and the slip velocity reduces to the Maxwell’s pre-
diction:

v∞ = lim
z→∞

〈 ĵx(z)〉
ρ0

= 3

4

η

ρ

∂xT

T
. (44)

C. Closed channel

A different configuration of the same model can be dubbed
“closed channel”. In this case we imagine to place two hard
walls, confining the system in the x direction. A rigorous
study of this problem is complicated by the absence of trans-
lational invariance which induces a dependence on x of the
external fields. However, in a sufficiently long channel and
far enough from the two additional walls, we can assume that
the translational invariance is recovered and the main effect of
the presence of the additional boundaries is the constraint of

vanishing of the integrated mass flow:∫ h

0
dz 〈 ĵx(z)〉 = 0. (45)

The fluid cannot flow freely along the channel, but a backflow
must set in. This backflow is driven by a pressure gradient
self-consistently generated by the thermo-osmotic flow close
to the confining surfaces. In this respect, the closed channel
configuration is particularly interesting from an experimental
point of view because the bulk pressure gradient is in prin-
ciple a measurable quantity [20,21] and provides quantitative
information on the thermo-osmotic phenomenon. In turn, the
pressure gradient is determined by the choice of the unknown
parameter γ : We already know that if γ is given by Eq. (40)
the pressure is uniform along the channel far from the walls.
Every deviation from that value leads to a pressure gradient
and then to a backflow. To find γ we must start from the
condition (45) together with the definition (25) which require
that the quantity∫ t

0
dt ′

∫ h

0
dz

∫
dr′〈 ĵx(r, t ′)Ĵx

Q(r′)
〉
0 (46)

does not diverge. Due to the translational invariance in the
(x, y) plane, this integral is just a function of t which has to
tend to infinity [see Eq. (12)]. For a generic γ this quantity is
expected to diverge either to plus or to minus infinity as t →
∞. The reason is the presence of the long, nonintegrable, tails
affecting the dynamical correlation functions of conserved
currents [37]. In particular, both the space-time integrals of
〈 ĵx(r, t ′)Ĵx

H (r′)〉0 and 〈 ĵx(r, t ′) ĵx(r′)〉0 are expected to diverge.
Only a specific linear combination of these two functions has
a finite limit for τ → ∞. The coefficient of such a unique
linear combination precisely identifies the correct choice for
γ . In the adopted geometry, this “magic” value will be state
dependent but also will be a function of the channel width
h: γ (h). Equation (32) together with the constraint (45) and
the explicit expression for the average mass current (25) fully
determine the velocity field ux(z) and the mass flux 〈 ĵx(z)〉.

Often the nanochannels confining the fluid are significantly
wider than the fluid correlation length and therefore it is
important to ascertain the behavior of both the velocity pro-
file and the ensuing pressure gradient in this limit. From the
previous, exact, equations, it is possible to gain some general
information on the large h behavior. Recalling that γ (h), for a
wide channel, must be close to its limiting value for h → ∞:
γ (h) = hm + δγ (h), we can expand the static source term (39)
at large h and for z far from the surface as

Ss(z) ∼ S∞
s (z) − kBT ρ0 δγ (h)

(
h

2
− z

)

∼ kBT ρ0 δγ (h)

(
z − h

2

)
, (47)

because the source term S∞
s (z) vanishes a few correlation

lengths away from the confining surface. Therefore, in the
central region of a wide channel, the gradient of the velocity
field will be given by

∂zu
x(z) ∼ ρ0

βη
δγ (h)

(
z − h

2

)
∂xβ, (48)
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where we assumed that the velocity field is a slowly varying
function of z on the range of the integral kernel K. The mass
flux is easily evaluated from Eq. (25) and, far from the walls,
becomes

〈 ĵ(z)〉 ∼ ρ0ux(z) ∼ ρ0

[
ω − ρ0

2βη
δγ (h) z (h − z) ∂xβ

]
,

where ω is an integration constant. This expression provides
the mass flux far from the surfaces. As previously noted, we
expect that the flow close to the confining surfaces is not
deeply affected by the width of the channel. Therefore, the
vanishing of the integrated current can be written as

0 =
∫ h

0
dz 〈 ĵ(z)〉 ∼ ρ0ω h − ρ2

0 h3

12βη
δγ (h) ∂xβ + const,

where the additive constant accounts for the contribution of
the thermo-osmotic flow close to the walls. This equation
allows to determine the integration constant ω for large h:

ω ∼ ρ0 h2

12βη
δγ (h) ∂xβ + O

(
1

h

)
. (49)

Evaluating the fluid velocity profile, we finally obtain

vx(z) = 〈 ĵ(z)〉
ρ0

∼ ρ0 h2 δγ (h)

12βη

[
1 − 6 z (h − z)

h2

]
∂xβ

= vx(0)

[
1 − 6 z (h − z)

h2

]
(50)

to leading order in h. The pressure gradient in the bulk region
is obtained from the relation

∂x p0 = [∂β p0 + γ (h) ∂βμ p0] ∂xβ

= ρ0

β
δγ (h) ∂xβ. (51)

Substituting Eq. (51) into Eq. (50) we obtain a result consis-
tent with macroscopic hydrodynamics:

vx(z) = ∂x p0

12η
[h2 − 6 z (h − z)]. (52)

The slip velocity, i.e., the velocity of the bulk flow extrap-
olated at the wall is then related to the pressure gradient
by vx(0) = h2 ∂x p0

12η
. The velocity profile (52) has indeed the

typical Poiseuille form, expected from the Navier-Stokes
equation, showing that the microscopic linear response for-
malism correctly reduces to the macroscopic approaches in
the appropriate limits. Equations (50) and (52) also suggest
that the fluid velocity in the middle of the channel z = h

2 is
finite and nonzero in the h → ∞ limit only if the asymptotic
scaling

δγ (h) ∼ ∂x p0 ∼ 1

h2

holds, i.e., if the pressure gradient in a wide closed channel
scales as the inverse square of its width. In this case also the
slip velocity vx(0) attains a finite limit.

h

Lx

x

z

tohdloc

FIG. 2. Layout of a typical 2D simulation cell. The two shaded
regions are kept at constant temperature (cold and hot). The confine-
ment along the x direction is guaranteed by reflective walls, whereas
the surfaces at fixed z, which induce the thermo-osmotic effects, are
hard walls plus the finite range repulsive potential V (z) defined in
Eq. (55).

IV. SIMULATIONS

To test the predicted relation between the pressure gra-
dient and the fluid velocity in a closed channel (51), we
performed nonequilibrium molecular dynamics simulations in
the two-dimensional geometry sketched in Fig. 2 by use of the
LAMMPS package [45].

Particles interact through a pair potential of the Lennard-
Jones form:

v(r) =
{
vLJ(r) − vLJ(rc) r � rc

0 r > rc
, (53)

where the expression of the 12/6 LJ potential vLJ reads

vLJ(r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6]
. (54)

The parameters ε and σ represent the depth of the potential
well and the particle diameter respectively, whereas the cutoff
radius rc is set to 4.5σ . The dimensional constants σ and ε,
together with the particle mass m, allow to define the standard
time unit τ = σ

√m
ε

. Two identical confining walls are set
at z = 0 and z = h. They are hard walls plus a finite-range
repulsive potential V (z) of the form

V (z) =
{

k(z − z0)2 z � z0

0 z > z0
, (55)

where k = 0.1ε/σ 2 and z0 = 5σ . The system is enclosed by
two reflective walls, placed at x = 0 and x = Lx, being Lx the
length of the channel. Simulations are characterized by a time
step δt = 0.005τ . All systems undergo a first equilibration
phase of 107 time steps to reach a uniform temperature of T =
0.9ε/kB through a canonical sampling thermostat that uses
global velocity rescaling with Hamiltonian dynamics [46] and
a NVE time integration of the equation of motion. Then, the
thermal gradient is set in the x direction controlling only the
temperatures of the two thermostated regions highlighted in
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FIG. 3. Scaling behavior of the bulk pressure gradient with the
width of the channel. The black line represents the h−2 asymptotic
behavior. Data refer to channels characterized by the same length
Lx = 200 and show −∂x p0, being the bulk pressure gradient, negative
in these systems. Length in units of σ , pressure gradient in units of
ε/σ 3

Fig. 2. During this stage, a constant temperature gradient
∂xT = 0.0005ε/kBσ develops in the system, while the aver-
age temperature is kept at T = 0.9ε/kB. This transition phase
lasts 6 × 107 time steps. The last phase is the production one,
where the previous temperature conditions are maintained and
the desired properties are measured. This stage lasts up to
8 × 108 time steps.

Two sets of systems characterized by a bulk density of
ρb ≈ 0.54σ−2 were simulated. In the first one, the length of
the channel is kept fixed at Lx = 200σ while different widths
are considered, ranging from h = 30σ up to h = 700σ , with
N = 2760 and N = 74615 particles respectively. This series
of simulations allowed us to verify the behavior of the bulk
pressure gradient with the width of the channel: As shown in
Fig. 3 numerical simulations confirm the expected ∂x p0 ∼ h−2

behavior, represented by the black line, for wide systems.
Equation (52) provides a simple link between the bulk

pressure gradient and the velocity in the middle of the channel.
This relation has been theoretically derived in the limit of
very long channels Lx → ∞, supporting the usual Poiseuille
flow profile. To verify this result, we performed a second
set of simulations. We considered four channels with the
same width h = 350σ (large enough to guarantee the asymp-
totic behavior of the bulk pressure gradient with h), but
characterized by different lengths: Lx = 200σ, 300σ, 500σ

and 700σ , with a number of particles ranging from
N = 37 179 up to N = 130 060. The need of simulating four
different length values is clear if we look at Fig. 4(a), where
the resulting velocity profiles are shown. Increasing Lx the
shapes of the profiles change up to Lx = 500σ , where the
bulk parabolic behavior is recovered and the velocity profiles
become independent on the channel length. Shorter channels
clearly induce more complex hydrodynamic patterns, vio-
lating our central assumption stating that the sole effect of
the presence of the walls limiting the flow in the x direc-
tion is the vanishing of the integrated current Eq. (45). The
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24η
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FIG. 4. (a) Velocity profiles for channels of height h = 350 and
different lengths Lx , from left to right Lx = 200, 300, 500, 700 (the
last two curves are almost superimposed). (b) Comparison between
the prediction of Eq. (52) and the simulated data. Lenght in units of
σ , velocity in units of σ/τ .

velocity profile in the longest channels can be considered
equal within simulation errors and a parabolic fit allows to
measure the viscosity coefficient which turns out to be η =
0.785 ± 0.044τε/σ 2. Inserting this value in Eq. (52) we can
test the relation between the pressure gradient and the velocity
at the center of the channel vx( h

2 ). Figure 4(b) indeed shows
a remarkable agreement. It is important to note that the bulk
pressure gradients obtained in the latter set of simulations are
statistically equivalent. This suggests that the channel length
does not affect this observable and the results shown in Fig. 3
maintain their validity.

V. CONCLUSIONS

The microscopic theory presented in Sec. II allows to fully
specify the properties of the nonequilibrium steady state of
a confined fluid at nonuniform temperature in terms of the
fluid-fluid and fluid-walls interactions. Linear response theory
provides explicit expressions of all the quantities of interest,
like mass or heat current, in terms of the static and dynamic
structural properties of the fluid at equilibrium, which can be
evaluated by use of liquid state theory or numerical simula-
tions.

The take-away messages emerging from this approach are
(i) the key role played by the fluid-wall interface in driving
the effect; (ii) the existence of two physically different mecha-
nisms: A “static” one related to the change of the equilibrium
properties of the fluid near the confining surface and a “dy-
namic” one, originated by the presence of momentum and
energy transfer between the fluid particles and the walls dur-
ing collisions. The static mechanism gives rise to a flow within
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a few correlation lengths from the wall, or within the range of
the wall-particle interaction. The dynamic mechanism devel-
ops on the typical length-scale of the mean free path, which
can be extremely large in diluted systems, and is likely to
become the dominant effect in gases. The static and dynamic
mechanisms parallel two phenomenological approaches de-
veloped respectively in liquids by Derjaguin, in the context
of nonequilibrium thermodynamics, and in gases by Maxwell,
in the framework of kinetic theory. It is reassuring that a first
principle microscopic theory recovers these classical results
in the appropriate limits. Numerical simulations [47] showed
that the extent of thermo-osmosis is particularly sensitive to
the form of the fluid-wall interaction, which sets both the sign
and the amount of the mass flow.

Few predictions of the microscopic theory have been ver-
ified by numerical simulations in a simple two-dimensional
slab geometry in Sec. IV, mimicking possible experimen-
tal realizations: Extrapolating the simulation data to a
three-dimensional system, we can estimate that confining a
molecular liquid in a nanochannel of radius R ∼ 1 μm and
imposing a temperature difference �T between the ends of
the channel gives rise to a pressure difference of the order of
�P
�T ∼ 102 Pa/K.

Thermo-osmosis is an interesting effect per se, being
the simplest example of thermal force, and plays a relevant
role in different physical frameworks, from engineering to
biophysics, involving temperature-driven fluid flows through
membranes. However, the most important role played by the
thermo-osmotic mechanism probably occurs at the surface of
colloidal particles immersed in a liquid or a gas, where the
ensuing fluid flow pushes the colloidal particles through the
fluid, giving rise to thermophoresis.

A microscopic study of thermo-osmosis is also instrumen-
tal for defining the correct boundary conditions for effective
macroscopic approaches, based on hydrodynamics and the
Navier-Stokes equation, describing fluid flow in confined sys-
tems. Understanding what happens in a fluid within a few
molecular diameters from the boundary surfaces allows to
quantitatively specify the slip induced by the presence of
temperature gradients at the confining walls.

Finally, our results suggest that numerical simulations
of liquids in narrow pores under thermal gradients may be
efficiently performed by first evaluating the static source term
via equilibrium simulations, which provide the effective force
driving the flow. Then, in a further nonequilibrium simulation
at uniform temperature, the effective force previously found
can be used to mimic the effects of the thermal gradient. This
procedure, pioneered in Refs. [33,34], is now substantiated by
linear response theory.

APPENDIX

1. Static source term in planar geometry

a. Derivation of Eq. (36)

The starting point of this derivation is the evaluation of the
derivative of Eq. (34)

∂zSs(z) = ∂β pxx
0 (z) + γ ∂βμ pxx

0 (z)

−
∫

dr′ x′ 〈∂zĴ
xz
j (r) P̂ (r′)

〉
0. (A1)

The first two contributions at the right-hand side can be eval-
uated from the definition of the pressure tensor at equilibrium

pαβ

0 (z) = 〈
Ĵαβ

j (r)
〉
0 = Q0

−1
∫

d� Jαβ
j (r) e−βĤ−βμN̂ ,

where Q0 is the partition function of the grand canonical
distribution function exp(−βĤ − βμN̂ ), and read

∂β pxx
0 (z) = −

∫
dr′ 〈Ĵxx

j (r)[Ĥ(r′) − 〈Ĥ(r′)〉0]
〉
,

∂βμ pxx
0 (z) =

∫
dr′ 〈Ĵxx

j (r)[ρ̂(r′) − 〈ρ̂(r′)〉0]
〉
.

By defining

�P̂ (r′) = P̂ (r′) − 〈P̂ (r′)〉0

with P̂ given by Eq. (30), we can write the sum of the first
two contributions as

[∂β + γ ∂βμ]pxx
0 (z) = −

∫
dr′〈Ĵxx

j (r) �P̂ (r′)
〉
0.

In addition, the translation invariance along the x direction
implies

∫
dr′ x′〈∂zĴ

xz
j (r)〈P̂ (r′)〉0

〉
0 = 〈∂z Ĵxz

j (r)〉
∫

dr′ x′〈P̂ (r′)〉0 = 0,

and Eq. (A1) can be finally written as

∂z Ss(z) = −
∫

dr′〈[Ĵxx
j (r) + x′ ∂zĴ

xz
j (r)

]
�P̂ (r′)

〉
0.

Next we recognize that the translational invariance in the
(x, y) plane forces the averages in the previous equation to
depend only on (x − x′) and (y − y′), proving the identity

∫
dr′ x′ ∂α

〈
Ĵxα

j (r) �P̂ (r′)
〉
0

=
∫

dr′ [x′ ∂z
〈
Ĵxz

j (r) �P̂ (r′)
〉
0 + 〈

Ĵxx
j (r) �P̂ (r′)

〉
0

]

−
∫

dr′ [∂x′ x′〈Ĵxx
j (r) �P̂ (r′)

〉
0

+ ∂y′ x′ 〈Ĵxy
j (r) �P̂ (r′)

〉
0

]
.

The last line is a total divergence which vanishes upon
integration if the static correlation function decays sufficiently
fast to infinity, while the first contribution is precisely minus
the derivative of the static source term:

∂z Ss(z) = −
∫

dr′ x′ ∂α

〈
Ĵxα

j (r) �P̂ (r′)
〉
0.
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b. Derivation of Eq. (37)

In the case of a z-dependent external potential, the conti-
nuity equation for the x component of the momentum density
operator (8) at t = 0 reads

d jx(r)

dt
+ ∂α Ĵxα

j (r) = 0.

This equation can be used to substitute the divergence term
by minus the time derivative of the current. However, a gen-
eral property of the time-dependent correlation functions at
equilibrium allows to move the time derivative to the second
operator:

∂z Ss(z) = −
∫

dr′ x′
〈

ĵx(r)
d�P̂

dt
(r′)

〉
0

, (A2)

where the derivative is again evaluated at t = 0. Finally, we
recall that also the operator P̂ (r) satisfies a continuity equa-
tion

dP̂ (r)

dt
+ ∂α Ĵα

Q (r) = 0 (A3)

in terms of the heat current (29). Substituting and integrating
by parts we finally get

∂z Ss(z) = −
∫

dr′ 〈 ĵx(r) Ĵx
Q(r′)

〉
0.

If we substitute in this equation the microscopic expressions
of the momentum (3) and heat (29) current

ĵx(r) =
∑

i

px
i δ(r − qi ),

Ĵx
Q(r) =

∑
i

[
ĥi

m
− γ

]
px

i δ(r − qi ) +
∑

i

	xν
i (r)

pν
i

m

and we evaluate analytically the equilibrium average, then
the integrated correlation function becomes independent of
the specific choice of the integration path in Eq. (11) and is
expressed in terms of the virial transverse enthalpy density in
thermal equilibrium:

hv
0 (z) =

[
5

2
kBT + V (z)

]
n0(z)

+ 1

2

∫
dr′ n2(r, r′)

[
v(s) − dv(s)

ds

(x − x′)2

s

]
s=|r−r′|

,

z

r

R

FIG. 5. Schematic representation of the cylindrical geometry.

where n0(z) is the average equilibrium particle density
m n0(z) = ρ0(z) and n2(r, r′) is the two-particle equilibrium
static correlation function.

2. Cylindrical geometry

Here we report the explicit expression of the Eqs. (32)–
(35) in the case of cylindrical geometry, appropriate for a pore
or a nanotube (see Fig. 5). The derivation closely parallels
the analysis performed for a fluid in a slab. The role of the
coordinate z is now played by the radial coordinate r which
varies between 0, at the center of the tube, and R where the
confining surface is placed. Our ansatz for the solution is the
natural generalization of Eqs. (21)–(23), the main difference
being the formal expression of the divergence in cylindrical
coordinates. We just quote the equations replacing Eqs. (32)–
(35): ∫ R

0
dr′r′ K(r, r′) ∂r′ux(r′) = ∂xβ [Ss(r) + Sd (r)],

where the kernel K(r, r′) is now given by

K(r, r′) = β

∫
dx′

∫
dφ′

∫ ∞

0
dt ′〈Ĵxr

j (r, t ′)Ĵxr
j (r′)

〉
0,

while the static and dynamic source terms are

Ss(r) = −kBT

r

∫ r

0
dr′ r′[h(r′) − γ ρ0(r′)],

Sd (r) =
∫ ∞

0
dt

∫
dr′〈Ĵxr

j (r, t )Ĵx
Q(r′)

〉
0.
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