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Steepest entropy ascent solution for a continuous-time quantum walker
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We consider the steepest entropy ascent (SEA) ansatz to describe the nonlinear thermodynamic evolution of a
quantum system. Recently this principle has been dubbed the fourth law of thermodynamics [Beretta, Phil. Trans.
R. Soc. A 378, 20190168 (2020)]. A unique global equilibrium state exists in this context, and any other state is
driven by the maximum entropy generation principle towards this equilibrium. We study the SEA evolution of
a continuous-time quantum walker (CTQW) on a cycle graph with N nodes. SEA solutions are difficult to find
analytically. We provide an approximate scheme to find a general single-particle evolution equation governed
by the SEA principle, whose solution produces dissipation dynamics. We call this scheme the fixed Lagrange’s
multiplier (FLM) method. In the Bloch sphere representation, we find trajectories traced out by the Bloch vector
within the sphere itself. We have discussed these trajectories under various initial conditions for the case of a
qubit. A similar dissipative motion is also observed in the case of CTQW, where probability amplitudes have
been used to characterize decoherence. Our FLM scheme shows good agreement with numerical results. As we
report, in CTQW, a strong delocalization exists for low system relaxation time.
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I. INTRODUCTION

In the era of quantum technologies, quantum algorithms
have occupied an important role. Due to the discovery of
better-than-classical performance of Shor’s algorithm [1] and
Grover’s search algorithm [2], followed by a plethora of find-
ings, it has become an active area of research to find such
algorithms or improve upon existing ones. One such candi-
date is the quantum analog of the classical random walk,
the quantum walk [3–12]. Quantum walks are of two kinds,
discrete-time quantum walk (DTQW) and continuous-time
quantum walk (CTQW) (for a review, see Refs. [13–15] and
references therein). Despite having similar probability distri-
butions and features, discrete-time and continuous-time kinds
are not equivalent, although, under certain limits, DTQW can
produce CTQW [16–18]. In this paper, we focus on CTQW
only. Their quadratic speed-up over classical walks character-
izes quantum walks (QWs) [14]. QWs have been performed
on graphs [19] and can be used to perform a spatial search
[4,5]. A scheme for quantum computation has been provided
in Ref. [8], where the universality of QWs was explored.
Many-body QWs have been studied to understand the nature
of entanglement in multipartite systems [10–12,20,21].

Besides studying unitary quantum evolution, many schol-
ars have studied decoherence and dissipation in quantum
walks [9,22–26]. Introduction of multicoin walks leads to
dissipation [9]. Others have considered decoherence intro-
duced by measurements on the vertices of a graph [25].
Alternatively, some have considered decoherence on the par-
ticle, coin, or both [26]. Kendon and Tregenna [25] have
shown decoherence to be a useful facet in quantum evolution.

*rohitkray@iitkgp.ac.in

As the walker is an otherwise isolated system, decoherence
is introduced as the action of certain measurements on the
system in an operational setting [27]. Understanding mix-
ing time under such modeling is an active area of research
[28,29]. On the other hand, by using the concept of quan-
tum stochastic walks [30], decoherence in CTQWs has been
explored by Garnerone [31] using Lindbald-type master equa-
tions. Romanelli [22] split the evolution into two parts, one
contributing to the Markovian process, and the other part to
the interference responsible for unitary evolution. A novel
way of studying thermodynamics has been introduced and
followed in Refs. [23,24] by varying the contribution due
to the interference factor. Candeloro et al. [32] have used
quadratic perturbation in the Hamiltonian to study CTQW.
However, we are interested in a more fundamental aspect
of decoherence—as a first-principle result rather than one of
a phenomenological origin. Such a theory should reproduce
quantum results under proper limits as desired, besides at-
tempting to explain nonequilibrium behavior.

Studying an open quantum system involves introducing
nonunitary behavior in the dynamics. It can be achieved
by introducing some superoperators with anticommutation
relations invoking dissipation in the system, resulting in a phe-
nomenological origin of the entropy generation process [33].
Consequently, a theory of thermodynamic evolution of quan-
tum states through modeling at different levels of description
to arrive at the equation of motion has been in vogue [34,35].
Theories belonging to this category can be classified as a gen-
eral equation for the nonequilibrium reversible-irreversible
coupling (GENERIC). In this setup, microscopic details of
the fundamental structure are ignored in favor of macro-
scopic dynamics. As a consequence, the constraints become
global invariants of motion. The GENERIC theory essen-
tially lacks a local description, which can be modeled using
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a metric-dependent relaxation parameter [36], and a concept
of equilibrium to drive the system. Let us consider global
and local equilibriums in the Lyapunov sense [37]. We find
an evolution trajectory in the state space characterized by
maximization of the entropy production rate under the con-
straint of invariants of the motion [38–48]. In addition to this,
consider the second law of thermodynamics: the existence
of a unique globally stable state to satisfy the second law
requirement [49]. (A rich review of literature in this domain is
compiled in the Ref. [50].) The unitary trajectories described
by Schrödinger-type evolution form limit cycles in this notion
[51]. As a result, states that belong to the quantum mechanical
evolution are extrema of the set containing all such states
considered in the description. This description also requires
the identification of the density matrix as a valid state operator
and ρ2 = ρ to be the defining feature of pure QM limit cycles.
In the case of a qubit, the rest of the tr(ρ2) � 1 states thus
fill up the entire Bloch sphere and represent the state space
available for nonlinear evolution.

The steepest entropy ascent (SEA) dynamics framework
finds its roots in the first-principle approach to understand
“spontaneous decoherence.” Moreover, the SEA formalism
can be extended to other disciplines of studying nonlinear evo-
lution of a more general kind [52]. In follow-up work, under
similar kinematic considerations, the mathematical equiva-
lence between the nonlinear contribution due to GENERIC
and SEA has been drawn by Montefusco et al. [53]. While
working in a far-off equilibrium situation, defining tempera-
ture becomes troublesome, as the temperature is defined using
steady states. The concept of hypoequilibrium as invoked in
Refs. [54,55] seems to serve this purpose. In this SEA theory,
we wish to solve for the continuous-time quantum walker and
analyze the solution.

In a nutshell, quantum walks can be useful with de-
coherence. This decoherence is usually modeled through
measurements performed at each walk instance, and the
walker state mixes according to some rule. However, when
a first-principle approach (SEA-type dynamics) involving a
local description and an entropy nondecrease postulate is con-
sidered to study the relaxation of a system subject to initial
perturbation, decoherence results without external interaction.
We consider a single quantum walker walking on a cycle
of N nodes in continuous time, whose evolution is guided
by the SEA formalism. Its solution can be applied to any
time-independent Hamiltonian containing a single particle.
We show that the time-dependent relaxation dynamics char-
acterize this evolution. Under such a scenario, both SEA and
unitary dynamics can be recovered. Section II introduces the
readers to preliminary physical ideas. Here we discuss the
basics of the continuous-time quantum walk and the building
blocks of the SEA principle to keep the paper self-contained.
In Sec. III we first derive an approximate analytical solution.
As the SEA equation of motion (EoM) [Eq. (8) below] is
highly nonlinear, it is difficult to solve analytically [43,46],
and we resort to numerical solutions. This limits our ability to
understand the dynamics analytically. Interestingly, though, as
shown in Sec. III A, considering a fixed Lagrange’s multiplier
(FLM) approach eases the inherent nonlinearity of the EoM,
making the solution analytically tractable. As an application
of this, we solve for a two-level system: a qubit, which closely

agrees with the exact result [43] present in the literature. In the
second part of Sec. III, we solve for the N-level system—a
quantum walker and show plots of the solutions followed
by our analysis. We have delegated detailed derivations to
the Appendixes to preserve the flow of this paper. In some
cases, the readers are requested to go through the references
provided. In Sec. IV we discuss the importance of our re-
sult and conclude by pondering further questions that have
come up through this work. The Appendixes are structured
as follows: in Appendix A we have provided the geometric
interpretation of SEA evolution. We have shown how the SEA
EoM is derived using the variational principle. In the fol-
lowing Appendix B, we derive the expressions for Lagrange
multipliers and provide the complete SEA equation of motion.
Appendix C contains comments on relaxation time, and in
Appendix D we have computed the Lagrange multipliers for
the CTQW.

II. THEORETICAL PRELIMINARIES

Consider a quantum walker walking on some undirected
graph G with N vertices, vertex, and edge set as V and E, re-
spectively. G has no double edge or self-loops. The adjacency
matrix A of G can be defined as follows:

A : ai j =
{

1 if ei j ∈ E
0 otherwise.

Thereafter, we can define the Laplacian L of G as [4,56]

L = D − A,

where D is diagonal and has an entry as the degree of the ith
vertex, di. We associate a hopping probability μi j with the
probability of transition between two adjacent vertices (vi, v j)
per unit time. Considering uniform transition rates μi j = μ,
for the unitary continuous-time quantum walker we can write
[4,13,25]

d|�〉
dt

= − i

h̄
μL|�〉. (1)

In Eq. (1), the quantity μL is identified as the Hamiltonian H
of the CTQW. The solution to Eq. (1) is read as

|�(t )〉 = exp(−iμLt )|�(0)〉 ≡ U (t )|�(0)〉 ≡ Ut |�(0)〉,
(2)

where |�(0)〉 is the initial state of the walk, and h̄ = 1. In
terms of density matrix ρ,1 we can write Eq. (2) as

ρt = Utρ
0U†

t , (3)

implying that the quantum state of the walker undergoes uni-
tary rotation in the state space as the walker exhibits CTQW.

Steepest entropy ascent motion concerns about the re-
laxation of a system away from equilibrium. The interested
readers are directed towards Refs. [49,52,54,57] for a de-
tailed understanding of SEA dynamics. Here we explore the
observed results while delegating a basic introduction to Ap-
pendix A, where the derivation of the SEA EoM is done in

1t is added to the superscript as a label for a time, instead of using
the standard ρ(t ), to make the notations less cumbersome.
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brief. In the SEA evolution, the dynamical equation can be
written in the general Ginzburg-Landau form [54] as under

dρ

dt
= −i[H, ρ] + 1

τ
{D, ρ}, (4)

where {·, ·} represents anticommutator, τ relaxation time, and
D is related to dissipation, the nonunitary part of the evolution.
In the SEA formalism, the state operator γ ≡ |γ ) is an ele-
ment of linear manifold L , a state space in Hilbert space H ,
with a symmetric inner product (A | B) = Tr(A†B + B†A)/2
[52]. To maintain a positive ρ for all times of SEA motion,
the square root of ρ is considered the state operator and is
computed using a spectral theorem [36], ρ = γ γ †. Let the
set {Ci(γ )} contain operators denoting various conservation
quantities to be used as constraints of motion, such as energy
(H), number of particles (N ), etc. The functional derivative of
Ci is denoted by |�i ) = |δCi(γ )/δγ ). Similarly, the entropy
functional is (k ≡ kB, Boltzmann’s constant)

S = −kTr[ρ ln(ρ)],

and its functional derivative is |�) = |δS(γ )/δγ ) [52,57]. The
constraint of entropy nondecrease and conservation of Ci can
be expressed as

dS
dt

= �S with �S = (� | �γ ) � 0, (5)

dCi

dt
= �Ci with �Ci = (�i | �γ ) = 0. (6)

Using the above constraint equation, and by applying La-
grange’s multiplier method, the SEA rate of change of state
operator, dγ

dt = �γ is given as

|�γ ) = L
∣∣∣∣∣� −

∑
i

βi�i

)
, (7)

where the metric associated with the manifold L , Ĝ(γ ) ap-
pears as L = 1

τ
Ĝ(γ )−1 [52]. This can be rewritten in terms of

ρ (see Appendix A for details) for a uniform (Fisher) metric
as

dρ

dt
= − 1

τ

[
ρ ln(ρ) + 1

2

∑
i

(−1)iβi{Ci, ρ}
]

− i[H, ρ].

(8)

Comparing with Eq. (4), we can write {D, ρ} = −[kρ ln(ρ) +
1
2

∑
i(−1)iβi{Ci, ρ}]. Choosing τ, βi as Lagrange’s multipli-

ers, the full SEA evolution, including the expressions for the
βi’s, can be written in the following compact form conveying
all the necessary information (see Appendix B):

dρ

dt
+ i[H, ρ] = − 1

τ

∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ ln(ρ) 1
2 {C1, ρ} 1

2 {C2, ρ} 1
2 {C3, ρ}

tr( ρ

2 {C1, ln(ρ)}) tr(ρC1
2) tr( ρ

2 {C1, C2}) tr( ρ

2 {C1, C3})

tr( ρ

2 {C2, ln(ρ)}) tr( ρ

2 {C2, C1}) tr(ρC2
2) tr( ρ

2 {C2, C3})

tr( ρ

2 {C3, ln(ρ)}) tr( ρ

2 {C3, C1}) tr( ρ

2 {C3, C2}) tr(ρC3
2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
tr( ρ

2 {C1, C1}) tr( ρ

2 {C1, C2}) tr( ρ

2 {C1, C3})
tr( ρ

2 {C2, C1}) tr( ρ

2 {C2, C2}) tr( ρ

2 {C2, C3})
tr( ρ

2 {C3, C1}) tr( ρ

2 {C3, C2}) tr( ρ

2 {C3, C3})

∣∣∣∣∣∣∣∣∣

.
(9)

To solve for CTQW, we identify C2 with μL, and use proba-
bility conservation (C1 = I). We do not need C3 for a single
walker; the number operator becomes redundant. Thence,

D = −[k ln(ρ) − βI I + βHμL]. (10)

Substituting this expression for D in Eq. (4), we solve for ρ.
Interestingly, we note that Eq. (8) is free of γ , making it a
deterministic process [51].

III. APPROXIMATE ANALYTICAL SOLUTIONS OF THE
FULL SEA EVOLUTION

A. Single-particle case (arbitrary dimension)

In this section, we solve Eq. (8) for a single particle in arbi-
trary dimensions under a given Hamiltonian H. The motion is
constrained by the condition of entropy S nondecrease, along
with conservation of quantities Ci such as energy, probability,
etc. These conditions are introduced via Lagrange multipliers
βi’s in Eq. (8). These βi are nontrivially dependent on ρ,
which makes it difficult to solve Eq. (9) analytically with such
nonlinearity; therefore, we resort to numerical techniques.

However, an approximate analytical solution can help us un-
derstand the essence of the general nonlinear evolution.

In this work we introduce the following approximation.
We consider the βi’s [defined in Eq. (B2)] to be at their
prefixed values, such as their initial or final values, and call
this approximation the fixed Lagrange’s multiplier (FLM)
method.2 The FLM method enables us to have an approximate
analytic expression for the single quantum constituent case,
which produces results in good agreement with the numerical
computation. We begin with a general ρ. Since ρ is always
positive, such a ρ can have a diagonalization which can be
achieved via a similarity transformation, a trace-preserving
operation. Let us consider one such a transformation on a

2There is a natural motivation behind this assumption. Consider a
real function f (x, y)|x, y ∈ R, to be optimized under some constraint
g(x, y) = c, where c is a real constant. We can define a Lagrangian
function L(x, y, c) := f (x, y) + λ[c − g(x, y)] with λ = ∂L

∂c as the
Lagrange’s multiplier. This suggests, for a fixed c, that there exists
a constant λ such that f (x, y) is optimized.
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given ρ as follows:

ρt = Utρ
t
d U−1

t ,

where Ut is formed by columnwise stacking the eigenvectors
of ρ at time t , and ρt

d is the required diagonal matrix. Using
this transformation in Eq. (8) we get

dρt
d

dt
= − 1

2τ

[{
ln

(
ρt

d

)
, ρt

d

} +
∑

i

(−1)iβi
{
Ci

d , ρt
d

}]

− i
[
Hd , ρt

d

]
. (11)

Note that Hd = U−1
t HUt and Ci

d = U−1
t CiUt .3

Before we proceed, certain comments are necessary. First,
we note dρt

dt = [U̇t U−1
t , ρt ] + Ut ρ̇

t
d U−1

t , thus implying, in
general, eigenvectors can have nonzero time dependence.
However, a restricted class of problems exists, where the
eigenbasis of ρ can change solely due to the Hamiltonian. In
such a scenario, the commutator term appearing in the time
derivative becomes zero, and we are left with constant Ut . As
a result, we have a special class of evolution where a ρ initially
diagonal in energy basis remains so throughout the dynamics.
In the subsequent computations, we exploit this “diagonal
property” of ρ to find an analytic approximation. Although
this limits the range of evolutions considerable under the given
assumption, it still pertains to a broad class of solutions as
supported by the examples presented in the paper.

ρ has a spectral decomposition in its eigenbasis {|λi〉},
and ρd is diagonal in the standard basis {|i〉} (|i〉 is an N-
dimensional unit vector) as follows:

ρd =
∑

i j

λiδi j |i〉〈 j| and

ρ =
∑

i

λi|λi〉〈λi|,

=
∑

i j

λiδi j |λi〉〈λ j |,

where δi j is the Kronecker delta. Using these expansions in
Eq. (11), and by choosing [Hd ]i j = Hd

i j , and [Cs
d ]i j = Cs

i j , the
r.h.s. of Eq. (11) can be modified as

− 1

2τ

∑
i jm

δim

[
2λm ln(λm)δm j

+
∑

s

(−1)sβs[λm + λ j]C
s
m j

]
|i〉〈 j|

− i
∑

i j

[λ j − λi]H
d
i j |i〉〈 j|.

For a single particle, we are mostly interested in energy
and probability conservation; the complete expression upon

3Note that neither Hd nor Ci
d is the diagonal form of the respective

matrices (they could be, if they can be simultaneously diagonalized
with ρ). I was running out of symbols; any confusion due to this is
regretted.

considering a Euclidean metric reads as∑
i j

λ̇iδi j |i〉〈 j| = − i
∑

i j

(λ j − λi)H
d
i j |i〉〈 j|

− 1

2τ

∑
i j

[
2kλi ln(λi )δi j − 2βIλiδi j

+ βH (λ j + λi )H
d
i j

]|i〉〈 j|.
According to our assumption the l.h.s. of Eq. (11) is diagonal:

dλi

dt
= − 1

τ

[
λi ln(λi ) − βIλi + βHλiH

d
ii

]
. (12)

For diagonal density matrices, similarity transformation is
identity, so we get

d pi

dt
= − 1

τ
[pi ln(pi ) − βI pi + βH piHii], (13)

where pi = [ρt ]ii. Both Eqs. (12) and (13) have a similar type
of solution, namely, that of almost identical nonlinear ODE.
Using standard techniques and FLM approximation, we arrive
at the following expression:

pi(t ) = exp

[
exp

(
wi − t

τ

)
+ βI − βH Hii

]
. (14)

We have wi = ln[ln(p0
i ) − βI + βH Hii], where p0

i is the ith
diagonal entry of initial ρ. The solution produced above
can be written in a straightforward form, identifying ηc

i =
βH Hii − βI , or for general cases as

∑
s(−1)sβsCs

ii, ṽi = ewi ,
and η(t ) ≡ ηt = exp(−t/τ ), we get

pi(t ) ≡ pt
i = exp

(
ṽiη

t − ηc
i

)
. (15)

We find ṽi as

pi(0) = p0
i ,

exp(ṽiη
0 − ηc

i ) = p0
i ,

⇒ ṽi = ln
(
p0

i

) + ηc
i .

Hence, we can write ρt
d = ∑

i pt
i|i〉〈i|. A general initial ρ with

off-diagonal terms can be written as ρ = Utρ
t
d U−1

t , whereas if
we consider only diagonal ρ’s, we get ρ = ρt

d . Including the
Hamiltonian evolution, we get the following equation for uni-
form metric (Ut ≡ exp(−iHt ), and projections Pm = |m〉〈m|):

ρt = Ut Ut

(∑
m

exp
(
ηt

m − ηc
m

)
Pm

)
U−1

t U†
t , (16)

where ηt
m = (ln(p0

m) + ηc
m)e−t/τ = ṽiη

t and ηc
m =∑

s(−1)sβsCs
mm. So far, as we can see, Eq. (16) represents

the evolution of ρt ’s diagonal in the energy basis, except that
it considers only the Fisher metric. We use this equation to
understand spontaneous decoherence in the evolution of a
walker performing CTQW [see Eqs. (1)–(3)]. We consider
the case of a two-level system and use Eq. (16) to observe its
motion on the Bloch sphere. Despite the problem’s simplicity,
it is a sparsely explored area even within the community
[43,49]. A qubit evolution can help us understand some of the
salient features of SEA dynamics. In this spirit, and for the
sake of consistency in presentation, we explore the two-level
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FIG. 1. A Bloch sphere representation of a qubit. The purple
arrow denotes the vector �r, and the green one ĥ. The isoentropic
concentric surfaces and the constant energy planes are labeled in the
diagram.

system in detail to appreciate the results for the N-level
system with relative ease.

B. Case I: Two-level system: Qubit

A general two-level quantum system can be represented by
a qubit with two possible outcomes of a measurement, i.e.,
level 1, |0〉, and level 2, |1〉. The most general density matrix
representing a qubit can be expressed in the following form:

ρ = 1

2
(I + �r · �σ ),

where �σ is the Pauli vector with components as Pauli matrices
for a spin- 1

2 system, and �r is the radial vector of a Riemann
sphere, also known as a Bloch sphere [27].

The most general Hamiltonian acting on a point on this
sphere can be written as H = (ω0I + ωĥ · �σ ), where ĥ is a
unit vector along the axis of rotation due to H, and h̄ = 1.
Eigenvalues of H are h± = ω0 ± ω, h = |ĥ| = 1, and 2ω is
the precession frequency of the state vector around ĥ, ω0 is
a constant = 1

2 tr(H) [43]. Figure 1 shows that the states are
constrained to lie on the intersection of constant energy and
isoentropic surfaces. The figure shows that on each isoen-
tropic surface, the radius vector traces out the intersection of
constant energy planes (perpendicular to ĥ) with the surface.

We notice that to include mixed states in our description,
�r has variable magnitude rt , and the maximally mixed state is
represented by �r = �0. Considering tr(ρ2) = R, eigenvalues of
ρ, λ± = 1

2 (1 ± r), we can see immediately

r = √
2R − 1,

which further implies 0 � r � 1, for 1
2 � R � 1.

Using the eigenvalues λ± we can write the entropy function
as

S = − k[λ+ ln(λ+) + λ− ln(λ−)]

= − k

[
1 + r

2
ln

(
1 + r

2

)
+ 1 − r

2
ln

(
1 − r

2

)]

= − k

2
ln

(
1 − r2

4

)
− kr

2
ln

(
1 + r

1 − r

)
. (17)

The isoentropic surfaces form concentric spheres, with
entropy increasing as r decreases. Therefore, the main dissipa-
tive part of the dynamics will try to draw any state within and

on the surface of the Bloch sphere toward its center, where a
maximally mixed state with maximum entropy k ln(2) resides.
Since pure unitary dynamics is nondissipative, it is required
and customary to initially disturb (quench) a quantum me-
chanical state from the limit cycle of unitary evolution and
then observe the system’s relaxation as time progresses. The
maximally mixed state is the global equilibrium (ρu) state for
a completely isolated system. Thus, we quench the initial state
(ρ0) as follows [48]:

ρ = ερ0 + (1 − ε)ρu,∑
i

λi|λi〉〈λi| =
∑

i

ελ0
i

∣∣λ0
i 〉〈λ0

i

∣∣ + (1 − ε)
I

tr(I)
.

If ρ0 is diagonal, then

λ′
i = ελ0

i + (1 − ε)
1

N
, (18)

where N = tr(I), which for this case is 2. ε is a variable
parameter ∈ [0, 1], with zero value denoting the completely
mixed state. Armed with all these and a Euclidean metric, we
consider Eq. (12):

dλ±
dt

= − 1

τ

[
λ± ln(λ±) + (βH Hd

± − βI )λ±
]

⇒ ±ṙ = ∓ 1

τ

[
(1 ± r) ln

(
1 ± r

2

)

+ (βH H± − βI )(1 ± r)

]
.

After that, we can write for the dissipative part of the motion
as before:

rt = − 1 + 2 exp[(ηt
+ − ηc

+)], for λ+, and

rt =1 − 2 exp[(ηt
− − ηc

−)], for λ−.

Thence,

rt = [exp(ηt
+ − ηc

+) − exp(ηt
− − ηc

−)], (19)

and

⇒ λ±(t ) = exp(ηt
± − ηc

±),

where ηt
± = [ln(λ′

±) + (βH H± − βI )]e− t
τ , λ′ as in Eq. (18).

The full evolution is given by

Ut diag[exp(ηt
+ − ηc

+), exp(ηt
− − ηc

−)]U†
t . (20)

This solution above in Eq. (20) works when we have La-
grange multipliers determined using prefixed conditions, i.e.,
the FLM method. Otherwise, in general βi’s depend on time-
dependent r and on constant re = ĥ · �r. Consequently, Eq. (19)
needs to be solved numerically. For a detailed analysis, start
from the differential equation given in Appendix B, Eq. (B15).

Let us now understand the SEA approach through simple
well-known, and well-studied physical conditions. We take
ĥ = ẑ, and focus on the states lying on the equatorial plane
of the Bloch sphere, re = 0. H in this scenario becomes ωσz,
which is diagonal in the standard basis. Using the expression
for λ′ provided in Eq. (18), we write the βi’s as [Eqs. (B16)
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FIG. 2. Plot of the radial distance of the state operator in the
Bloch sphere over time (t = 50) for a qubit under various τ (first
column of the legend), with ω = 5, and ε = 0.999. As discussed in
the paper, the higher τ states fall slowly compared to lower valued
ones. Solid lines represent computation done using FLM, dot-dash
lines GPB are plotted using Eq. (23) [43], and the dotted NUM lines
are plotted using direct numerical simulation of Eq. (8).

and (B17)]

βH = 0,

βI = k

2

[
ln

(
1 − ε2

4

)
+ ε ln

(
1 + ε

1 − ε

)]
.

(21)

Let the initial ρ be a|0〉〈0| + b|1〉〈1|. Then radius r′ after
quenching is r′ = εr = ε|a − b|. We get ηt

± = [ln( 1±ε
2 ) −

βI ]e− t
τ , and ηc

± = βI . Finally, the evolution equation becomes

rt = (eθ t
+ − eθ t

− ), (22)

where θ t
± = ηt

± − ηc±. For ω = 5 and ε = 0.999,4 we graph-
ically show the evolution of rt in Fig. 2. As evident from
the form of the general dynamical equation (4), τ acts as a
modulating factor, where high τ results in a smaller dissipa-
tion contribution. Trivial mathematical interpretations aside,
system relaxation time τ behavior is inversely related to the
entropy production rate. After the system goes through a
quenching process, it relaxes and could either thermalize or
localize. This behavior is dependent mainly on the speed at
which this happens. Higher τ implies slower relaxation, while
as noted in literature, lower positive values of τ result in
the steepest ascent of entropy, as we see in Fig. 3. In the
expression of ηt [Eq. (14)], the exponent has (−t

τ
) dependence,

which implies in t
τ

� 1 we will have a nondissipative feature,
and at t

τ
∼ 1 we will have the desired dissipation.

From Fig. 2 we see higher τ -valued states will have more
delayed and gradual relaxation. To corroborate our results
with the existing ones in the literature, we consult the solution
provided in Ref. [43, Eq. (19)] (GPB), reproduced below:

rt = tanh

[
1

2
exp

(
− t

τ

)
ln

(
1 + ε

1 − ε

)]
. (23)

Finally, we have plotted the numerical solution (NUM) of
Eq. (8). We can see that the GPB solution matches the

4Just an arbitrary number close to one.

(a)

(b)

FIG. 3. (a) The spiraling trajectory of the state operator in the
equatorial plane of the Bloch sphere, as viewed from its north pole
after t = 30. Different τ values show the difference between each
trajectory. (b) Evolution of states after t = 30, on the surface of
revolution generated from the entropy functional expression. The
legend identifies the τ values considered for this plot. The case with
τ = 400 corresponds to the case with ε = 0.5, while the rest of the
cases have ε = 0.999. Lower τ states rise faster, and the lowest has
the steepest ascent.

NUM results. FLM values, on the other hand, lie somewhat
close, yet the initial and final agreements between FLM and
GPB/NUM are intriguing, given that FLM is an approxima-
tion. Depending on the βi considered, FLM can be fine-tuned.
If we fix βi at initial values, FLM better represents far-
from-equilibrium behavior and equilibrium behavior (Fig. 2).
However, FLM tuned using the final value of βi does a better
job representing the near-equilibrium feature but does not fare
equally well in the far-from-equilibrium region. Moreover, as
τ changes, disagreement between the FLM and GPB/NUM
increases.

We show the spiraling motion to the center of the Bloch
sphere on the equatorial plane in Fig. 3(a). Here we see that
high τ states remain near the pure states for a longer time than
low-valued ones, as they almost instantaneously mix to the
maximum entropic state. These low values of τ trajectories
represent the steepest entropy ascent solution. This steep as-
cent can be better visualized when we consider the surface of
revolution generated from the entropy functional in Eq. (17)
and plot these spiral trajectories onto that surface as shown
in Fig. 3(b). We see that with time each trajectory tries to
rise to the top of the surface where the point with maximum
entropy is present. We can also see that high τ states maintain
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FIG. 4. A schematic depiction of a qubit state’s general energy
dissipative evolution (purple spiral in the online colored version).
This schematic is for high τ values; for low values of the same,
the trajectory will follow a straighter path, as indicated in Ref. [58],
which will also be the steepest ascent.

a limiting behavior at the foot of the surface of revolution,
taking almost forever to reach the top (unitary-type behavior).
A schematic evolution of the general nonenergy-conserving
motion for a qubit under SEA is presented in Fig. 4. As energy
continues decreasing, the value of re also decreases. The state
arrives at the global equilibrium when it reaches zero at the
center. Next, we consider the evolution of a walker performing
a continuous-time quantum walk under spontaneous decoher-
ence.

C. Case II: N-level system: Quantum walker

As done in the previous subsection, we can very well use
a Bloch vector representation for a d = N-dimensional qudit
state space as a RN2−1 dimensional ball [59–63], with a unit
vector �r associated with the space. We write ρ as [63]

ρ = 1

N

(
I +

√
N (N − 1)

2
�r · ��

)
, (24)

where �� is a Pauli-type generalization in N dimension, com-
prising generators of SU(N ) along with the identity operator
I [61]. Yet this is not a trivial generalization of the familiar
Bloch sphere representation because in dimensions N � 3, the
expression (24) does not offer a bijective mapping like the
qubit case. In the qubit scenario, each point on and inside the
Bloch sphere has a one-to-one correspondence with a physical
state, referring to a semipositive density matrix with unit trace.
We sometimes get nonphysical results (holes) in the gener-
alized Bloch sphere, which renders any trivial generalization
ineffective [62]. The radius of this generalized Bloch sphere

is given by r =
√

N
N−1 (R − 1

N ) [63], where R = tr(ρ2).

The usual probability distribution computed from Eq. (3)
for a walker performing CTQW on a ring of N = 100 nodes
after some time t = 10 is shown in Fig. 5, which is similar to
a CTQW walk distribution on a line for a short time and large
N .5 For simplicity, we have considered μ = 1 [13], which

5It is to be noted while we find probability distributions such as
this at some time t , they are not the same for the discrete and con-

FIG. 5. Probability distribution for a single quantum walker on
a ring of 100 nodes. The walker was initiated at node 50, and the
probability distribution is after t = 10. In this diagram, node 50 is
shifted to node 0.

means an unbiased transition to any adjacent vertex in an
undirected graph G with no loops.6 The density matrix of the
walker at any time can be described using the standard basis
as

ρt =
∑

i

pt
i|i〉〈i|, (25)

where pt
i is the probability of finding the walker on a node

(vertex) i after some time t since the walk was initiated. As we
have already described, the Laplacian of G can be expressed
as

L =D − A

=
∑

i j

[diδi j |i〉〈 j| − Ei j (|i〉〈 j| + | j〉〈i|)], (26)

where Ei j = 1 when there is an edge element ei j ∈ E, and
zero otherwise. We notice from the Hamiltonian presented in
the standard basis that the diagonal elements are simply the
degree matrix entries, Hd

ii = μdi, and di is the degree at the
vertex vi. So in the case of these walks, using the computation
of βi carried out in Appendix D, Eq. (16) becomes

ρt = exp(−iHt )

(∑
m

exp(ηt
m − ηc

m)Pm

)
exp(iHt ), (27)

where ηt
m = [ln(p0

m) + ηc
m]e−t/τ = ṽiηt , and ηc

m = μβH di −
βI , and Pm is the projection operator as before. p0

m is found
using Eq. (18). We use the predefined parameters to model
the walk to understand what is happening and whether the
solution (27) is meaningful. A cycle graph CN being 2-regular
has the following Hamiltonian in the standard basis:

H =
∑

i

[2|i〉〈i| − Ei,ĩ(|i〉〈ĩ| + |ĩ〉〈i|)], (28)

tinuous case. In the continuous case, we have transition amplitudes
per unit time (μ), and we consider probabilities at some instance
post-initiation. These instances can be recorded as steps. Wherein
for the discrete case, a coin operation followed by a swap operation
constitutes a step.

6In Fig. 5 we have shown only the nodes up to which the walker
has spread after t = 10; it does not show all nodes.
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FIG. 6. Plot of βi vs time. In the legend, βI is tagged, as it varies
for different N and ε values. βH is the constant line y = 0.

where ĩ = i (mod N ) + 1. Using this H, and the equilibrium
distribution ρu, we get from Eq. (D1) the limiting βi values
which we use for CTQW (here we are interested in the equi-
librium behavior),

βH = 0,

βI = − ln(N ),
(29)

where k = 1. In Fig. 6 we plot the variation of βI for two
different N values of 50 and 30, respectively. We numerically
solve Eq. (8) and use the ρ thus produced at each iteration
to compute βi’s as defined in Appendix B. This plot suggests
that βI assumes a final value dependent on N and the mean
energy. Consider the red and black lines, for instance. As
time progresses, we see that they merge towards a fixed value
which is given by Eq. (29), suggesting that even though there
is an initial dependence on ε, as equilibrium approaches, all
of the βI ’s assume the same value. Considering the initial βi

in FLM will be prudent if one wishes to study the behavior
far from equilibrium. Otherwise, fixing the multipliers at an
equilibrium distribution to use for FLM will faithfully repre-
sent equilibrium behavior. The βH plot is shown by the y = 0
line in the graph, which remains constant in this case. The
variation in βI lies within a single order of magnitude and
does not reflect a strong difference in probability amplitudes,
as seen in Fig. 7.

Using appropriate τ values, we get the probability distri-
butions as plotted in Fig. 7. Here it is not easy to discern
between results from the FLM (solid lines) and those from
the numerical solution of Eq. (8). The typical values of prob-
ability amplitudes lie within the order of 10−2 as seen in the
plot. From our numerical computation, we have estimated the
difference with FLM results, which is of the order 10−4 for
low τ and of the order 10−3 for high τ ’s. We see that, for
the distributions considered after t = 20, a similarity in the
behavior of probability emerges as in Figs. 2 and 3(a). Higher
τ or states closer to unitary states tend to relax slower. For
low enough τ , the rapid relaxation of the system is observed
in Fig. 7, and all initial information is lost. On the other
hand, high τ states having lesser entropy generation rates
drive the system toward unitary-like behavior. This can also be

FIG. 7. Probability distribution for a single quantum walker on
a ring of 100 nodes under SEA conditions, initiated at node 50
(shifted to node 0 for symmetry), after t = 20. The relaxation time
τ is 0.2, 50.11, and 100.02 (first column in the legend), respectively.
ε is 0.99. The plot contains both results from plotting the analytic
solution found using the FLM method (solid lines in the plot) and
those (dotted lines in the plot above) from the numerical solution to
Eq. (8) using a CTQW Hamiltonian and other relevant substitutions.

understood in terms of localization and delocalization of the
walker. The probability distribution for the case of τ = 0.2
in Fig. 7 shows strong delocalisation. Whereas in the same
figure, because of τ = 50.11, 100.02, and t = 20 < τ , we can
say decoherence is yet to set in; that is, it displays linear
behavior. As understood so far, low τ results in more nonlinear
behavior. But how low? Unfortunately, the answer to such a
question remains elusive [45]. Yet we can try to identify such
low τ domains of high entropy generation by plotting the rate
of entropy generation �S (A7) against τ and ε values as given
in Fig. 8 for a CTQW with N = 50. The leading contribution
in determining �S comes from τ ; one can confirm from Fig. 8
that higher relaxation time represents almost zero entropy
generation agreeing with our previous results. Lower τ states
produce higher �S values early, as seen in Fig. 8(a), which is a
typical SEA behavior. Also, as time progresses, these highest
�S states (bounded by the cyan line in the plots) start moving
up along the right side of the diagram as in Fig. 8(b). At a
later time, only large τ -valued states are yet to equilibrate,
resulting in a change in entropy. Note that the quantity ε by
construction represents how pure the initial state is. So it is
expected for a state with low ε to reach equilibrium (that is,
a noisy state becomes noisier) rather fast. Yet the entropy
production may not be maximum in those cases, as seen in
Fig. 8. States relatively close to the pure states show a maxi-
mum entropy production rate under SEA evolution (the deep
purple-shaded contours in the diagram). This behavior should
be attributed to the fact that in the Bloch sphere representation,
the low entropic states lying far away from equilibrium have
to go through a greater change in entropy while equilibrating.
Thus, their low information content accounts for a low entropy
generation rate despite noisy channels becoming noisier.
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(a)

(b)

FIG. 8. �S distribution for a CTQW of N = 50 over different
τ and ε values after time t = 1 (a) and t = 3 (b). The color bars
provide the range and contrast of �S values. As discussed in the main
text, the high �S-valued zones are concentrated around high ε and
low τ values. These deep purple areas bounded in cyan represent
the maximum entropy generation area. Insets of panels (a) and (b):
zoomed-in view of the bounded region displaying max �S .

We also run some consistency checks to validate our FLM
results against numerical solutions of Eq. (9), such as com-
puting average energy [Fig. 9(a)], plotting entropy vs time
[Fig. 9(b)], and entropy generation rate vs time as shown in
Fig. 10. As before, we see a good agreement between the
numerical and FLM results in Figs. 9 and 10. As the aver-
age energy remains constant throughout the walk [Fig. 9(a)],
we see entropy increasing monotonically and saturating at
the maximum value [Fig. 9(b)]. As we observe later, slight
disagreements between full numerical (NUM in the plot) and
FLM start appearing (blue dotted and green solid line in the
plot). In this panel, we also see that almost instantaneously, the
lowest τ valued line (black and gray ones in the plot) reaches
maximum entropy. To see the corresponding rate of change
of S, we turn to Fig. 10(a), where we see within t < 0.1 the
graph peaks around the value 32, which is twice the order
of magnitude higher in other high-τ cases [Fig. 10(b)]. This

(a)

(b)

FIG. 9. (a) Plot of average energy vs time and (b) entropy vs time
for a CTQW on a cycle graph of 100 nodes for various τ (first column
of the legend) values and ε = 0.99. The walk was performed up to
t = 100. FLM (solid lines) denotes the analytically computed results,
while NUM (dotted lines) denotes numerical results.

supports the SEA ansatz that the steepest entropic path is
also the one with maximum entropy production rate, and this
happens at low τ values. Also, as noticed in Fig. 2, as τ

increases, we see differences between FLM and NUM results.

IV. DISCUSSION AND CONCLUSION

Let us recapitulate what we have presented here. Our
goal was to find spontaneously dissipative solutions to a
continuous-time quantum walker (CTQW). In search of a
suitable theory to characterize such dissipation, we arrive at
the nonequilibrium thermodynamics propagated by Beretta
and his co-workers under the name the steepest entropy ascent
(SEA) ansatz or local-SEA (LSEA) [49]. This theory entails
a local description of the system and arrives at nonlinear
dynamics without invoking a heat bath or phenomenologi-
cal tools such as presented by GENERIC dynamics. While
these two approaches remain seemingly different in concept
and application, in reality, it is not the case [53]. Hence, we
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(a)

(b)

FIG. 10. Plot of rate of change of entropy vs time for a CTQW
on a cycle graph of 100 nodes for (a) τ = 0.2 and (b) τ =
(50.11, 100.02) with ε = 0.99. FLM (solid lines) denotes the analyt-
ically computed results, while NUM (dotted lines) denotes numerical
results.

choose SEA dynamics to govern dissipation in our CTQW
system. The SEA principle can also be termed the fourth law
of thermodynamics [50], which guarantees a unique global
stable state with maximum entropy and all other states to
be nonstable, metastable, or limit cycles. The SEA ansatz
describes motion towards such a stable state under the lo-
cal maximum entropy production principle by respecting the
conservation laws. In that spirit, this work is a study of a
single-particle quantum system as a consequence of the fourth
law of thermodynamics.

The nonlinearity introduced in the general EoM of the SEA
evolution renders any analytical attempt at a general solution
highly difficult. Various special cases have been considered in
literature till now. Herein, we provide a different approach by
considering fixed Lagrange’s multipliers (FLM) throughout
the evolution under SEA within a good approximation of the
numerical results. We have arrived at a solution that can be
applied to varied cases. Our first example is a qubit. Despite
being a simple system, it has been sparsely discussed in the

SEA literature; we expound on that here. We have rederived
the solutions from our general equation (8) using FLM on
a Bloch sphere. From the magnitude of the Bloch vector vs
time plot, we see the effect of SEA dynamics in Fig. 2. We
observe a strong dependence of dissipation on the system’s
intrinsic relaxation time τ . High τ means if t � τ , the system
is yet to relax and unitary dynamics dominate the evolution,
resulting in the quantum limit of the SEA dynamics. At the
other extreme, for small but positive τ , there is a rapid ascent
towards the maximally mixed state, which is evident in the
equatorial plot of Fig. 3(a). As the entropy generation rate is
inversely related to τ , this is also the domain of maximum
entropy production. Here the system relaxes effectively in-
stantaneously. Our approximate analytical result using FLM
is an approximate result that agrees with the existing result
due to Beretta [43] (GPB lines). The difference between GPB
and FLM results in Fig. 2 originates from fixing multipliers.
Although it is an approximate result, FLM works satisfacto-
rily for two-level systems and d-level ones. FLM shows the
agreement in Fig. 2, giving us confidence in our approach.

We consider a similar analysis for SEA on a single CTQW,
which is an N-level extension of the qubit case. In Fig. 7 we
compare our FLM results with the full numerical solution and
find good agreement. We also plot the rate of entropy gener-
ation against ε and τ and map the plot with contours. Low τ

and high ε cases showed a high rate of entropy generating con-
tours, as seen in Fig. 8. We identify such regions of τ -ε where
SEA dynamics dominate [see insets of Figs. 8(a) and 8(b)].
These are the states residing near the tr(ρ2) = 1 showing
maximum entropy generation in this figure. However, these
marked domains in Fig. 8 change with time, as different τ

values activate �S at different times, as seen in Fig. 10. So
the goal of estimating a lower bound on τ has turned into a
time-dependent problem; that is, for initial times, look at low
τ for max entropy generation, and at later times look towards
higher τ values. The agreement between FLM and numerical
results continues to hold even when we compare average
energy, entropy, and entropy growth over time in Figs. 9 and
10. This shows the robustness of the FLM approach against
various conditions.

Kendon and Tregenna [25] found decoherence to be helpful
in quantum walks in their famous work. They introduced
decoherence via weak measurements on each vertex. Instead,
here, we do that via the SEA framework. We find that deco-
herence is useful in quantum walks. However, it can also be
useful when the relaxation time of the system is short as it
facilitates mixing. This paper shows that SEA with FLM can
be used in many scenarios. This work raises further questions
regarding the effect on QW’s mixing time under such SEA
dynamics. One may venture into the multiwalker case from
here and seek to study various separability criteria that may
be exploited.
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APPENDIX A: DERIVATION OF SEA EOM

In this Appendix we sketch the basic derivation of the SEA
equation of motion (EOM); by no means this is a complete
formulation of what SEA pertains to (see the references in
the main text for that purpose), but rather a guide to what is
usually done.

The state operator γ ’s rate of change follows the given
equation [57]:

γ̇ = γ̇H + γ̇D, (A1)

where γ̇H represents evolution under purely Hamiltonian con-
siderations and γ̇D represents the same due to dissipation.
While γ̇H can be written using Schrödinger’s equation, the
other component requires SEA formalism. Having defined the
gradients in the main text [see Eqs. (5) and (6)], we can asso-
ciate the following geometrical notion to this motion. Let us
consider Fig. 11: the conservation quantities and constraints
of the motion span the linear manifold {|�i )}, and the entropy
functional and γ resides in the plane orthogonal to it [52].
The gradient of the entropy functional, the steepest ascent
aspect, projects the two components, as shown in the figure.
Our interest is in the component perpendicular to the manifold
spanned by |�i )s, denoted by the purple arrow in the diagram.

To fix the norm of the rate of change of γ , one includes the
metric in the following fashion [52]:

dl =
√

(�γ | Ĝ(γ ) | �γ )dt . (A2)

Thus, we have one more constraint.

Returning to the derivation, we can write the constraints
using Lagrange multipliers in the following form:

ϒ = �S −
∑

i

β̄i�Ci − τ

2
(�γ | Ĝ(γ ) | �γ ), (A3)

where β̄i and τ/2 are Lagrange multipliers independent of �γ .
The above equation can be reshaped using Eqs. (5) and (6),
and then on taking the functional derivative of ϒ with respect
to |�γ ) we get

δϒ

δ�γ

= |�) −
∑

i

β̄i|�i ) − τ Ĝ(γ )|�γ ). (A4)

The equation of motion for γ , γ̇D to be precise, i.e., Eq. (7) is
found setting δϒ

δ�γ
= 0 as shown below:

|�γ ) = L
∣∣∣∣∣� −

∑
i

β̄i�i

)
. (A5)

L is given by 1
τ

Ĝ(γ )−1, and it behaves as a superoperator
with the properties L(A)B = L(AB) and [L(A)]† = A†L. For
the purpose of our problem, we use L = 1

4kτ
I (I the Fisher

metric, k to counter the k in entropy, and 4 for scaling). To
derive Eq. (8), we begin by using the following relation for
dissipative motion:

dρD

dt
= �γ γ † + γ�γ † = γ̇Dγ † + γ γ̇

†
D.

We get using Eq. (7) along with the equation above, together
with the definitions- |�) = |δS(γ )/δγ ) = | − 2k(ln γ γ † +
1)γ ) and |�i ) = |δCi(γ )/δγ ) = |2Ciγ ), to get the following
expression for the dissipative part of the dynamics:

�γ = − 2L
∣∣∣∣∣k ln(γ γ † + 1)γ +

∑
i

β̄iCiγ

)
,

using
dρD

dt
= �γ γ † + γ�γ † ,

dρD

dt
= − 2

[
kL[ln(γ γ †)]γ γ † +

∑
i

β̄iL(Ci)γ γ † + kLγ γ †

+kγ γ †L + kγ γ † ln(γ γ †)L +
∑

i

β̄iγ γ †CiL
]
.

Identifying γ γ † = ρ, we can rearrange the r.h.s. of the last
statement of the above equation to get the following one:

dρD

dt
= −2

[
k{L[ln(ρ)], ρ} + k{L, ρ} +

∑
i

β̄i{L(Ci), ρ}
]
.

(A6)
Similarly, using Schrödinger’s equation, we find

γ̇H = − i

h̄
Hγ .

Now, using ρ̇ = γ̇ γ † + γ γ̇ †, h̄ = 1, and Eq. (A1) and (A6),
we get Eqs. (4) and (8).
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A useful term in our analysis is �S , the entropy generation
rate functional from Eq. (5). It is given by

�S = −k
dtr[ρ ln(ρ)]

dt

= −ktr

[
(ln(ρ) + 1)

dρ

dt

]

= 2k2tr[(ln(ρ) + 1]L{ln(ρ), ρ})

+ 2k2
∑

i

(−1)iβitr{[ln(ρ) + 1]L{Ci, ρ}}. (A7’)

The βi is scaled in the above equation [see Eqs. (B11)–(B13)
below]. Using L = I

4kτ
, we get

�S = k

2τ
(tr{[ln(ρ) + 1]{ln(ρ), ρ}}

+
∑

i

(−1)iβitr{[ln(ρ) + 1]{Ci, ρ}}). (A7)

APPENDIX B: DETERMINING LAGRANGE MULTIPLIERS

Using the constraints of Eqs. (5)–(7) we get∑
i

(� j |L|�i )β̄i = k(� j |L|�). (B1)

This equation can be solved using Cramer’s rule for solving
linear equation with multiple variables, provided the solution
exists (�̄ = det(�) = 0), which is equivalent to the following

expression (considering three constraints and corresponding
three β̄s):

�̄ =
∣∣∣∣∣∣
(�1 | L | �1) (�1 | L | �2) (�1 | L | �3)
(�2 | L | �1) (�2 | L | �2) (�2 | L | �3)
(�3 | L | �1) (�3 | L | �2) (�3 | L | �3)

∣∣∣∣∣∣,

β̄1 = 1

�̄

∣∣∣∣∣∣
(�1 | L | �) (�1 | L | �2) (�1 | L | �3)
(�2 | L | �) (�2 | L | �2) (�2 | L | �3)
(�3 | L | �) (�3 | L | �2) (�3 | L | �3)

∣∣∣∣∣∣,

β̄2 = 1

�̄

∣∣∣∣∣∣
(�1 | L | �1) (�1 | L | �) (�1 | L | �3)
(�2 | L | �1) (�2 | L | �) (�2 | L | �3)
(�3 | L | �1) (�3 | L | �) (�3 | L | �3)

∣∣∣∣∣∣,

β̄3 = 1

�̄

∣∣∣∣∣∣
(�1 | L | �1) (�1 | L | �2) (�1 | L | �)
(�2 | L | �1) (�2 | L | �2) (�2 | L | �)
(�3 | L | �1) (�3 | L | �2) (�3 | L | �)

∣∣∣∣∣∣.
(B2)

On column rearrangement, we get

β̄2 = − 1

�̄

∣∣∣∣∣∣
(�1 | L | �) (�1 | L | �1) (�1 | L | �3)
(�2 | L | �) (�2 | L | �1) (�2 | L | �3)
(�3 | L | �) (�3 | L | �1) (�3 | L | �3)

∣∣∣∣∣∣,

β̄3 = 1

�̄

∣∣∣∣∣∣
(�1 | L | �) (�1 | L | �1) (�1 | L | �2)
(�2 | L | �) (�2 | L | �1) (�2 | L | �2)
(�3 | L | �) (�3 | L | �1) (�3 | L | �2)

∣∣∣∣∣∣.
Before explicitly finding out the β̄is, let us consider Eq. (A5),
and substitute β̄i’s to get the following equation [52]:

�γ = L(�)
�̄

�̄
− L

�̄

∣∣∣∣∣∣
(�1 | L | �) (�1 | L | �2) (�1 | L | �3)
(�2 | L | �) (�2 | L | �2) (�2 | L | �3)
(�3 | L | �) (�3 | L | �2) (�3 | L | �3)

∣∣∣∣∣∣(�1)

+ L
�̄

∣∣∣∣∣∣
(�1 | L | �) (�1 | L | �1) (�1 | L | �3)
(�2 | L | �) (�2 | L | �1) (�2 | L | �3)
(�3 | L | �) (�3 | L | �1) (�3 | L | �3)

∣∣∣∣∣∣(�2) − L
�̄

∣∣∣∣∣∣
(�1 | L | �) (�1 | L | �1) (�1 | L | �2)
(�2 | L | �) (�2 | L | �1) (�2 | L | �2)
(�3 | L | �) (�3 | L | �1) (�3 | L | �2)

∣∣∣∣∣∣(�3),

(B3)

�γ =

∣∣∣∣∣∣∣∣
L(�) L(�1) L(�2) L(�3)

(�1 | L | �) (�1 | L | �1) (�1 | L | �2) (�1 | L | �3)
(�2 | L | �) (�2 | L | �1) (�2 | L | �2) (�2 | L | �3)
(�3 | L | �) (�3 | L | �1) (�3 | L | �2) (�3 | L | �3)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(�1 | L | �1) (�1 | L | �2) (�1 | L | �3)
(�2 | L | �1) (�2 | L | �2) (�2 | L | �3)
(�3 | L | �1) (�3 | L | �2) (�3 | L | �3)

∣∣∣∣∣∣
.

(B4)

To find a more comprehensive expression, we make use of the following relations:

(�i | L | φ) = − 1

τ

(
tr

[
ρ

1

2
{Ci, ln(ρ)}

]
+ tr

(
1

2
{Ci, ρ}

))
,

(�i | L | � j ) = 1

kτ
tr

(
ρ

1

2
{Ci, Cj}

)
.

(B5)

Using these relations, we find the expressions for β̄i from Eq. (B2) as follows:

�̄ = 1

(kτ )3

∣∣∣∣∣∣
tr( ρ

2 {C1, C1}) tr( ρ

2 {C1, C2}) tr( ρ

2 {C1, C3})
tr( ρ

2 {C2, C1}) tr( ρ

2 {C2, C2}) tr( ρ

2 {C2, C3})
tr( ρ

2 {C3, C1}) tr( ρ

2 {C3, C2}) tr( ρ

2 {C3, C3})

∣∣∣∣∣∣, (B6)
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β̄1 = − 1

k2τ 3�̄

∣∣∣∣∣∣
tr[ ρ

2 {C1, ln(ρ) + 1}] tr( ρ

2 {C1, C2}) tr( ρ

2 {C1, C3})
tr[ ρ

2 {C2, ln(ρ) + 1}] tr( ρ

2 {C2, C2}) tr( ρ

2 {C2, C3})
tr[ ρ

2 {C3, ln(ρ) + 1}] tr( ρ

2 {C3, C2}) tr( ρ

2 {C3, C3})

∣∣∣∣∣∣, (B7)

β̄2 = 1

k2τ 3�̄

∣∣∣∣∣∣
tr[ ρ

2 {C1, ln(ρ) + 1}] tr( ρ

2 {C1, C1}) tr( ρ

2 {C1, C3})
tr[ ρ

2 {C2, ln(ρ) + 1}] tr( ρ

2 {C2, C1}) tr( ρ

2 {C2, C3})
tr[ ρ

2 {C3, ln(ρ) + 1}] tr( ρ

2 {C3, C1}) tr( ρ

2 {C3, C3})

∣∣∣∣∣∣, (B8)

β̄3 = − 1

k2τ 3�̄

∣∣∣∣∣∣
tr[ ρ

2 {C1, ln(ρ) + 1}] tr( ρ

2 {C1, C1}) tr( ρ

2 {C1, C2})
tr[ ρ

2 {C2, ln(ρ) + 1}] tr( ρ

2 {C2, C1}) tr( ρ

2 {C2, C2})
tr[ ρ

2 {C3, ln(ρ) + 1}] tr( ρ

2 {C3, C1}) tr( ρ

2 {C3, C2})

∣∣∣∣∣∣. (B9)

We consider Eq. (A6) with L = 1

4kτ
I, use the β̄i from Eqs. (B6)–(B9), and after some algebra involving determinants, arrive

at the equation below:

dρ

dt
+ i[H, ρ] = − 1

τ

∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ ln(ρ) 1
2 {C1, ρ} 1

2 {C2, ρ} 1
2 {C3, ρ}

tr[ ρ

2 {C1, ln(ρ)}] tr(ρC1
2) tr( ρ

2 {C1, C2}) tr( ρ

2 {C1, C3})

tr[ ρ

2 {C2, ln(ρ)}] tr( ρ

2 {C2, C1}) tr(ρC2
2) tr( ρ

2 {C2, C3})

tr[ ρ

2 {C3, ln(ρ)}] tr( ρ

2 {C3, C1}) tr( ρ

2 {C3, C2}) tr(ρC3
2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
tr( ρ

2 {C1, C1}) tr( ρ

2 {C1, C2}) tr( ρ

2 {C1, C3})
tr( ρ

2 {C2, C1}) tr( ρ

2 {C2, C2}) tr( ρ

2 {C2, C3})
tr( ρ

2 {C3, C1}) tr( ρ

2 {C3, C2}) tr( ρ

2 {C3, C3})

∣∣∣∣∣∣∣∣∣

.
(B10)

Thus we have a full-fledged equation of motion in ρ under SEA. The βi as given in Eqs. (B6)–(B9) can be rewritten in the
following scaled form (using the scaling, �̄ = 1

(kτ )3 �):

β̄1 = − 1

k2τ 3�̄

∣∣∣∣∣∣
tr[ ρ

2 {C1, ln(ρ)}] tr( ρ

2 {C1, C2}) tr( ρ

2 {C1, C3})
tr[ ρ

2 {C2, ln(ρ)}] tr( ρ

2 {C2, C2}) tr( ρ

2 {C2, C3})
tr[ ρ

2 {C3, ln(ρ)}] tr( ρ

2 {C3, C2}) tr( ρ

2 {C3, C3})

∣∣∣∣∣∣
= −kβ1,

(B11)

β̄2 = 1

k2τ 3�̄

∣∣∣∣∣∣
tr[ ρ

2 {C1, ln(ρ)}] tr( ρ

2 {C1, C1}) tr( ρ

2 {C1, C3})
tr[ ρ

2 {C2, ln(ρ)}] tr( ρ

2 {C2, C1}) tr( ρ

2 {C2, C3})
tr[ ρ

2 {C3, ln(ρ)}] tr( ρ

2 {C3, C1}) tr( ρ

2 {C3, C3})

∣∣∣∣∣∣,
= kβ2,

(B12)

β̄3 = − 1

k2τ 3�̄

∣∣∣∣∣∣
tr[ ρ

2 {C1, ln(ρ)}] tr( ρ

2 {C1, C1}) tr( ρ

2 {C1, C2})
tr[ ρ

2 {C2, ln(ρ)}] tr( ρ

2 {C2, C1}) tr( ρ

2 {C2, C2})
tr[ ρ

2 {C3, ln(ρ)}] tr( ρ

2 {C3, C1}) tr( ρ

2 {C3, C2})

∣∣∣∣∣∣,
= −kβ3.

(B13)

This allows us to write Eq. (A6) as follows:

dρD

dt
= − 1

τ

[
ρ ln(ρ) + 1

2

∑
i

(−1)iβi{Ci, ρ}
]
. (B14)

A single particle will require only two Cis; hence, modifying
Eq. (B10) with appropriate constraints gets us the following
equation:

dρ

dt
+ i[H, ρ] = − 1

τ

∣∣∣∣∣∣∣∣
ρ ln(ρ) ρ 1

2 {ρ,H}
tr[ρ ln(ρ)] 1 tr(ρH)

tr[ρH ln(ρ)] tr(ρH) tr(ρH2)

∣∣∣∣∣∣∣∣∣∣∣∣∣ 1 tr(ρH)
tr(ρH) tr(ρH2)

∣∣∣∣∣
.

(B15)

Considering qubits, as described in Sec. III B, we need to use
the following traces as they appear in the equations for βi in
Eq. (B15). We use H = (ω0I + ωĥ · �σ ) and ρ = 1

2 (I + �r · �σ )
as defined in the main text [43]. Defining re = ĥ · �r we get

tr(ρ) = 1,

tr(ρH) = (ω0 + ωre),

tr(ρH2) = [(
ω2 + ω2

0

) + 2ω0ωre
]
,

tr[ρ ln(ρ)] = 1

2

[
ln

(
1 − r2

4

)
+ r ln

(
1 + r

1 − r

)]
,

tr[ρH ln(ρ)] = ω0

2

[
ln

(
1 − r2

4

)
+ r ln

(
1 + r

1 − r

)]
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+ ω

2

[
ln

(
1 − r2

4

)
+ 1

r
ln

(
1 + r

1 − r

)]
re.

One can plug these traces into the β expressions in
Eq. (B15). Then along with the commutation and anticom-
mutaion relations below, we substitute all of these in Eq. (8)
to get the most general equation of motion for a single particle
as shown below in Eq. (B18):

[H, ρ] = iω
(
ĥ × �r

) · �σ ,

{H, ρ} = (ω0 + ωre)I + (
ω0�r + ωĥ

) · �σ ,

{ln(ρ), ρ} = 1

2

[
ln

(
1 − r2

4

)
+ r ln

(
1 + r

1 − r

)]
I

+ 1

2

[
ln

(
1 − r2

4

)
+ 1

r
ln

(
1 + r

1 − r

)]
�r · �σ .

Using the commutation mentioned above and the trace re-
lations, we find the (unscaled) βi’s to get the following
expression (for the qubit case):

βH = kre

2ω(1 − r2
e )

(A − B), (B16)

βI = k

2ω2
(
1 − r2

e

) [
ω2

(
A − r2

e B
) + ωω0(A − B)

]
, (B17)

where A = [ln( 1−r2

4 ) + r ln( 1+r
1−r )] and B = [ln( 1−r2

4 ) +
1
r ln( 1+r

1−r )]. The equation of motion in this case is, with
dρ

dt = 1
2

d�r
dt · �σ , and re = 0,

dr

dt
= − 1

2τ

(
1 − r2) ln

(
1 + r

1 − r

)
. (B18)

The solution to the above equation is Eq. (23). The form of
Eq. (16) and in extension Eq. (20) is achieved by fixing the
βi’s using required conditions in Eqs. (B16), and (B17). The
above equations are strictly valid for r < 1 and in extension
|re| < 1.

APPENDIX C: SOME COMMENTS ON τ

τ appears as a relaxation time associated with the sys-
tem itself. As discussed in the literature [33,52,57,64] it is
associated with the speed of evolution of the state operator.
Considering a Fisher-Rao metric, which for probability space
turns into a uniform metric, one can write from Eq. (A2) the
following expression:

dl

dt
= 2

√
γ̇D · γ̇D = ε̇.

Here ε̇ is a small positive number, which fixes the norm of �γ

and maximizes the direction as a consequence [52]. From the

evolution equation of state operator γD, we have

γ̇D = |�γ ) = 1

τ

∣∣∣∣∣� −
∑

i

βiCi

)
.

Using these two and defining |�) as an affinity vector that
draws the motion towards SEA evolution, one can write the
following expressions involving τ [52]:

τ =
√

(� | �)

ε̇

=
(
� − ∑

i βiCi | Ĝ−1 | � − ∑
i βiCi

)
�S

.

We see that τ is also inversely proportional to the entropy
generation rate. As a result, for higher τ , we will see lesser
entropy generation and lesser dissipation; as the speed is
high, the system does not relax quickly. On the other hand,
the system will relax faster, and entropy generation will be
enhanced in case of low τ values. Both of these features of τ

are explored in the main text. As can be seen, τ is dependent
on ρ, yet as the literature suggests [33,52,57] constant nonzero
τ can also work in elucidating the features of the general
motion.

APPENDIX D: COMPUTATION OF βi’S FOR THE
QUANTUM WALKER

Considering, ρu = 1

N
I, and H as given in Eq. (28), we

begin by computing trace function as required in Eq. (B15),
which are as given below:

tr(ρ) = 1,

tr(ρH) = d,

tr(ρH2) = N
(
d2 + 2

)
,

tr[ρ ln(ρ)] = − ln(N ),

tr[ρH ln(ρ)] = −d ln(N ).

Using these traces and noticing that � is given by

tr(ρH2)tr(ρ) − [tr(ρH)]2 = (N − 1)d2 + 2N,

we can write the expressions below for βi’s:

βH = 0,

βI = − ln(N ).
(D1)

We have suppressed the t’s for notational convenience.
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