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Exactly solvable one-dimensional quantum models with gamma matrices
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In this paper we write exactly solvable generalizations of one-dimensional quantum XY and Ising-like
models by using 2d -dimensional gamma matrices as the degrees of freedom on each site. We show that these
models result in quadratic Fermionic Hamiltonians with Jordan-Wigner-like transformations. We illustrate the
techniques using a specific case of four-dimensional gamma matrices and explore the quantum phase transitions
present in the model.
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I. INTRODUCTION

Investigations of exactly solvable quantum many-body
models are important due to their many applications in un-
derstanding a plethora of physical phenomena in statistical
and condensed-matter physics, such as quantum phase tran-
sitions [1,2] and thermodynamic properties of many-body
systems [3]. They not only provide platforms for testing new
approximation schemes, but also serve as test beds for numer-
ical techniques developed to tackle large many-body systems,
in particular, higher-dimensional systems or nonintegrable
systems [4–8].

Despite their enormous importance in various fields, only
a handful of exactly solvable quantum many-body mod-
els are known to date, mostly in one dimension [9–13].
Among such models, perhaps the most celebrated ones are
the Ising model [14–17] and the XY model [18–20] in
a transverse field (see also [21]), consisting of a number
of spin- 1

2 particles arranged on a one-dimensional lattice.
These models have a rich history of aiding research in
various directions over the years, including understanding
order-disorder quantum phase transitions [1,2], quantum in-
formation science and technology [22], and materials research
in condensed-matter physics [23]. Moreover, realization of
these models through currently available techniques using dif-
ferent substrates such as trapped ions [24], nuclear magnetic
resonance systems [25], solid-state systems [26], and optical
lattices [27] has made the verification of theoretical results
possible.

While the simplest variants of the Ising and XY models
deal with the spin- 1

2 particles arranged on a one-dimensional
lattice where a spin only interacts with its nearest neigh-
bors, these models have been extended further in vari-
ous directions. For example, one could have asymmetric
Dzyaloshinskii-Moriya-type interactions [28], with staggered
magnetic field [29], and multiple spin-exchange interac-
tions [30–33]. The Ising and XY models in a transverse field,
along with their generalizations mentioned above, can be
solved by transforming the spin variables to spinless fermions
via a Jordan-Wigner (JW) transformation [34], followed by a
Bogoliubov–de Gennes transformation.

In this paper we explore one such exactly solvable general-
ization with higher-dimensional Hilbert space associated with
each lattice site (for a different approach to exactly solvable
one-dimensional generalization involving multiple spins at
each site, see [35,36]). Noting that the anticommutation rela-
tions of Pauli operators, i.e., {σ i, σ j} = 2δi j , i, j ∈ (1, 2, 3),
play a crucial role in the JW approach, earlier works [37] pro-
posed replacing Pauli matrices by higher-dimensional gamma
matrices �i, i ∈ (1, 2, 3, . . . ), satisfying similar anticommu-
tation relations, i.e.,

{σ i, σ j} = 2δi j → {�i, � j} = 2δi j . (1)

It was shown in [37] that the generalized versions of XXZ
models can be fermionized. However, XXZ models are con-
siderably harder to solve than the XY models and in this
context it is natural to ask if there is a generalization of the
XY models using gamma matrices. In this work we construct
explicit models with 2d -dimensional gamma matrices (for any
d), which when fermionized give Hamiltonians which are
quadratic in fermions and hence solvable, just like the XY
models. We also discuss the d = 2 case in more detail and
explore an Ising-like quantum critical point. While in this
paper we focus on the models in one dimension, we point
out here that several interesting gamma matrix generalizations
have also been considered for quantum spin models on higher-
dimensional lattices [38–43].

The rest of the paper is organized as follows. In Sec. II,
after reviewing the one-dimensional solvable XY and related
models, we define our model using the gamma matrices. We
then rewrite the model in terms of fermions, employing the
JW transformation, and solve it. In Sec. III we illustrate our
results via solving the model explicitly for a special case. We
also demonstrate the quantum phase transitions occurring in
the system and comment on the calculation of critical ex-
ponents. We summarize in Sec. IV, as well as pointing out
possible future directions.

II. MODEL

In this section we construct the model, perform the
fermionization, and write the Hamiltonian in Fourier space.
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We start with a quick recap of XY and related models in one
dimension.

A. The XY model in one dimension

Consider a class of quantum spin models consisting of a
lattice of N sites with two degrees of freedom at each site. We
write the Hamiltonian representing such models in a compact
form as

H = −i
∑

a

2∑
μ,ν=1

Jμνσ
μ
a σ 3

a σ ν
a+1 − h

∑
a

σ 3
a , (2)

where σ 1, σ 2, and σ 3 are Pauli matrices and a = 1, . . . N is
the lattice index such that on each site

{σμ, σ ν} = 2δμν. (3)

The spin-exchange couplings are represented by Jμν , while
the strength of the external magnetic field in the z direction
is denoted by h. Note that both Jμν and h are real for the
Hamiltonian to be Hermitian. It is worth mentioning that the
above Hamiltonian can be easily rewritten in a more familiar
form that is quadratic in Pauli matrices using σ 1σ 2 = iσ 3 and
so on [see Eqs. (4)–(6) for details]. However, we will work
with (2), since it is better suited to the generalizations that we
will define later.

A number of well-known quantum spin models with
nearest-neighbor spin-exchange interactions can be identified
as particular cases of the Hamiltonian in (2) as follows: (i) the
Ising model in a transverse field J21 = J1, with the rest of Jμν

vanishing

H =
∑

a

(
J1σ

1
a σ 1

a+1 − hσ 3
a

)
; (4)

(ii) the XY model in a transverse field J12 = −J2, J21 = J1,
with the rest of Jμν vanishing

H =
∑

a

(
J1σ

1
a σ 1

a+1 + J2σ
2
a σ 2

a+1 − hσ 3
a

)
; (5)

and (iii) the XY model in a transverse field with asymmetric
Dzyaloshinskii-Moriya interaction J12 = −J2, J21 = J1, and
J11 = J22 = D, with the rest of Jμν vanishing

H =
∑

a

(
J1σ

1
a σ 1

a+1 + J2σ
2
a σ 2

a+1 − hσ 3
a

)
+

∑
a

D
(
σ 1

a σ 2
a+1 − σ 2

a σ 1
a+1

)
. (6)

For convenience, we refer to the class of quantum spin mod-
els represented by (2) as the generalized XY models. As
mentioned earlier, these models are solvable using the JW
transformations, which rewrite Pauli matrices in terms of
fermionic creation and annihilation operators obeying canon-
ical anticommutation relations, as we will see below. The
Hamiltonian (2) is quadratic in terms of these fermionic op-
erators and hence solvable.

In what follows we generalize the generalized XY model
to allow for more degrees of freedom per lattice site in such
a way that the JW transformations remain applicable and
the resulting Hamiltonian remains quadratic in terms of the
fermionic operators. As noted in [37], such a generalization

is possible by replacing the Pauli matrices on each lattice
site with appropriate � matrices,1 which have the following
algebra at each site: {

�μ
a , �ν

a

} = 2δμν. (7)

Here μ, ν ∈ {1, 2, . . . , 2d}, while � matrices at different sites
commute. For the specific representation of the � matrices in
terms of Pauli matrices see Sec. II B 1; the Pauli matrices σμ

a
on the lattice site a correspond to the special case of d = 1.
In the next few sections we work out this generalization in de-
tail and demonstrate the solvability of the generalized model
[see (18) for the Hamiltonian of the model]. We will call this
class of models generalized XY models with gamma matrices
(generalized XY �), parametrized (apart from the different
interaction parameters appearing in the Hamiltonian) by the
parameter d .

B. Review of gamma matrices

We begin by reviewing a number of features of the gamma
matrices which will be important in the rest of the paper. For
brevity, we suppress the lattice index and write the anticom-
mutation relation of the gamma matrices as

{�μ, �ν} = 2δμν, (8)

where �μ is Hermitian and μ = {1, 2, . . . , 2d}. As we will
see later in Sec. II B 1, these �μ are 2d × 2d matrices and can
be thought of as operators acting on a Hilbert space of d spin-
1
2 degrees of freedom. For d = 1, it is clear that (8) simply
reduces to Pauli matrices σ 1 and σ 2. The matrix �2d+1, which
is the analog of the σ 3 matrix for the d = 1 case and plays an
important role in defining the Hamiltonian for the generalized
XY � models (see Sec. II D), is defined as

�2d+1 ≡ (−i)d
2d∏

μ=1

�μ (9)

and obeys the anticommutation relation

{�2d+1, �μ} = 0 ∀μ, (10)

with (�2d+1)2 = 1. Additionally, we define a set of d mutually
commuting operators Si such that [Si, S j] = 0, where

Si ≡ (−i)�2i−1�2i, i ∈ {1, 2, . . . , d}. (11)

These operators will facilitate the field term in the generalized
XY � model (see Sec. II D).

1. Specific representation of the � matrices

While defining and solving our model can be done purely
algebraically [i.e., using the algebra defined in (7)], it is some-
times useful to have explicit realization for the �μ

a (for each
lattice site a) operators as 2d × 2d matrices on the Hilbert
space. One such realization of the � matrices is in terms of the
tensor products of Pauli matrices given as (again suppressing

1See [44] and references therein for a recent exposition on the
general conditions when such rewriting is possible.
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i = 1

i = 2

i = 3

i = 4
· · · · · ·

...
...

...
...

...

i = d

a = 1 a = 2 a = 3 a = N

FIG. 1. Sublattice structure for generalized XY � models. Each
lattice site (gray block), denoted by the index a, consists of d sublat-
tice points (white circles), marked by the index i.

the lattice index a)

�1 = σ 1
1 ⊗ 12 ⊗ 13 ⊗ · · · ⊗ 1d−1 ⊗ 1d ,

�2 = σ 2
1 ⊗ 12 ⊗ 13 ⊗ · · · ⊗ 1d−1 ⊗ 1d ,

�3 = σ 3
1 ⊗ σ 1

2 ⊗ 13 ⊗ · · · ⊗ 1d−1 ⊗ 1d ,

�4 = σ 3
1 ⊗ σ 2

2 ⊗ 13 ⊗ · · · ⊗ 1d−1 ⊗ 1d ,

...

�2d−1 = σ 3
1 ⊗ σ 3

2 ⊗ σ 3
3 ⊗ · · · ⊗ σ 3

d−1 ⊗ σ 1
d ,

�2d = σ 3
1 ⊗ σ 3

2 ⊗ σ 3
3 ⊗ · · · ⊗ σ 3

d−1 ⊗ σ 2
d , (12)

where it can be easily verified that the above matrices sat-
isfy (8) (see [45] for a related realization). One can interpret
it as d sublattice sites for each of the lattice sites a having a
spin- 1

2 degree of freedom on each of these sublattice sites or as
d spin- 1

2 pseudo-spin degrees of freedom at each lattice site.
The subscripts on the Pauli matrices and the identity operators
in (12) represents the sublattice points or pseudospin, which
we denote by the index i (i = 1, 2, . . . , d), as mentioned be-
fore (see Sec. II B). A pictorial representation of the sublattice
structure of the model can be found in Fig. 1. The above
representation corresponds to the choice.

�2d+1 =
d⊗

i=1

σ 3
i =

d∏
i=1

Si, (13)

where the commuting operators Si (see Sec. II B) can be
constructed as

Si = 11 ⊗ 12 ⊗ · · ·1i−1 ⊗ σ 3
i ⊗ 1i+1 ⊗ · · · ⊗ 1d . (14)

C. Jordan-Wigner transformation

The model we build below consists of �μ
a , i.e., gamma

matrices defined at each site a. We define the fermion operator
χμ

a as

χμ
a ≡

(∏
b<a

�2d+1
b

)
�μ

a (15)

· · · · · ·

Γ2d+1
2Γ2d+1

1 · · ·

21

Γ2d+1
a−2 Γ2d+1

a−1

aa − 2 a − 1 a + 1

FIG. 2. Jordan string of �2d+1 operators corresponding to the
fermionic operator χμ

a , spanning the lattice sites 1, 2, . . . , a − 1.

such that χμ
a

† = χμ
a . It is easy to verify (also see [37]) that the

operators {χμ
a } satisfy the fermionic algebra{

χμ
a , χν

b

} = 2δμνδab (16)

and are called Majorana fermions. Note that this is a
straightforward �-matrix generalization of the well-known
JW transformations usually defined in terms of Pauli matrices,
with the �2d+1 playing the role of σ 3. The so-called Jordan
string now consists of a string of �2d+1 operators to the left
of the site of interest (see Fig. 2). Although the � matrices at
different sites commute, the presence of �2d+1 in the Jordan
string of fermions along with the property {�μ

a , �2d+1
a } = 0

makes the fermions at different sites anticommute with each
other. An analogous treatment using complex fermions can
also be done and some details are given in Appendix B.

D. Hamiltonian

With all the ingredients in place, we now write the gen-
eralized XY � models as a generalization of the generalized
XY models in terms of � matrices. Let us consider the
Hamiltonian

HG = −i
∑

a

∑
μ,ν

Jμν�
μ
a �2d+1

a �ν
a+1 −

∑
a

∑
i

hiS
i
a, (17)

where μ, ν = 1, 2, . . . , 2d , i = 1, 2, . . . , d , and Jμν and hi

are sets of 4d2 and d coupling constants, respectively.2 The
Hermiticity condition of the Hamiltonian implies that the
coupling constants Jμν and hi must be real. Note that since for
d = 1, � matrices reduce to Pauli σ matrices, the generalized
XY � Hamiltonian given above reduces to the generalized XY
Hamiltonian (2) for d = 1. A pictorial representation of the
Jμν couplings for the d = 2 case can be found in Fig. 3. We
sometimes write the coupling constants Jμν as a sum of a sym-
metric and an antisymmetric part, as Jμν = (Sμν − Aμν )/2,
where we take Sμν = Sνμ and Aμν = −Aνμ.

As described in Appendix A, the generalized XY � models
given by the Hamiltonian in (17) are quadratic in terms of the
fermions defined by the JW transformations given in (15),

HG = −i
∑

a

∑
μ,ν

Jμνχ
μ
a χν

a+1 + i
∑

a

∑
i

hiχ
2i−1
a χ2i

a . (18)

Such quadratic fermionic Hamiltonians are often encountered
in the literature [46]. In the next section we diagonalize the
Hamiltonian by exploiting the translational symmetry. In the
case of systems with finite N , the transformation of the Hamil-
tonian (17) to the Hamiltonian (18) requires a careful analysis
of the boundary terms, which is given in Appendix A.

2As we will show in Appendix C, the number of independent
couplings can be shown to be 4d2 rather than 4d2 + d .

024114-3



YASH CHUGH et al. PHYSICAL REVIEW E 106, 024114 (2022)

· · · · · ·

Γ1
N

Γ2
N

Γ3
N

Γ4
N

Γ1
2Γ1

1

Γ2
1

Γ3
1

Γ4
1

Γ2
2

Γ3
2

Γ4
2

Γ1
3

Γ2
3

Γ3
3

Γ4
3

a = 1 a = 2 a = 3 a = N

J11

J12 J21

J11

J12 J21

J14

J41 J41

J14
J13

J31 J31

J13

FIG. 3. Interactions in the Hamiltonian for d = 2. Each lattice
site a (gray block) can house four � matrices {�1

a, �
2
a, �

3
a, �

4
a},

a = 1, 2, . . . , N . The lines in the diagram represent the couplings
Jμν involving �μ

a and �ν
a+1, μ, ν ∈ {1, 2, 3, 4} [see (17)].

E. Hamiltonian in k space

To diagonalize the quadratic fermionic Hamiltonian
in (18), we exploit the fact that the Hamiltonian is transla-
tionally invariant and go to the momentum space via defining
the momentum modes χ

μ

k as

χμ
a ≡ 1√

N

∑
k

eikaχ
μ

k , (19)

where the sum over k runs symmetrically over both positive
and negative values (see Appendix A for a detailed treatment
of the finite-N scenario). Note that χ

μ

k are complex fermions
and satisfy the following algebra:

χ
μ

k
† = χ

μ

−k, (20)

{
χ

μ

k
†
, χν

k′
} = 2δμνδk,k′ . (21)

Under this transformation, the fermionic Hamiltonian of the
generalized XY � models (18) becomes (see Appendix A for
the detailed calculation)

HG =
∑
k>0

[{iAμν cos k + Sμν sin k}χμ

−kχ
ν
k

+ ihi
{
χ2i−1

−k χ2i
k − χ2i

−kχ
2i−1
k

}]
. (22)

The Hamiltonian in (22) can also be written as

HG =
∑
k>0

V †HV, with V ≡

⎛
⎜⎝

χ1
k
...

χ2d
k

⎞
⎟⎠, k > 0, (23)

where H is a 2d × 2d matrix given by

H =

⎛
⎜⎜⎜⎝

S11 sin k i(h1 + A12 cos k) iA13 cos k + S13 sin k . . .

−i(h1 + A12 cos k) cos k S22 sin k iA23 cos k + S23 sin k . . .

−iA13 cos k + S13 sin k −iA32 cos k + S23 sin k S33 sin k . . .
...

...
...

⎞
⎟⎟⎟⎠. (24)

Notice that V and H have a k dependence which we have
omitted in the notation for simplicity. As mentioned in Ap-
pendix C, with no loss of generality, we can choose S12 =
S34 = · · · = 0. Since these manipulations have rendered the
problem of diagonalizing the Hamiltonian (17) (acting on a
2Nd -dimensional Hilbert space) to simply diagonalizing the
2d × 2d Hermitian matrix H , we term the model solvable. We
will explicitly solve for the d = 2 case in the next section. We
mention here that all of these can be repeated with complex
fermions instead of Majorana fermions and some details are
given in Appendix B.

F. Symmetries

The Hamiltonian in (17) has no symmetries for general
values of the couplings Jμν and hi other than the discrete Z2

symmetry, which is given by

�μ
a → −�μ

a . (25)

However, the Hamiltonian may enjoy certain additional sym-
metries for special values of these couplings. One such
symmetry is the reflection symmetry, which allows the ex-
change of the ath site with the (N + 1 − a)th site. For

example, in the XY model of (5), this would amount to the
Hamiltonian being invariant under the transformation

σμ
a ↔ σ

μ
N+1−a, μ = 1, 2, 3 ∀a. (26)

This symmetry is broken once we allow for the
Dzyaloshinskii-Moriya interaction term (6). In our model
given in (17), this symmetry can be incorporated as

�2i−1
a → −i�2i

N+1−a�
2d+1
N+1−a, �2i

a → i�2i−1
N+1−a�

2d+1
N+1−a,

(27)
which for d = 1 translates to (26). Moreover, under the trans-
formations (27),

Si
a → Si

N+1−a, �2d+1
a → �2d+1

N+1−a. (28)

The Hamiltonian in (17) is invariant under the reflection sym-
metry only if the couplings satisfy

J2i,2 j = −J2 j−1,2i−1, J2i−1,2 j = J2 j−1,2i,

J2i,2 j−1 = J2 j,2i−1. (29)

Equivalently, in terms of couplings Sμν and Aμ,ν ,

S2i,2 j = −S2i−1,2 j−1, S2i,2 j−1 = S2i−1,2 j,

A2i,2 j = A2i−1,2 j−1, A2i,2 j−1 = −A2i−1,2 j . (30)
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We will work with reflection symmetric Hamiltonians when
we solve the d = 2 model explicitly in the next section.

III. GENERALIZED XY� MODELS FOR d = 2

In the preceding section we reduced the problem of solving
for the spectrum of the Hamiltonian HG in (17), a 2Nd × 2Nd

matrix, to solving for the eigenvalues of a 2d × 2d matrix H
given in (24). For d = 1, solving for the eigenvalues of the
2 × 2 matrix can be done analytically, which results in the
known spectrum of generalized XY models. In this section we
focus on the more complicated case of d = 2.

Before we go about solving the Hamiltonian, we comment
on the physical interpretation of the d = 2 model. Recall that
for d = 2 the Hilbert space can be taken to consist of two
spin- 1

2 degrees of freedom (say, σ and σ̃ ) per site. The most
general nearest-neighbor Hamiltonian that can be written on
this Hilbert space is

H̃ =
∑

i, j,k,l,a

Ji jkl
(
σ i

aσ
k
a+1

) ⊗ (
σ̃ j

a σ̃ l
a+1

) +
∑
i, j,a

hi jσ
i
a ⊗ σ̃ j

a , (31)

where i, j, . . . are indices 1, . . . , 4 and σ 0 ≡ I2×2. There are
44 + 42 = 272 coupling constants in this Hamiltonian.3 As
mentioned before, the generalized XY � Hamiltonian spans
a 4d2 + d = 18 parameter subspace of this general Hamilto-
nian. To get a sense of what the generalized XY � interactions
look like in the above conventions, consider the J12 term. The
contribution to the generalized XY � Hamiltonian (17) after
substituting the representation (12) is given by

HG ⊃−iJ13�
1
a�

5
a�

3
a+1 =−J13

(
σ 2

a σ 2
a+1

) ⊗ (
σ̃ 3

a σ̃ 1
a+1

)
. (32)

What we show below is that this 18-parameter subspace is ex-
actly solvable. We also mention here that the four-dimensional

3The number of independent coupling constants can be reduced by
rotating the Pauli matrices, etc.

Hilbert space can be equivalently thought of as a spin- 3
2 sys-

tem since the gamma matrices �1, . . . , �5 can be represented
by bilinear combinations of spin- 3

2 operators (see [47]).

A. Hamiltonian

In this section we focus on the d = 2 generalized XY �

model. Before applying the techniques introduced in this pa-
per, we can try to get some intuition by looking at the ground
state and nature of excitations. While it is hard to do this
for general values of the couplings, there exist choices of
the couplings for which the analysis is much simpler. For
example, there exist choices of coupling for which the above
model reduces to the known XY and Ising models. To see
this, consider the case when only J12, J21, h1, h2 �= 0. Using
the representation (12) the Hamiltonian is

HG =
∑

a

[ − J12
(
σ 2

a ⊗ σ 3
a

)(
σ 2

a+1 ⊗ Ia+1
)

+ J21
(
σ 1

a ⊗ σ 3
a

)(
σ 1

a+1 ⊗ Ia+1
) + h1

(
σ 3

a ⊗ Ia
)

+ h2
(
Ia ⊗ σ 3

a

)]
. (33)

In the first two terms above, one can think of the sec-
ond sublattice as a control bit for the first sublattice,
which controls whether the spin chain on the first sublat-
tice has ferromagnetic or antiferromagnetic interactions. It
is easy to see that in the h2 → ∞ limit, the dynamics of
the second sublattice is frozen and the chain becomes the
one-dimensional (1D) spin- 1

2 XY model, for which the ex-
isting knowledge on the ground states and excitations would
follow.

We now turn to solving the d = 2 generalized XY � models
assuming the reflection symmetry. Imposing the symmetry
constraints given in (30), we obtain from (24) for H ,4

H =

⎛
⎜⎝

S11 sin k i(h1 + A12 cos k) iA13 cos k + S13 sin k iA14 cos k + S14 sin k
−i(h1 + A12 cos k) −S11 sin k −iA14 cos k + S14 sin k iA13 cos k − S13 sin k

−iA13 cos k + S13 sin k iA14 cos k + S14 sin k S33 sin k i(h2 + A34 cos k)
−iA14 cos k + S14 sin k −iA13 cos k − S13 sin k −i(h2 + A34 cos k) −S33 sin k

⎞
⎟⎠. (34)

Before we discuss the spectrum of this matrix and find the
energy gaps, we make some general comments about the
spectrum. Note that H satisfies

S−1HS = −H∗, with S ≡

⎛
⎜⎝

0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0

⎞
⎟⎠. (35)

This guarantees that for every eigenvector U with eigenvalue
ε, there is a corresponding eigenvector V ≡ SU ∗ with eigen-
value −ε, namely,

HU = εU ⇒ HV = −εV. (36)

Now let us define an antiunitary operator P ≡ KS, where K
is the complex conjugation operator and S is defined via

S−1χ2i−1
k S = −iχ2i

k , S−1χ2i
k S = iχ2i−1

k , (37)

implying

P−1HGP = −HG (38)

for HG defined in Eq. (22), upon using the conditions (30).
This indicates that the property that the eigenvalues always

4Via the choice of rotations as in Appendix C, we can set S12 =
S34 = 0, S22 = −S11, S44 = −S33, S24 = −S13, S23 = S14, A24 =
A13, and A23 = −A14.
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come in pairs is actually more general and follows from
the particle-hole symmetry, represented by P . To see that
P indeed acts like particle-hole symmetry, it is convenient
to define complex fermions (more details about the complex
fermions are given in Appendix B)

ci
k ≡ χ2i−1

k + iχ2i
k√

2
, ci†

−k ≡ χ2i−1
k − iχ2i

k√
2

, (39)

which, under the action of P , transforms as

P−1ci
kP = ci†

−k, P−1ci†
−kP = −ci

k . (40)

We now turn to computing the spectrum of Eq. (34), i.e.,
the energy gaps. It is convenient to define the quantities

Fk = 1
2

[
(h1 + A12 cos k)2 + (h2 + A34 cos k)2

+2
(
A2

13 + A2
14

)
cos2 k + (

S2
11 + S2

33 + 2S2
13

+2S2
14

)
sin2 k

]
(41)

and

Gk = det H, (42)

with Fk � 0. By computing the characteristic polynomial for
H , we can obtain the eigenvalues to be {ε±(k),−ε±(k)},
where

ε±(k) =
√

Fk ±
√

F 2
k − Gk . (43)

Note that for

Gk = 0, (44)

the eigenvalue ε−, which is also the energy gap between the
ground and the first excited state, vanishes, which corresponds
to a quantum phase transition. From the eigenvectors, we can
find the corresponding new quasiparticles, say, b±

k and c±
k

for the positive-energy modes and negative-energy modes, re-
spectively, in terms of which we can express the Hamiltonian
HG as [32]

HG =
∑
k>0
s=±

εs(k)(b†
s,kbs,k − c†

s,kcs,k ). (45)

It is now obvious that the ground state is a filled Fermi sea with
particlelike and holelike excitations. Various thermodynamic
properties can now be extracted in a straightforward fashion
from this expression. For instance, the ground-state energy of
the system can be computed to be

Eg = −
∑
k>0

[ε+(k) + ε−(k)] = −
√

2
∑
k>0

√
Fk + √

Gk . (46)

B. Quantum phase transitions

As mentioned before, the quantum phase transitions can be
diagnosed using the gap closing condition given in (44). There
may exist a number of conditions over the values of the system
parameters involved in (41) for which this condition can be
satisfied and each of these conditions will in principle pro-
vide a quantum phase transition occurring in the generalized
XY � models for d = 2. For the purpose of demonstration, we
consider the simplest critical point of the generalized XY �

model, which is the analog of the order-disorder transition
in the transverse-field Ising model, which takes place at the
vanishing momentum, i.e., k = 0. The gap closing condition
G0 = 0 can then be solved to get the critical value of the
system parameter h as

hc = 1

2μ

[ − A12 − μ2A34 ± {
4μ2(A2

13 + A2
14

)
+ (A12 − μ2A34)2

}1/2]
, (47)

where we have defined μ and h via h1 ≡ μh and h2 ≡ h
μ

. Note
that hc is always real, regardless of the choice of the values of
the other coupling constants.

Motivated by the fact that the derivatives of two-point
correlation functions and single-site magnetizations provide
signatures of quantum phase transitions via nonanalytic be-
haviors, we probe the analogous quantities in the generalized
XY � models. The expectation value of 〈Si

a〉, which is the
analog of 〈σ 3

a 〉 of the generalized XY model, is obtained from
∂Eg/∂h and is plotted as a function of h in Fig. 4(a), where we
set μ = 2, and the values of the rest of the coupling constants
are set to 1, which leads to hc = 0.350 781 [from (47)]. At
h = hc, variation of ∂Eg/∂h as a function of h changes from
convex to concave, thereby indicating a nonanalytic behavior
of ∂2Eg/∂h2, as shown in Fig. 4(b). This susceptibility shows
approximately − ln |h − hc| divergence near h = hc.

Critical exponents

The analysis above clearly indicates the presence of a
quantum critical point in the generalized XY � model. The
next natural question is to extract various critical exponents.
For this, let us analyze the behavior of the gap (equal to
2ε−) in various limits. At the critical point h = hc, it can
be easily checked that ε− vanishes linearly with k when ex-
panded around the critical mode k = 0, i.e., ε− ∝ k up to
first order in k. This gives the value of the dynamical critical
exponent z to be equal to unity. On the other hand, for the
critical mode k = 0, the gap vanishes as h − hc so that νz = 1,
which implies that the correlation length exponent ν is also
equal to unity. Since the critical exponents match that of the
Ising model, this transition is of the Ising universality class,
i.e., in the conformal field theory. it is c = 1

2 . Note that the
continuum limit of our model is expected to be the free-field
theory of d complex fermions (or equivalently 2d Majorana
fermions) with mass terms controlled by the magnetic field.
Consequently, the possible transitions can be understood in
this context. As an example, the quantum phase transition that
we found in Sec. III B corresponds to the field theory where
all fermions except one have been given mass and gapped out.

We reiterate that we have considered the simplest quantum
phase transition above. For example, in the analysis of the
critical exponents, we could further fine-tune the couplings
to obtain different critical exponents. We could also con-
sider a different class of quantum phase transitions where the
gaps (43) vanish at finite values of k, which would be the
analog of the anisotropy transition occurring in the XY Ising
model. We leave the detailed understanding of all the quantum
phase transitions to future work.
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FIG. 4. Variation of (a) ∂Eg/∂h and (b) ∂2Eg/∂h2 as functions of h, setting μ = 2, A12 = 1, A13 = 1, A14 = 1, A34 = 1, S11 = 1, S33 = 1,
S13 = 1, and S14 = 1. The quantity ∂2Eg/∂h2 exhibits a divergence at hc = 0.350 781, indicating a quantum phase transition.

IV. CONCLUSION

In this work we have presented an exactly solvable general-
ization of the class of 1D quantum XY and Ising-like models
by associating higher-dimensional Hilbert spaces with each
lattice site, via replacing the Pauli matrices with gamma matri-
ces. Using the Jordan-Wigner transformation, we fermionized
the model and subsequently solved it. We illustrated an Ising-
like quantum phase transition in the model for d = 2 with a
specific set of system parameters.

We end with a discussion of possible future directions.
Within the class of models explored in this paper, the d = 2
case provides a set of exactly solvable models with a 16-
dimensional parameter space. A thorough exploration of this
space may reveal more quantum phase transitions different
from the one reported in this work. In addition, note that
the 1D Jordan-Wigner transformations are useful in higher-
dimensional models too, for example, the 2D Kitaev model
on a honeycomb lattice [48,49] (see also [50]), which can be
solved via a 1D Jordan-Wigner transformation on a special
path. Since �-matrix generalizations have been proposed also
for higher-dimensional models and more general lattices (see,
for example, [38–41], and also [42,43] for a more general
approach), it would be interesting to explore whether the
generalizations we have described using the Jordan-Wigner
transformation are applicable in such higher-dimensional con-
texts.
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APPENDIX A: FERMIONIZATION OF HAMILTONIAN

In this Appendix we give more details on the fermion-
ization of the Hamiltonian. Though we are interested in
the thermodynamic limit, we will work at finite N in
this Appendix. Recall that the � matrices constructing the

generalized XY � models satisfy the periodicity condition

�
μ
N+1 = �

μ
1 ∀μ = 1, 2, . . . , 2d. (A1)

For the Jordan-Wigner fermions defined in (15), this translates
to

χ
μ
N+1 = W χ

μ
1 , (A2)

where W ≡ ∏N
a=1 �2d+1

a . It is easy to see that W 2 = 1, and
hence its eigenvalues (say, w) are ±1. Consequently, the
generalized XY � model, when written in terms of fermions,
consists of two sectors

χ
μ
N+1 = −χ1 for w = −1,

χ
μ
N+1 = χ1 for w = +1, (A3)

i.e., a sector with periodic fermions and another with antiperi-
odic fermions. To see the sectors more clearly, let us define
H±

G via

HG = 1 + W

2
H+

G + 1 − W

2
H−

G . (A4)

The Hamiltonians H±
G written in terms of fermions become

H±
G = −i

∑
μ,ν,a

Jμνχ
μ
a χν

a+1 + i
∑
i,a

hiχ
2i−1
a χ2i

a . (A5)

The Hamiltonian in each sector is thus quadratic in terms of
fermions and hence simple to solve; we just need to move to
the Fourier basis. However, the periodicity condition enforces
that the momentum modes are either integers or half integers.
More precisely, we have5

χμ
a =

{
1√
N

∑(N−1)/2
q=−(N−1)/2 ei2πqa/Nχμ

q for w = 1
1√
N

∑N/2
q=−(N−2)/2 ei2πqa/Nχμ

q for w = −1.
(A6)

Here we assume that N is odd, although the case of even
N can also be done analogously and does not change the

5Note that in the main text we label the momentum modes by k,
which is continuous, whereas here the label is q, which is an integer.
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conclusions. The modes satisfy χμ
q = χ

μ
q+N , i.e., they sit on

a periodic lattice. Let us denote the momentum lattice of the
w sector by Z(w). The modes which satisfy χμ

q = χ
μ
−q play a

special role in what follows and we denote this mode by q0,
i.e., q0 = 0 for the w = 1 sector and q0 = N

2 for the w = −1
sector.

It is easy to check that

χμ
q

† = χ
μ
−q,

{
χμ

q
†
, χν

q′
} = 2δμνδq,q′ . (A7)

Hence χμ
q can be treated as a complex fermion. Note, how-

ever, that the χμ
q0

fermion is still a Majorana fermion. To solve
the fermionic Hamiltonian, it is useful to note that for any b
(the sector is denoted by ± below),∑

a

χμ
a χν

a+b

=
∑

q∈Z(w)
+

[(
e2π iqb/Nχ

μ
−qχ

ν
q − e−2π iqb/Nχν

−qχ
μ
q

)

+ 1

2

(
e2π iq0b/Nχμ

q0
χν

q0
− e−2π iq0b/Nχν

q0
χμ

q0

)] + κδμν.

(A8)

The constant κ is not relevant in the discussion below, since it
just shifts the Hamiltonian by a constant. Thus, the Hamilto-
nian given in (A5) becomes

Hw
G =

∑
q∈Z(w)

+

(
i cos

2πq

N
Aμν + sin

2πq

N
Sμν

)
χ

μ
−qχ

ν
q

+ i

2
cos

2πq0

N
Aμνχ

μ
q0

χν
q0

+ ihi

∑
q∈Z(w)

+

(
χ2i−1

−q χ2i
q − χ2i

−qχ
2i−1
q

)

+ ihi

2

(
χ2i−1

q0
χ2i

q0
− χ2i

q0
χ2i−1

q0

)
. (A9)

Here we have used Jμν = Sμν−Aμν

2 . The thermodynamic limit
is N → ∞, with k = 2πq

N kept fixed, and hence we can work
with the Hamiltonian

Hw
G =

∑
μ,ν,k>0

[i cos(k)Aμν + sin(k)Sμν]χμ

−kχ
ν
k

+ i
∑
i,k>0

hi
(
χ2i−1

−k χ2i
k − χ2i

−kχ
2i−1
k

)
, (A10)

where we have let χμ
q → χ

μ

k . Also, the distinction between
w = ±1 sectors goes away in this limit.

APPENDIX B: MAJORANA TO COMPLEX FERMIONS

In this Appendix we rewrite the equations we obtained in
terms of complex fermions, instead of Majorana fermions. Let
us define the complex fermions ci

a via

ci
a = χ2i−1

a + iχ2i
a√

2
, ci

a
† = χ2i−1

a − iχ2i
a√

2
. (B1)

The relation between complex fermions and the matrices �μ
a

can be read off from the Jordan-Wigner transformation given

in (15). We can also write the Fourier modes of complex
fermions in terms of Fourier modes of Majorana fermions as

ci
k = χ2i−1

k + iχ2i
k√

2
, ci

k
† = χ2i−1

−k − iχ2i
−k√

2
. (B2)

Defining ci+
k = ci

k
† and ci−

k = ci
k , we can rewrite the Hamilto-

nian in (22) in terms of the complex fermion modes as

HG = 1

2

d∑
i, j=1
k>0
s=±
s̃=±

κss̃
i j cis

skc js̃
−s̃k +

d∑
i,k>0

hi
{
ci†

k ci
k − ci

−kci†
−k

}
, (B3)

where

κss̃
i j = κ2i−1,2 j−1 + is̃κ2i−1,2 j + isκ2i,2 j−1 − ss̃κ2i,2 j, (B4)

with

κμν = iAμν cos k + Sμν sin k. (B5)

APPENDIX C: A MORE GENERIC HAMILTONIAN

We can actually work with the more general Hamiltonian

HG = −i
∑

a

∑
μ,ν

Jμν�
μ
a �2d+1

a �ν
a+1 + i

∑
a

∑
μν

hμν�
μ
a �ν

a .

(C1)

Without loss of generality, we can choose hμν = −hνμ since
{�μ

a , �ν
a } = 2δμν . We can easily follow through the steps

given in Sec. II and see that this gives rise to a Hamiltonian
which is quadratic in fermions. We will see below that the
number of independent coupling constants is smaller than
what is expected by looking at (C1).

Working with a rotated set of � matrices given by

�̃μ
a ≡

∑
ν

Rμν�
ν
a , (C2)

where Rμν are matrix elements of a real 2d × 2d rotation
matrix R satisfying RT R = I , it is easy to verify that they sat-
isfy the same algebra as in (7). The Hamiltonian (C1) written
in terms of the rotated �̃ matrices still retains its form, but
with the coupling constants J̃μν and h̃μν . Labeling the matrix
formed by Jμν as J and so on, it is easy to see that

J̃ = RT JR, h̃ = RT hR. (C3)

We can always choose R such that hμν can be put in a
block-diagonal form [51]⎛

⎜⎜⎜⎜⎝
0 h1 0 0 0 · · ·

−h1 0 0 0 0 · · ·
0 0 0 h2 0 · · ·
0 0 −h2 0 0 · · ·
...

. . .
. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎠ (C4)

for some constants h1, h2, . . . , hd . This is the form that we
used in the main text (17). However, the analysis above shows
that we have not exhausted all the redefinitions yet; a further

024114-8



EXACTLY SOLVABLE ONE-DIMENSIONAL … PHYSICAL REVIEW E 106, 024114 (2022)

transformation by an R matrix of the form⎛
⎜⎜⎜⎜⎝

cos θ1 sin θ1 0 0 0 · · ·
− sin θ1 cos θ1 0 0 0 · · ·

0 0 cos θ2 sin θ2 0 · · ·
0 0 − sin θ2 cos θ2 0 · · ·
...

. . .
. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎠ (C5)

keeps the form of h in (C4) invariant. This freedom can be
used to further simplify Jμν . Defining the symmetric and anti-
symmetric combinations of Jμν via

Sμν = Jμν + Jνμ, Aμν = Jνμ − Jμν, (C6)

we can use the above-mentioned freedom to set S2i−1,2i = 0.
This reduces the number of independent couplings to 4d2.
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