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Entropy fluctuation and correlation transfer in tunable discrete-time
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We study the time correlation in the von Neumann entropy fluctuation of the tunable discrete-time quantum
walk in one dimension, induced by the coin disorder arising from the temporal fractional Gaussian noise (fGn).
The fGn is characterized by the Hurst exponent H , which provides three different correlation scenarios, namely
antipersistent (0 < H < 0.5), memoryless (H = 0.5), and persistent (0.5 < H < 1). We show the correlation of
fGn is transferred to the coin’s degree of entanglement and eventually transpires in the time correlation of the
von Neumann entropy fluctuation. This study hints at the potential of using noise correlation as a resource to
sustain information backflow via the interaction of quantum system with the noisy environment.
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I. INTRODUCTION

Information backflow emerges as quantum memory due
to the interaction of quantum system with the environment.
It is known to be one of the resources in maintaining or
protecting the quantum entanglement [1–3]. In the implemen-
tation of the quantum algorithm, Dong et al. [4] showed the
information backflow assisted the high fidelity refined in the
Deutsch-Jozsa algorithm with a solid spin in diamond [4]. It
is also pointed out in Ref. [5] that the stationary coherence
in dephasing qubits is maximized as a direct consequence of
information backflow due to reservoir memory effects.

In the bipartite quantum system such as the discrete-time
quantum walk (DTQW), Kumar et al. [6] suggested infor-
mation backflow occurs as a result of the interaction of qubit
(coin) degree of freedom with the position space, which acts
as the environment. This backflow of information can be
directly deduced from the oscillation in the time evolution
of the von Neumann entropy calculated using the reduced
coin (qubit) density matrix. Such behavior is found in both
homogeneous [6] and inhomogeneous [6,7] time evolution of
the DTQW. Inhomogeneity in time evolution of DTWQ can
be induced by injecting classical noise, such as uncorrelated
noise, leading to an increase in the information backflow [6].
It was also noted that the effect of information backflow in
triggering the formation of the weak localization and strong
Anderson localization in position space.

Noise is generally considered as source of decoherence in
many physical realizations of DTQW. However, noise correla-
tion has also been shown to enhance the transport of coherence
logic qubits [8]. Temporal noise can produce a strong memory
effect leading to quantum speedup in the walker dynamics [9].
In this study, we investigate the possibility of using classical
fractional Gaussian noise (fGn) indexed by the Hurst parame-
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ter, H as a resource for controlling the quantum walk system.
We also demonstrate how the correlation behavior of the fGn
is transferred to the quantum walk dynamics, manifested in
the fluctuation of the von Neumann entropy. The degree of this
correlation transfer is examined for three different regimes of
fGn’s Hurst parameter, namely antipersistent (0 < H < 0.5),
memoryless (H = 0.5), and persistent (0.5 < H < 1), as well
as with respect to different noise amplitudes. The paper is
organized as follows. In Sec. II, we set up the theoretical
framework by introducing the fractional Brownian motion
(fBm) and its corresponding derivative process, known as the
fractional Gaussian noise, followed by a brief note on the
standard discrete-time quantum walk and its generalization
to accommodate the temporal fGn noise. Section III de-
scribes the simulation procedures of the standard and the noisy
DTQW. We present the results in Sec. IV covering the weak
localization of the noisy DTQW, information backflow, and
how the correlation transfer is deduced from the fluctuation of
the entropy. Section V ends with the conclusion that can be
drawn from this study.

II. THEORY

A. Fractional Brownian motion and fractional Gaussian noise

Fractional Brownian motion is a self-similar Gaussian pro-
cess with stationary increments. A widely accepted stochastic
representation of fBm was introduced by Mandelbrot and van
Ness [10] as given by

BH (t ) = 1

�
(
H + 1

2

)
(∫ 0

−∞
[(t − s)H−(1/2) − (−s)H−(1/2)]

× dB(s) +
∫ t

0
(t − s)H−(1/2)dB(s)

)
, (1)

where � is the gamma function and 0 < H < 1 is the
Hurst parameter. Hurst parameter is the measure of self-
similarity and B1/2(t ) = B(t ) is the standard Brownian
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motion. The normalized fractional Brownian motion BH =
{BH (t ) : 0 � t � ∞} is characterized by the following
properties:

(i) BH (t ) has stationary increments;
(ii) BH (0) = 0 and E [BH (t )] = 0 for t � 0;
(iii) E [B2

H (t )] = t2H for t � 0; and
(iv) BH (t ) has Gaussian distribution for t � 0,

where E denotes expectation value. For the continuous sample
path of fBm, the covariance function is given by

C(s, t ) = E [BH (s)BH (t )] = 1
2 {t2H + s2H − (t − s)2H } (2)

For 0 < s � t the incremental process WH =
{WH (k) : k = 0, 1, . . . .} of fBm is given by

WH = BH (k + 1) − BH (k), (3)

and it is called the fractional Gaussian noise (fGn) corre-
sponding to the white-noise counterpart of Brownian motion.
The derivative of the fBm (in the generalized sense) produces
the corresponding fGn, while the integration of fGn gives the
corresponding fBm. It should be noted fGn is the stationary
Gaussian process with correlation function given by [11]

C(s, t ) = 1
2 [(t − s − 1)2H − 2(t − s)2H + (t − s + 1)2H ],

(4)
or written using lag time τ = (t−s) as

C(τ ) = 1
2 [(τ + 1)2H − 2(τ )2H + (τ − 1)2H ], (5)

and for the large τ , (5) can be approximated as

C(τ ) = H[(2H − 1)τ 2H−2]. (6)

Using the power-law correlation property (6), fGn is
widely used as a fractal noise model with three different
regimes of correlation behavior depending on the value of H
parameter [12–14]. If 0 < H < 0.5, the process has a short-
time memory (antipersistent) with a negative correlation,
where positive increments in the past are followed by nega-
tive increments in the future and vice versa. For 0.5 < H < 1,
the process has long-time memory (persistent) with positive
correlation, where positive increments in the past are led by
positive increments in the future and vice versa. For H = 0.5,
fGn reduces to the standard white noise with zero correlation
(uncorrelated).

B. Standard noiseless discrete-time quantum walk

Discrete-time quantum walk is defined in the composite
Hilbert space of H = Hc ⊗ Hx consisting of coin Hilbert
space Hc with basis of {|0〉, |1〉} representing the two-
dimensional internal degree of freedom of qubit state and
the position Hilbert space Hx with basis of |x〉 that corre-
sponds to the degree of freedom of position-lattice space. One
can use the initial wave function of the quantum walk de-
fined as |�0〉 = 1/

√
2(|0〉 + i|1〉) ⊗ |x = 0〉 to represent the

symmetric superposition probability amplitude at the initial
point of reference. The quantum walk is driven by the single-
parameter coin operator Ĉ defined as

Ĉ =
[

cos(θ ) sin(θ )
sin(θ ) − cos(θ )

]
, (7)

with 0◦ � θ � 90◦, which only acts on the qubit-state internal
degree of freedom in the coin Hilbert space. This coin operator

can be expressed in term of Pauli matrices as Ĉ = e−iθ n̂�σ ,

where the direction of the rotation is defined by unit vector
n̂. Here the expression of coin operator in (7) refers to the
rotation of the internal state of qubit in the x−z plane of
the Bloch sphere with specific angle θ . Then, n̂ = n̂y with
Ĉy,θ = e−iθσy .

The walker is allowed to move in the direction of the right
(left) depending on the outcomes internal state of qubit state
after the application of coin operator through the conditioned-
shift operator:

Ŝ = |0〉〈0| ⊗
i∑

x=i

|x + 1 〉〈x| + |1〉〈1| ⊗
i∑

x=i

|x − 1〉〈x|. (8)

If the internal coin state is |0〉 the walker is allowed to move
to the right and if the resulting coin operator yields the |1〉 the
walker moves to the left. This allows the walker to shift in the
form of the superposition of position space by iterating this
walker via the unitary walk evolution operator of

Ŵ N
θ = Ŝ(Ĉ ⊗ Î). (9)

Without taking any intermediate measurement during the
N steps of iteration, the time evolution of the quantum walker
is given:

|�(t )〉 = Ŵ N
θ �(0) = Ŵ N

θ [|ψ〉 ⊗ |x = 0〉], (10)

which yields the superposition of possible path taken by the
walker. We shall refer to this type of standard quantum walk
as the pure or noiseless DTQW.

C. Noisy discrete-time quantum walk

The behavior of the DTQW is controlled by the choice
of coin operator. Fixing a constant value of coin parameter
throughout the entire evolution represents the homogeneous
time-evolution DTQW following (10). The inhomogeneity in
DTQW either in the temporal or spatial disorder of the QW
can lead to broken symmetry of the time translation. In this
work, we study the fractal temporal disorder in the DTQW
evolution by introducing angle fluctuation using fGn. The
angle parameter for the coin operator Ĉ is expressed in the
form of θ (t ) = θ0 + γWH (t ), where the WH (t ) is the fGn, with
noise strength parameter, γ (measured in angle), and θ0 is a
fixed rotation angle that parametrizes the particular quantum
walk. The fGn is sampled for each instant of time step t . The
coin operator in this case takes the form of

Ĉ =
[

cos[θ (t )] sin[θ (t )]
sin[θ (t )] − cos[θ (t )]

]
. (11)

The fractal noise will induce fluctuations in rotation of the
qubit state due to random coin operation of Ĉ = e−iθ (t )σy as
shown in Fig 1.

When modeling the quantum gate error, this form of fluc-
tuation in the rotations is commonly treated as a classical
noise, as compared to the quantum noise resulting from the
system-bath interactions that affect the qubit’s internal states.
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FIG. 1. Fluctuation in the rotation of qubit state due to random
coin operation of Ĉ = e−iθ (t )σy .

The state of the walker after step t with disorder will be

|�(t )〉 = [Ŵθ (t )]
t (|ψ〉 ⊗ |x = 0〉)

|�t 〉 = [Ŵθ (t )]
t |�in〉 = Ŵx(θt ) . . .Ŵx(θ3)Ŵx(θ2)Ŵx(θ1)|�in〉

= Ŝ(Ĉ(θt ) ⊗ Î) . . . Ŝ(Ĉ(θ3) ⊗ I) . . . Ŝ(Ĉ(θ0) ⊗ I)|�o〉
(12)

with randomly chosen coin parameters θt ∈ {0◦, 90◦} for each
time step. Even though the coin parameter is randomly chosen
for each step (iteration), the evolution is still unitary. We shall
refer to DTQW with fGn coin as the noisy DTQW with Hurst
parameter H.

In order to verify the performance of protocol for the
quantum error correction (QEC) and to characterize quantum
hardware requires a realistic laboratory environment. Often
most protocols assumed the environmental noise originated
from the independent and identically random process. In the
physical implementation of the DTQW via the quantum cir-
cuit using a physical qubit state, such as the single trapped
atom, one may consider the environmental noise modeled as
the temporal correlated noise. For instance, long-time corre-
lated noise is likely to occur due to the changes in the electrical
apparatus’ ambient temperature and duty cycle throughout
operations. Meanwhile, the short-time correlated noise arises
from the anomalous heating in the ion trap, and uncorrelated
white noise is produced by the electrical components [14].
Therefore, fGn is well suited to capture the temporal cor-
relation behavior of fluctuation with different Hurst indices.
The application of correlated noise as a source of noise in the
randomized benchmarking and gate-set tomography protocol
reduced the discrepancy between the theoretical and experi-
mental performance [15].

III. METHODOLOGY

The simulation of the DTQW is carried out using the QUTIP

(Quantum Toolbox on PYTHON) [15,16]. The initial state of the
walker is prepared as |�0(0)〉 = 1/

√
2(|0〉 + i|1〉) ⊗ |x = 0〉.

In this work, we assigned a fixed coin parameter θ = 45◦ to
produce the Hadamard quantum walk. For the numerical sim-

ulation, the DTQW is evolved up to 200 time steps, sufficient
to realize the correlation transfer properties that we wish to
highlight in this study. The set of random number represent-
ing fGn is simulated using Fourier spectral method with the
prescribed power-law spectral density for the selected Hurst
parameter (see the Appendix). To capture the correlation of
random numbers, we first performed 1000 steps simulation
of fGn noise and segmented 200 points from the dataset at
700 steps. This is to ensure the stationarity of fGn as fractal
noise with the prescribed Hurst index before being fed into
the coin parameter during DTQW evolution. The simulation
is repeated with 100 sets of independently generated random
numbers representing fGn.

IV. RESULTS AND DISCUSSION

A. Weak localization of the walk

The noise strength γ affects the probability distribution
of the noisy DTQW after 200 steps of iteration in position
space more significantly compared to the variation due to the
Hurst parameters as shown in Fig. 2. The walker has a farther
spread when the coin parameter is subjected to maximum
noise strength of γ = 45◦, which allows the qubit state to
rotate across the Bloch sphere in the full range of 0 � θ �
45◦. This pattern is consistent for all the Hurst parameters
selected in this study, namely H = 0.25 (antipersistent fGn),
H = 0.5 (uncorrelated white noise), and H = 0.75 (persistent
fGn). The noiseless DTQW distribution rightfully shows the
oscillatory pattern and the expected double peaks near the
two ends of the lattice space. These peaks correspond to the
ballistic peaks. A small increase in noise strength of γ = 1◦
yields the same distribution profile. With a further increase in
the noise strength γ = 5◦, the ballistic peaks shrink and start
to merge at the center. The persistent ballistic peaks indicate
the weak noise is unable to modify the interference pattern
of the walk. When the noise strength is significantly large
with γ = 45◦, the probability distribution becomes a single
localized peak at the center. The temporal noise disorder in
the coin parameter modifies the interference patterns of the
DTQW, which is reflected in the probability distribution. In
general, introducing correlated (both antipersistent and persis-
tent) noises induce weak localization of the DTQW towards
the center of the lattice. Further examination of the distri-
butions shows the noisy DTQW with antipersistent fGn has
modified the interference pattern of the DTQW more than the
persistent and uncorrelated fGn cases.

The broken symmetry of the DTQW evolution due to
disorder media or randomized unitary operation can lead to
Anderson localization or weak localization depending on the
nature of the disorder. A distinct feature of weak localization
is the probability distribution profile has slow decay away
from the origin, while the probability profile for the Anderson
localization shows a fast (exponential) decay. The weak lo-
calization produced by the DTQW under randomized unitary
operation with the temporal disorder as presented in this work
corroborates with what was reported in Refs. [17,18]. The lack
of the Anderson localization in the case of temporal disorder
DTQW is pointed out by Refs. [6,18] due to the presence
of gauge transformation that removes the randomness in the
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FIG. 2. Probability distributions of noisy DTQW with Hurst exponent (a) H = 0.25, (b) H = 0.50, and (c) H = 0.75 with noise strengths:
γ = 1◦ (purple), 5◦ (orange), and 45◦ (green) after t = 200. The black-dashed line represents the distribution of noiseless or pure DTQW. The
initial state of the walk is 1/

√
2[|0〉 + i|1〉] ⊗ |x = 0〉.

system [19]. Only spatial disorder can induce strong Anderson
localization in the DTQW system.

We are tempted to examine the variance of the noisy
DTQW to see if the effect of fGn with different H indices may
be further elucidated. The variance of the DTQW is computed
using

σ 2 =
n∑

x=1

Px(x − μ)2, (13)

with Px is the probability of the walk to be located at the site
x and μ is the mean position. The variance of the DTQW
exhibits power-law scaling behavior with the scaling expo-
nent α, which can be estimated using linear regression on
the bilogarithm variance plot. We observe in Fig. 3(a) that
the noisy DTQW for the selected noise strength and Hurst
parameters retains its ballistic spread with a scaling exponent
of α ∼ 2, just like the case for noiseless DTQW. Apparently,
the variance is unable to differentiate the noisy DTQW and
noiseless DTQW.

We first examine the Shannon entropy analysis before
emphasizing the advantage of von Neumann entropy for in-
vestigating the information backflow. Shannon entropy SH

generated from the probability of event occurrence in the n
microscopic state is defined as

SH = −
n∑

x=1

Px log2 Px. (14)

In contrast to the variance analysis that gives the ballistic
feature to both noiseless and noisy DTQWs, the Shannon
entropy measure is able to differentiate between the two. The
noiseless DTQW generates a slightly higher Shannon entropy
compared to the noisy DTQW as shown in Fig. 3(b). However,
there are no significant differences in the Shannon entropy of
the noisy DTQW with respect to the Hurst parameters.

An alternative measure to investigate the localization prop-
erties of the DTQW is to compute the inverse participation
ratio (J ), which is defined as [7]

J (t ) = 1∑
x [Px(t )]2 , (15)
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FIG. 3. (a) Bilogarithm variance, (b) Shannon entropy, and (c) inverse participation ratio (IPR) for the noisy DTQW with Hurst exponent
H = 0.25 (red), H = 0.5 (blue), and H = 0.75 (green) and noise strength γ = 45◦. The noiseless DTQW is plotted in black line.

where Px(t ) is the probability of finding the walker at sites
x at step time t with Px(t ) = |�i|2. The IPR measure gives
information on the average number of lattice points that the
quantum walker spreads over. In Fig. 3(c), the IPR monotoni-
cally increased with the number of steps for all the cases and
showed a slight difference in the spread between noiseless
DTQW and the noisy DTQW. No significant difference is
observed among the noisy DTQW with different Hurst param-
eters. The IPR nevertheless verifies the reduced average lattice
points covered by the noisy DTQW as compared to standard
DTQW. This difference is also captured in the probability
distribution in position space as mentioned earlier.

The IPR, Shannon entropy, and variance generated by the
noisy DTQW indexed by the different Hurst parameter of
fGn noise, does not show significant variation in the position
space. This implies the temporal randomness in the coin pa-
rameter has less influence on the walker’s dynamics, and thus
cannot act as a resource to control the dynamics in position
space. It is natural to ask, how does the disorder affect the dy-
namics of DTQW in the coin space? To answer this question,
we compute the quantum entanglement property given by the
von Neumann entropy.

B. Information backflow

The superposition state of the quantum walker and in-
formation backflow can be deduced from the entanglement
measure between the particle’s coin state and position state
of DTQW. At the initial step of the evolution, the coin state
will be entangled with the walker’s position state. The coin
operator acts as a manual for the next step of the QW’s
translation as it controls the extent of the interference in QW.
This entanglement between the coin state and position state
can be computed using the von Neumann entropy

SvN = −Tr(ρclog2ρc), (16)

where ρc = Trx(ρ) = ∑
x〈x|(|�t 〉〈�t |)|x〉 is the reduced den-

sity matrix obtained by tracing out the position basis ρx from
the full composite density matrix ρ = |�〉〈�| of the DTQW.
The general quantum state at any arbitrary step t is written as

|�(t )〉 =
∑

n

(ax(t )|0〉c + bx(t )|1〉c) ⊗ |x〉. (17)
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FIG. 4. Degree of entanglement (von Neumann entropy) of the noisy DTQW driven by fGn coin of H = 0.25 (red), H = 0.50 (blue),
and H = 0.75 (green) with noise strength of (a) γ = 1◦, (b) γ = 5◦, and (c), γ = 45◦. Entropy of noiseless DTQW is plotted in black line.
Asymptotic value for SE (t → ∞) of the disorder-free Hadamard walk is 0.872 (gray-dashed line).

The time-dependent density matrix of the quantum system
is given by

ρ(t ) = |�(t )〉〈�(t )|
=

∑
x,x′

(ax(t )|0〉c + bx(t )|1〉c)(a∗
x (t )〈0|

+ b∗
x (t )〈1|) ⊗ |x〉〈x′|. (18)

The reduced density matrix is then written as

ρc(t ) =
∑

x

〈x|ρ(t )|x〉 =
∑

m

[ |ax(t )|2 ax(t )b∗
x (t )

a∗
x (t )bx(t ) |bx(t )|2

]
,

(19)
with eigenvalues of [20]

�± = 1

2
± 1

2

√
1 − 4�� + 4||2 , (20)

where �= ∑
x |ax(t )|2, �= ∑

x |bx(t )|2,= ∑
x ax(t )b∗

x (t ),
with � + � = 1. Then, the entanglement expression

becomes

SvN (t ) = −�+ log2 �+ − �− log2 �−. (21)

The level of entanglement between the internal (coin) and
external (position) degree of freedom over the time evolution
of bipartite system is shown in Fig. 4.

At the initial condition, the quantum walk starts from a
state with minimum entropy SvN = 0 and it corresponds to a
separable state, where the state of the walker is known with
certainty. At noise strength γ = 1◦ [Fig. 4(a)] and γ = 5◦
[Fig. 4(b)], we observed no significant difference between
the standard noiseless DTQW and the noisy DTQW with
fGn coin. For the noiseless DTQW, the dashed black hor-
izontal line shows the asymptotic entanglement entropy of
SvN → 0.872 as obtained in Ref. [21]. As we increase the
noise strength to γ = 45◦, which allows the coin parameter
to fluctuate between 0◦ � θ � 90◦, we observe a significant
enhancement of the entanglement at the limit of long time as
shown in Fig. 4(c). For all the cases of noisy DTQW with
fGn of H = 0.25, H = 0.5, and H = 0.75, the SvN shows an
increment implying that the coin becomes more entangled to
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FIG. 5. Autocorrelation function of fractional Gaussian noise for
H = 0.25 (red line), H = 0.50 (blue line), and H = 0.75 (green
line).

position, hence the slightly higher production of entanglement
compared to the disorder-free case. Similar enhanced entan-
glement has also been shown in Ref. [20].

We observe the so-called information backflow deduced
from the von Neumann entropy of the noisy DTQW at the
noise of strength of γ = 1◦ and γ = 5◦. The von Neumann
entropy exhibits an oscillatory pattern at early iteration steps
before the value stabilizes at larger steps. This oscillatory
pattern is attributed to the strong presence of memory-
effect marking information backflow between the coin and
position degree of freedom at the early step of the walk. At the
maximum noise level, γ = 45◦, we observed the fluctuation
of the entropy throughout the evolution [Fig. 4(c)]. This fluc-
tuation is not noticeable at other noise levels. The interaction
between the degree of freedoms of the coin and position states
in the DTQW system creates quantum memory, which can be
identified via the backflow of information. The presence of the
backflow information is required to maintain the entanglement
in the quantum system [22]. The backflow of information from
the environment (position) back to the system (coin) implies
that the information on the previous state of system can be
stored in the quantum correlation between the system and
environment. As pointed out in Ref. [6], the memory effects
of the DTQW increased under temporal disorder.

In this work, we conjecture that a quantum system can
inherit the correlation of the classical noise imposed to the
system and this may be traceable in some relevant quanti-
ties, such as the von-Neumann entropy fluctuation. To gain
insight on the state of qubit information memory, we calcu-
late the autocorrelation function of the von-Neumann entropy
fluctuation.

C. Correlation transfer

The comparison of the von Neumann entropy generated
by the noisy DTQW with fGn of different Hurst indices at a
particular noise level does not yield any significant difference.
Does this imply that the fGn cannot act as a resource to control

the dynamics of DTQW in the coin and position space? The
fGn noise is injected into the coin parameter; logically, we
expect to see some behavioral change in the noisy DTQW
compared to the standard DTQW. Correlation transfer has
been previously considered for the case of displaced Brow-
nian particle in the fluid in which memory effect is added
onto the particle’s motion due to hydrodynamic information
backflow of the environment [23]. Taking inspiration from
this phenomenon, we analyze the “memory” kernel of the
quantum coin by evaluating the autocorrelation of the von
Neumann entropy to see whether the transfer of correlation
from the noisy coin state is traceable in the DTQW system.
The evaluation of the von Neumann entropy (21) is based on
the eigenvalues of the reduced coin-density matrix ρc, which
carries the information about the dynamics of the coin state
and thus, can be used in the evaluation of memory inheritance
in noisy DTQW.

The autocorrelation function (ACF) is often used to deter-
mine the presence of memory effect or long-range dependence
in the time series. The ACF trend for antipersistent of fGn
(H = 0.25) shows negative correlation at the early lag time
before it bounces back to almost zero correlation at a later
time. The ACF quickly decorrelates as the correlation among
neighborhood points rapidly reduces, even at small shifts of
signal with respect to itself. This noise has a poor memory
of its past values, reminiscent of a short-memory stochastic
process. The uncorrelated fGn (H = 0.5) shows zero corre-
lation at all lag times as the random signal at one particular
time is completely uncorrelated with the next instant. The
noise originating from a long-memory process such as the
persistent fGn (H = 0.75) exhibits positive correlation at the
early lag time before slowly decaying to zero at large lag time.
These three different correlation behaviors are shown in
Fig. 5.

The ACF of the von Neumann entropy fluctuation for noisy
DTQW with fGn of different Hurst indices and noise strengths
are shown in Fig. 6. For noiseless DTQW (gray line) in Fig. 6,
the ACF of the von Neumann entropy fluctuation oscillates
and decays in amplitude as the lag increases. The ACFs of
noisy DTQW (red line) for the three regimes of Hurst indices
with noise strength of γ = 1◦ [Fig. 6(a)] inhibit a similar os-
cillatory profile in phase with the noiseless DTQW (gray line)
but with reduced amplitude. For this case, the ACF trends do
not mirror the correlation trend of the fGn (blue-dashed line).
This is a manifestation of the periodic cycle in the evolution of
entanglement between coin and position. The values of each
peak happened at the same lag indices of symmetry and reg-
ularity of von Neumann entropy (see Fig. 4). The maximum
peak of the ACF’s profile occurs at lag shift of 4, 8, 12, ….
Then, the maximum and minimum degrees of entanglement
between coin and position repeat themselves within the period
of 4 and 8.

However, when we increase noise strength to γ = 5◦
[Fig. 6(b)] and γ = 45◦ [Fig. 6(c)] (which allows the coin
parameter to swing the qubit state in the range of 40◦ � θ �
50◦ and 0◦ � θ � 90◦, respectively), we do not observe any
clear oscillatory trend in the ACF, which indicates the lack
of periodicity in the von Neumann entropy. Instead, the ACF
of the von Neumann entropy fluctuation is now mimicking
the ACF of the fGn noise, as the entanglement of QW takes
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FIG. 6. Autocorrelation function of the von Neumann entropy fluctuation (red line) for noisy DTQW fGn (H = 0.25, H = 0.5, and H =
0.75) with noise strength of (a) γ = 1◦, (b) γ = 5◦, and (c) γ = 45◦ averaged over 100 samples of DTQW (200 steps) simulation, shown in
comparison to fGn (blue line) and noiseless DTQW (gray line).

the pattern of the injected noise. Interestingly, the ACFs of
the disorder DTQW perfectly overlap the ACF of the fGn.
There appeared to be a correlation transfer from the fGn to
the von Neumann entropy fluctuation in the noisy DTQW.
This fractal noise correlation transfer has not been reported in
the literature and requires further investigations. An example
of noise correlation transfer was reported in Ref. [24], where
the pure dephasing noise assists the inheritance of correlation
in entangled qubits from one position to the next position
without sacrificing the coherence of the entangled qubit state.

The transfer of temporal noise correlation in DTQW may
enhance the information backflow and entanglement in the
disorder DTQW system as shown in Refs. [6,18,20]. The
memory effects arising from the temporal noise added to the
DTQW system are captured by the ACF of the entropy fluctu-
ation. The von Neuman entropy fluctuation, which could have
been easily discarded as a noisy artifact of maximum noise
strength, actually provides some insights on the information
backflow from the noisy coin state to the position space.
During the unitary evolution of the DTQW, the qubit state
acts as an information carrier, where it extracts more infor-
mation from the position measurement outcome [25]. At the

same time, the position space acts as the information storage
[26]. Through the backward iterative analysis in Ref. [26],
it was shown that the stored information can be perfectly
recovered at specific periodic step t, which is in line with the
ACF profile of the DTQW. With added temporal disorder, the
retrieval of information is made to be independent of step,
i.e., in principle, one can perfectly recover the information
of the qubit state stored in the position step on demand. The
reason behind this is the position space temporarily stores the
information on the coin’s initial state and then this information
flows back from the environment, reminding the system of its
past. The gain of information from the system to the environ-
ment induces the restoration of the system’s initial state which
strengthens entanglement.

V. CONCLUSION

In this work, we have studied the behaviors of DTQW
with random coin parameters driven by fractional Gaussian
noise with different Hurst indices and noise strengths. The
presence of correlated (antipersistent and persistent) noises
induces weak localization of the DTQW towards the center

024113-8



ENTROPY FLUCTUATION AND CORRELATION TRANSFER … PHYSICAL REVIEW E 106, 024113 (2022)

of the lattice as observed from the distribution function. The
subtle correlation effects of the fGn-driven coin were not
clearly observed in the variance and the Shannon entropy. The
von Neumann entropy has more to offer in elucidating the
correlation transfer from the coin parameters to the dynamics
of the noisy DTQW. This result may be useful for manipulat-
ing noise correlation as a resource to sustain and manipulate
information backflow via the interaction of a quantum system
with a noisy environment. For instance, the localization of
QW at finite position space, which is linked to enhancing
information backflow, can be utilized as a secure way to store
the information of the qubit state because the eavesdropper
does not have information on the full position space [14]. The
coin state of the DTQW system is effectively sensitive to the
relatively weak disorder. We showed the ACF of the qubit’s
von Neumann entropy fluctuation overlapped almost perfectly
on the ACF of the fGn’s allowing the noisy DTQW to extract
the spectral content of weak environmental noise. This finding
may be useful in integrating the DTQW as a sensor of noise
in the quantum noise spectroscopy (QNS) protocol [27,28].
Additionally, the transfer of classical noise correlation into
the coin state opens a possibility to perform an indirect probe

of the qubit state, in contrast to a direct measurement of
the quantum state which will cause the wave function to
collapse.
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APPENDIX: SIMULATION OF fGn USING SPECTRAL
SYNTHESIS METHOD

A stationary fractal stochastic process X(t) such as the
fGn with a known Hurst exponent can be generated by using
the spectral synthesis method [29,30] from its power spectral
density S( f ), namely,

S( f ) ∝ 1

f β
, (A1)

FIG. 7. Sample of the generated fractional Gaussian noise for 1000 steps (a); with 2200 resample points (b); and the ACF (c) for different
values of the Hurst exponent H = 0.25 (red), 0.50 (blue), and 0.75 (green).
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with β = 2H−1. The square modulus of Fourier transforms
of the signal X ( f ) is written as the power spectral density:

S( f ) = |X ( f )|2 ∝ f −β. (A2)

The complex series of X ( f ) with modulus r( f ) propor-
tional to 1/ f β/2 is obtained via the relationship

r( f ) = WGn( f )

f β/2
, (A3)

where WGn is Gaussian white noise with frequency f . To draw
a random phase φ for the complex series, the white noise with
uniform distribution Wun is used:

φ = 2πWun, (A4)

and complex coefficient is obtained via

a( f ) = r( f ) cos φ( f ), b( f ) = r( f ) sin φ( f ), (A5)

Then, the complex series S( f ) is generated as =
X ( f ) = a( f ) + ib( f ). (A6)

Finally, the inverse Fourier transform is applied to X ( f ) to
obtain time-series domain of the fGn:

X (t ) = F−1{X ( f )} = 1

N

N∑
f =1

X ( f )ei2π f (t/N ), (A7)

with t = 1, 2, 3, . . . for N finite sequence. The three different
values of Hurst exponent H = 0.25, 0.50, and 0.75, respec-
tively, are used to generate the 1000 steps of fGn signals as
shown in Fig. 7(a). From the 1000 steps, we segmented 200
points from 550 to 750 steps [Fig. 7(b)] as the input random
number in DTQW evolution. To ensure the generated fGn
corresponds to the behavior associated with the input Hurst
exponent, we further compute the ACF of the noise as shown
in Fig. 7(c).
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[27] P. Szańkowski, G. Ramon, J. Krzywda, D. Kwiatkowski, and
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