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Random diffusivity processes in an external force field
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Brownian yet non-Gaussian processes have recently been observed in numerous biological systems, and
corresponding theories have been constructed based on random diffusivity models. Considering the particularity
of random diffusivity, this paper studies the effect of an external force acting on two kinds of random diffusivity
models whose difference is embodied in whether the fluctuation-dissipation theorem is valid. Based on the two
random diffusivity models, we derive the Fokker-Planck equations with an arbitrary external force, and we
analyze various observables in the case with a constant force, including the Einstein relation, the moments, the
kurtosis, and the asymptotic behaviors of the probability density function of particle displacement at different
timescales. Both the theoretical results and numerical simulations of these observables show a significant
difference between the two kinds of random diffusivity models, which implies the important role of the
fluctuation-dissipation theorem in random diffusivity systems.
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I. INTRODUCTION

It is ubiquitous to find that particles diffuse under some
kind of external force fields in the natural world. Under the
effect of external forces, the motion of particles shows many
kinds of anomalous diffusion phenomena in complex sys-
tems [1–6]. In particular, the particles might undergo a biased
random walk with a nonzero mean of displacement. The cor-
responding ensemble-averaged mean-squared displacement
(MSD) is defined as

〈�x2(t )〉 = 〈[x(t ) − 〈x(t )〉]2〉 ∝ tβ (β �= 1), (1)

where normal Brownian motion belongs to β = 1, and
anomalous diffusion is characterized by the nonlinear evolu-
tion in time with β �= 1.

In addition to the normal diffusion of Brownian motion,
the probability density function (PDF) of its displacement is
Gaussian-shaped [7,8],

G(x, t |D) = 1√
4πDt

exp

(
− x2

4Dt

)
(2)

for a given diffusivity D. In contrast to the Gaussian-shaped
PDF, a new class of normal diffusion process has recently
been observed with a non-Gaussian PDF, which is thus known
as the Brownian yet non-Gaussian process. This phenomenon
has been found in a large range of complex systems, includ-
ing polystyrene beads diffusing on the surface of lipid tubes
[9] or in networks [9–11], as well as the diffusion of tracer
molecules on polymer thin films [12] and in simulations of
two-dimensional disks [13]. Instead of the Gaussian shape,
the PDF of the Brownian yet non-Gaussian process is charac-
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terized by exponential distribution,

p(x, t ) = 1

2
√

D0t
exp

(
− |x|√

D0t

)
, (3)

with D0 being the effective diffusivity.
The interesting phenomenon of the non-Gaussian feature

can be interpreted by the superstatistical approach of assum-
ing that the diffusivity D in Eq. (2) is a random variable
[14–16]. More precisely, each particle undergoes a nor-
mal Brownian motion with its own diffusivity, which does
not change considerably in a short time. The diffusivity D
of each particle obeys the exponential distribution π (D) =
exp(−D/D0)/D0, and the randomness of diffusivity results
from a spatially inhomogeneous environment. Averaging the
Gaussian distribution in Eq. (2) over the diffusivity with the
exponential distribution π (D) yields [17,18]

p(x, t ) =
∫ ∞

0
π (D)G(x, t |D)dD

= 1√
4D0t

exp

(
− |x|√

D0t

)
. (4)

Besides the superstatistical approach, the exponential tail
is found to be universal for short-time dynamics of the
continuous-time random walk by using large deviation theory
[19,20].

Furthermore, the phenomenon observed in experiments
also shows that the PDF undergoes a crossover from exponen-
tial distribution to Gaussian distribution [9,17]. This crossover
cannot reappear in the approach of superstatistical dynamics.
To interpret the phenomenon of such a crossover in the PDF
of the Brownian yet non-Gaussian process, Chubynsky and
Slater proposed a diffusing diffusivity model in which the
diffusion coefficient of the tracer particle evolves in time
like the coordinate of a Brownian particle in a gravitational
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field [21]. Chechkin et al. established a minimal model under
the framework of the Langevin equation, with the diffusivity
being the square of an Ornstein-Uhlenbeck process [22]. Due
to the widespread applications of random diffusivity when
describing the particle’s motion in complex environments, the
research on systems with random parameters has been ex-
tended to many physical models, including the underdamped
Langevin equation [23–25], generalized gray Brownian mo-
tion [26], and fractional Brownian motion [27–30], together
with some theoretical analyses on the ergodic property of
random diffusivity processes [31–33] and on the extremal
properties of such processes [34–36].

Our aim here is to consider the effect of an external force
field on the Brownian yet non-Gaussian processes. Since it
is convenient to describe a motion under an external force or
an environment with fluctuation in a Langevin equation, we
will investigate the effect of a force on the minimal Langevin
model with diffusing diffusivity proposed in Ref. [22], where
a Brownian particle with a random diffusivity D(t ) is de-
scribed by

d

dt
x(t ) =

√
2D(t )ξ (t ). (5)

Here, ξ (t ) is the Gaussian white noise with mean zero and
correlation function 〈ξ (t1)ξ (t2)〉 = δ(t1 − t2), and D(t ) is the
square of an Ornstein-Uhlenbeck process to guarantee its pos-
itivity and randomness.

When considering the response of such a random diffusiv-
ity model to an external disturbance or the internal fluctuation
of the system, we need to pay attention to whether the
fluctuation-dissipation theorem (FDT) is valid or not in this
system. The FDT plays a fundamental role in the statisti-
cal mechanics of nonequilibrium states and of irreversible
processes [37,38]. For this reason, two kinds of random dif-
fusivity models, one that satisfies FDT and another one that
does not, are considered. Their difference is also a main focus
in this paper.

In addition to the FDT, Brownian motion also has a good
property about the Einstein relation which connects the fluc-
tuation of an ensemble of particles with their mobility under a
constant force F by an equality [2,37]

〈xF (t )〉 =
〈
x2

0 (t )
〉

2kBT
F. (6)

Here, kB is the Boltzmann constant, T is the absolute temper-
ature of a heat bath, and xF (t ) and x0(t ) denote the particle
positions with and without the constant force F , respectively.
Furthermore, the Einstein relation has been found to be valid
for both normal and anomalous processes close to equilibrium
in the limit F → 0, which can be derived from linear response
theory [39–42]. It will be interesting to find out whether the
Einstein relation holds or not in random diffusivity models.

In this paper, taking the two kinds of random diffusivity
models satisfying the FDT or not as the main object, we first
derive the Fokker-Planck equation of the PDF of particle dis-
placement for the two models under an arbitrary external force
F (x), and then we make some specific analyses on the two
models under a constant force F . The observables with which
we are concerned mainly include the Einstein relation, the

moments, the kurtosis of PDF, and the asymptotic behaviors
of PDF.

The structure of this paper is as follows. In Sec. II, the
two kinds of random diffusivity models are introduced. For
arbitrary external force, the Fokker-Planck equations corre-
sponding to the two models are derived in Sec. III. Detailed
discussions on the observables for two models under a con-
stant force are given in Secs. IV and V, respectively. In
Sec. VI, we present the simulation results to verify the the-
oretical analyses on the observables for the case with constant
force, and we make a detailed comparison between the two
models. Some discussions and summaries are provided in
Sec. V. For convenience, we put some mathematical details
in the Appendixes.

II. TWO RANDOM DIFFUSIVITY MODELS

Since the FDT plays an important role in the diffusion
behavior of a Langevin system, the difference between the
two models discussed here is embodied in whether the FDT
is valid or not. Based on the random diffusivity model in
Eq. (5) characterizing the motion of a free particle, two kinds
of model under an external force F (x) can be written as

d

dt
x(t ) =

√
2kBT D(t )ξ (t ) + D(t )F (x) (7)

and

d

dt
x(t ) =

√
2kBT D(t )ξ (t ) + F (x), (8)

respectively. The FDT states a general relationship between
the response of a given system to a friction force and the
internal fluctuation of the system in the absence of the external
force field. For Eq. (7), we divide D(t ) on both sides to leave
the force field F (x) alone, and we obtain

1

D(t )

d

dt
x(t ) =

√
2kBT
D(t )

ξ (t ) + F (x). (9)

Then all three terms in Eq. (9) represent forces, from left to
right: friction force, random driving force, and external force
field, respectively. The internal fluctuation is characterized by
a correlation function of relevant physical quantities of the
system fluctuating in thermal equilibrium, i.e.,

〈R(t1)R(t2)〉 = 2kBT
D(t )

δ(t1 − t2), (10)

where R(t ) =
√

2kBT
D(t ) ξ (t ) is the random driving force. The

relation in Eq. (10) is known as the FDT [37,43–45], which
describes the phenomenon that the friction force and the ran-
dom driving force come from the same origin and thus are
closely related through Eq. (10). For the Langevin system with
a diffusing diffusivity D(t ) describing a spatially inhomoge-
neous environment, the FDT is still valid for each realization
of D(t ). By contrast, for Eq. (8), the correlation function of
internal noise depends on diffusivity D(t ), while the friction
force does not. In other words, the FDT fails in Eq. (8).

Generalizing the idea in Refs. [21,22], we use a generic
overdamped Langevin equation to describe the diffusing
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diffusivity D(t ), i.e.,

D(t ) = y2(t ),

d

dt
y(t ) = f (y, t ) + g(y, t )η(t ),

(11)

where the first equation is to guarantee the non-negativity
of diffusivity D(t ), and the second equation gives the evolu-
tion of auxiliary variable y(t ) with arbitrary functions f (y, t )
and g(y, t ) representing the external force and multiplicative
noise on process y(t ). In addition, the noise η(t ) is also a
Gaussian white noise with correlation function 〈η(t1)η(t2)〉 =
δ(t1 − t2), similar to ξ (t ) but independent of ξ (t ). A spe-
cial case in which f (y, t ) = −y and g(y, t ) ≡ 1 yields the
Ornstein-Uhlenbeck process y(t ) discussed in Ref. [22]. Here,
the arbitrary functions f (y, t ) and g(y, t ) in an overdamped
Langevin equation result in a large range of diffusion pro-
cesses beyond the Ornstein-Uhlenbeck process, including
those reaching a steady state or not at a long-time limit,
which is determined by the competitive roles between f (y, t )
and g(y, t ) [46]. Many theoretical foundations have been es-
tablished in the discussions on the ergodic properties and
Feynman-Kac equations of the general overdamped Langevin
equation [46–48].

III. FOKKER-PLANCK EQUATIONS

The Fokker-Planck equation governs the PDF p(x, t ) of
finding the particle at position x at time t , which describes the
particle’s stochastic motion in a macroscopic way. Compared
with the Fokker-Planck equations containing integer deriva-
tives for Brownian motion with or without an external force,
those contain the fractional derivatives for many kinds of
anomalous diffusion processes [2,49–51]. The Fokker-Planck
equation for the random diffusivity model in Eq. (5) was
derived in Ref. [22]. Here we extend the model to the one
containing an arbitrary external force, and we derive the
corresponding Fokker-Planck equation. Since the Langevin
system includes three variables [the concerned process x(t ),
diffusing diffusivity D(t ), and the auxiliary variable y(t )], and
D(t ) depends on y(t ) explicitly as D(t ) = y2(t ), the bivariate
PDF p(x, y, t ) is the underlying variable in the Fokker-Planck
equation. For convenience, we take kBT = 1 in Eqs. (7) and
(8), and we take a space-dependent force F (x). It should be
noted that the results in this section are also valid for the
case with time-dependent external force F (x, t ). The corre-
sponding derivations can be obtained directly by replacing
F (x(s)) with F (x(s), s) in Eq. (12) and replacing F (x(t )) with
F (x(t ), t ) in Eq. (18).

Let us derive the Fokker-Planck equation corresponding to
Eq. (7) first. Due to the FDT, the subordination method pro-
posed in Ref. [22] for free particles can be applied here, i.e.,
rewriting the concerned process x(t ) as a compound process
x(t ) := x(s(t )) and splitting Eq. (7) into a Langevin system in
subordinated form,

d

ds
x(s) =

√
2ξ (s) + F (x(s)),

d

dt
s(t ) = D(t ),

(12)

with the proof of the equivalence between them presented in
Appendix A. The subordination method has been commonly
used in a Langevin system to describe subdiffusion [52,53] or
superdiffusion [45,49,54].

The PDF G(x, s) of process x(s) in the first equation of
Eqs. (12) satisfies the classical Fokker-Planck equation [8,55]

∂

∂s
G(x, s) =

(
− ∂

∂x
F (x) + ∂2

∂x2

)
G(x, s). (13)

Combining the latter equation in Eqs. (12), we find s(t ) =∫ t
0 y2(t ′)dt ′. Therefore, s(t ) can be regarded as a functional

of process y(t ), and the joint PDF Q(s, y, t ) satisfies the
Feynman-Kac equation [47,48,50]

∂

∂t
Q(s, y, t ) =

(
− ∂

∂y
f (y, t ) + 1

2

∂2

∂y2
g2(y, t )

)
Q(s, y, t )

− y2 ∂

∂s
Q(s, y, t ). (14)

Since the two equations in Eqs. (12) evolve independently, it
holds that

p(x, y, t ) =
∫ ∞

0
G(x, s)Q(s, y, t )ds. (15)

Then combining the equations satisfied by G(x, t ) and
Q(s, y, t ) in Eqs. (13) and (14), we obtain

∂

∂t
p(x, y, t ) =

∫ ∞

0
G(x, s)

∂

∂t
Q(s, y, t )ds

=
(

− ∂

∂y
f (y, t ) + 1

2

∂2

∂y2
g2(y, t )

)
p(x, y, t )

− y2
∫ ∞

0
G(x, s)

∂

∂s
Q(s, y, t )ds

=
(

− ∂

∂y
f (y, t ) + 1

2

∂2

∂y2
g2(y, t )

)
p(x, y, t )

+ y2

(
− ∂

∂x
F (x) + ∂2

∂x2

)
p(x, y, t ), (16)

where the integration by parts has been used in the last equal-
ity, and the corresponding boundary terms vanish.

For another model violating the FDT in Eq. (8), it cannot
be split into two independent equations as Eqs. (12), and
the subordination method is not applicable for this case. In-
stead, we adopt a universal Fourier transform method, which
has been successfully used in deriving the Fokker-Planck
equation and the Feynman-Kac equation [47,56]. Since the
bivariate PDF p(x, y, t ) can be written as p(x, y, t ) = 〈δ(x −
x(t ))δ(y − y(t ))〉, its Fourier transform (x → k1, y → k2) is

p̃(k1, k2, t ) =
∫ ∞

−∞

∫ ∞

−∞
e−ik1x−ik2y p(x, y, t )dx dy

= 〈e−ik1x(t )e−ik2y(t )〉. (17)

The key point of this method is to derive the increment of
p̃(k1, k2, t ) of order O(τ ) within a time interval [t, t + τ ]
when τ → 0. Based on Eq. (8) and the second equation of
Eqs. (11), we get the increments of x(t ) and y(t ) by omitting
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the higher-order terms:

x(t + τ ) − x(t ) �
√

2D(t )δB1(t ) + F (x(t ))τ,

y(t + τ ) − y(t ) � f (y(t ), t )τ + g(y(t ), t )δB2(t ),
(18)

where δBi(t ) = Bi(t + τ ) − Bi(t ) is the increment of Brow-
nian motion, and B1(t ) and B2(t ) are independent of each
other. By use of Eq. (18), the increment of p̃(k1, k2, t ) as
δ p̃(k1, k2, t ) := p̃(k1, k2, t + τ ) − p̃(k1, k2, t ) can be evalu-
ated as

p̃(k1, k2, t ) = 〈e−ik1x(t+τ )e−ik2y(t+τ )〉 − 〈e−ik1x(t )e−ik2y(t )〉
� 〈e−ik1x(t )e−ik2y(t )(e−ik1[

√
2D(t )δB1(t )+F (x(t ))τ ]e−ik2[ f (y(t ),t )τ+g(y(t ),t )δB2(t )] − 1)〉

� 〈
e−ik1x(t )e−ik2y(t )[−k2

1D(t )τ − ik1F (x(t ))τ − ik2 f (y(t ), t )τ − 1
2 k2

2g2(y(t ), t )τ
]〉
, (19)

where we perform the ensemble average on δB1(t ) and δB2(t ) in the last line. More precisely, Eq. (18) implies that both x(t ), y(t ),
and D(t ) depend only on the increments Bi of Brownian motion before time t , and thus they are independent of the increment
δBi(t ). We deal with the last two exponential functions in the second line by Taylor’s series and only retain the terms of order
O(τ ) as the last line shows. Then dividing Eq. (19) by τ on both sides, and taking the limit τ → 0, one arrives at

∂

∂t
p̃(k1, k2, t ) = −k2

1〈D(t )e−ik1x(t )e−ik2y(t )〉 − ik1〈F (x(t ))e−ik1x(t )e−ik2y(t )〉

− ik2〈 f (y(t ), t )e−ik1x(t )e−ik2y(t )〉 − 1

2
k2

2〈g2(y(t ), t )e−ik1x(t )e−ik2y(t )〉. (20)

Using the relation D(t ) = y2(t ) in the first term on the right-
hand side, and performing an inverse Fourier transform, we
obtain the Fokker-Planck equation for the bivariate PDF
p(x, y, t ) as

∂

∂t
p(x, y, t ) =

(
− ∂

∂x
F (x) + y2 ∂2

∂x2

)
p(x, y, t )

+
(

− ∂

∂y
f (y, t ) + 1

2

∂2

∂y2
g2(y, t )

)
p(x, y, t ).

(21)

Comparing the Fokker-Planck equations (16) and (21) for
two different models in Eqs. (7) and (8), respectively, we find
that the main difference is embodied at the term containing
external force F (x). The former is y2F (x), i.e., D(t )F (x) due
to D(t ) = y2(t ), while the latter is F (x). This difference is
consistent with the discrepancy between the original models,
i.e., D(t )F (x) versus F (x) in Eqs. (7) and (8). Actually, the
Fokker-Planck equations (16) can also be derived with the
method of Fourier transform as Eq. (21) by replacing F (x)
with D(t )F (x) in the procedure.

Although the procedure of deriving the two Fokker-Planck
equations looks a little complicated, the final form of Fokker-
Planck equations can be understood in a simple way. With a
given D(t ), the corresponding Fokker-Planck equations gov-
erning the PDF p(x, t ) of displacement are

∂

∂t
p(x, t ) = D(t )

[
− ∂

∂x
F (x) + ∂2

∂x2

]
p(x, t ) (22)

and

∂

∂t
p(x, t ) =

[
− ∂

∂x
F (x) + D(t )

∂2

∂x2

]
p(x, t ) (23)

for Eqs. (7) and (8), respectively. Then taking Eq. (21) as
an example, the terms on the right-hand side can be divided
into two parts. The first two terms are the ones in the Fokker-

Planck equation (23) by replacing D(t ) with y2, while the last
two terms come from the Fokker-Planck equation governing
the PDF p(y, t ). Albeit D(t ) is a diffusion process here, when
we derive the Fokker-Planck equation governing the bivariate
PDF p(x, y, t ), the D(t ) at the Fokker-Planck equation acts
similarly to a deterministic function.

Based on the Fokker-Planck equations (16) and (21), we
can also analyze the long-time limit of the distribution of
particle position, i.e., the steady-state solution

pss(x) :=
∫ ∞

−∞
pss(x, y)dy = lim

t→∞

∫ ∞

−∞
p(x, y, t )dy. (24)

We first consider the Fokker-Planck equation (16), where the
FDT is valid. Taking t → ∞, the left-hand side of Eq. (16)
vanishes. Then we perform the integral with respect to y, and
we obtain(

− ∂

∂x
F (x) + ∂2

∂x2

)∫ ∞

−∞
y2 pss(x, y)dy = 0, (25)

where the boundary terms vanish. Solving the equation above
yields

∫ ∞

−∞
y2 pss(x, y)dy ∝ e−U (x), (26)

presenting a Boltzmann distribution, where U (x) =
− ∫

F (x)dx is the potential energy. Due to the existence
of random diffusivity D(t ) = y2(t ), the integrand on the
left-hand side of Eq. (26) contains the factor y2. Otherwise,
for constant diffusivity D, y2 vanishes and Eq. (26) recovers
the classical Boltzmann distribution: pss(x) ∝ e−U (x). It is
interesting to find that in Langevin systems with random
diffusivity D(t ), if the FDT is maintained, then we can obtain
a Boltzmann distribution-like steady-state solution as Eq. (26)
shows. However, based on the Fokker-Planck equation (21)
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where the FDT fails, we arrive at∫ ∞

−∞

(
− ∂

∂x
F (x) + y2 ∂2

∂x2

)
pss(x, y)dy = 0, (27)

from which neither the steady-state solution pss(x) nor∫∞
−∞ y2 pss(x, y)dy can be explicitly solved.

IV. CONSTANT FORCE FIELD IN EQ. (8)

For a comparison with the force-free case of Brownian yet
non-Gaussian diffusion in Ref. [22], we take y(t ) to be the
Ornstein-Uhlenbeck process in the following discussions. Let
us first focus on the case in which a constant force F acts
on the model (8) where the FDT is broken. In this case, the
Langevin system is written as

d

dt
x(t ) =

√
2D(t )ξ (t ) + F,

D(t ) = y2(t ),

d

dt
y(t ) = −y(t ) + η(t ). (28)

Based on the first equation, the process x(t ) can be written as

x(t ) = x0(t ) + Ft, (29)

where x0(t ) denotes the trajectory of a free particle satisfying
dx0(t )/dt = √

2D(t )ξ (t ) [22]. By the relation in Eq. (29), one
has

〈�xn(t )〉 := 〈[x(t ) − 〈x(t )〉]n〉 = 〈
xn

0 (t )
〉
, (30)

where 〈x(t )〉 = Ft , and x0(t ) is unbiased due to the symmetry
of Gaussian white noise ξ (t ). Therefore, the ensemble-
averaged MSD is 〈�x2(t )〉 = 〈x2

0 (t )〉 � t . The constant force
here does not change the diffusion behavior and behaves as
a decoupled force, which implies that model (28) is Galilei
invariant [2,57,58]. In addition, the drift Ft dominates the
diffusion process, and it holds that

〈xn(t )〉 � F ntn. (31)

The relation between the first moment for the case with a
constant force and the second moment of a free particle is

〈x(t )〉 � F
〈
x2

0 (t )
〉
, (32)

which does not satisfy the Einstein relation in Eq. (6). This
also relates to the violation of the FDT in Eq. (8).

Based on the moments, we can calculate the kurtosis to
evaluate the deviation of the shape of a PDF from Gaussian
distribution. The kurtosis of a one-dimensional Gaussian pro-
cess is equal to 3. Now for a biased process, the kurtosis is
defined as

K = 〈�x4(t )〉
〈�x2(t )〉2

. (33)

By use of Eq. (30), the kurtosis of the random diffusivity
process under a constant force is

K =
〈
x4

0 (t )
〉

〈
x2

0 (t )
〉2 �

{
9, t → 0,

3, t → ∞,
(34)

consistent to the force-free case in Ref. [22], where the PDF
exhibits a crossover from exponential distribution to Gaussian
distribution.

To be more delicate than the kurtosis, the explicit expres-
sion of the PDF p(x, t ) can be obtained through a translation
of the PDF p0(x, t ) of free particles to the positive direction
with magnitude Ft , i.e.,

p(x, t ) = p0(x − Ft, t )

�
{ 1

πt1/2 K0
(

x−Ft
t1/2

)
, t → 0,

1
(2πt )1/2 exp

(− (x−Ft )2

2t

)
, t → ∞,

(35)

where the expression of p0(x, t ) is explicitly given in Eqs. (63)
and (79) of Ref. [22] and K0 is the Bessel function [59]. In the

short-time limit, considering the asymptotics K0(z) �
√

π
2z e−z

for z → ∞, we have

p(x, t ) � 1√
2π |x − Ft |t1/2

exp

(
−|x − Ft |

t1/2

)
, (36)

being an exponential distribution centered at Ft .
On the other hand, the short-time asymptotics can be

obtained from a superstatistical approach. For the time
shorter than the diffusivity correlation time of the Ornstein-
Uhlenbeck process, the diffusivity does not change consid-
erably, and thus the initial condition in equilibrium of the
Ornstein-Uhlenbeck process describes an ensemble of parti-
cles that diffuse with their own diffusion coefficient, resulting
in a superstatistical result [22]. In detail, the PDF ps(x, t )
in a superstatistical sense is given as the weighted average
of a single Gaussian distribution G(x, t |D) over the sta-
tionary distribution pD(D) of diffusivity D. The stationary
distribution pD(D) can be obtained through the stationary
distribution fst(y) = e−y2

/
√

π of the Ornstein-Uhlenbeck pro-
cess in Eq. (28), i.e. [22],

pD(D) =
∫ ∞

−∞
fst(y)δ(D − y2)dy = 1√

πD
e−D. (37)

Then, it holds that

ps(x, t ) =
∫ ∞

0
pD(D)G(x, t |D)dD

=
∫ ∞

0

1√
πD

e−D 1√
4πDt

e− (x−Ft )2

4Dt dD

= 1

πt1/2
K0

(
x − Ft

t1/2

)
, (38)

which is consistent with the short-time asymptotics in
Eq. (35).

V. CONSTANT FORCE FIELD IN EQ. (7)

The case in which the constant force affects the diffusing
diffusivity model (7) satisfying the FDT is

d

dt
x(t ) =

√
2D(t )ξ (t ) + D(t )F,

D(t ) = y2(t ),

d

dt
y(t ) = −y(t ) + η(t ). (39)
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Similar to the way of deriving the Fokker-Planck equation in
Eq. (12), it is also convenient to rewrite the first equation of
Eqs. (39) into a Langevin equation in the subordinated form,
i.e.,

d

ds
x(s) =

√
2ξ (s) + F,

d

dt
s(t ) = D(t ),

(40)

where the displacement is denoted as a compound process
x(t ) := x(s(t )). Due to the independence between the two
equations in Eqs. (40), it holds that

p(x, t ) =
∫ ∞

0
G(x, s)O(s, t )ds, (41)

where G(x, s) is the PDF of finding a Brownian particle
under a constant force at position x at time s, and O(s, t ) is
the PDF of finding process s(t ) taking the value s at time
t . Therefore, G(x, s) is a Gaussian distribution centered at

Fs, i.e., G(x, s) = 1√
4πs

e− (x−Fs)2

4s and G̃(k, s) = e−ikFs−sk2
in

Fourier space (x → k). Then we perform Fourier transform
on Eq. (41) and obtain

p̃(k, t ) =
∫ ∞

0
G̃(k, s)O(s, t )ds

=
∫ ∞

0
e−(ikF+k2 )sO(s, t )ds

= Ô(ikF + k2, t ), (42)

where Ô(ikF + k2, t ) denotes the Laplace transform
(s → ikF + k2) of the PDF O(s, t ). By use of the known
result on the Laplace transform of O(s, t ) for the integrated
square of the Ornstein-Uhlenbeck process [22,60], we have

p̃(k, t ) = exp
( t

2

)/[
1

2

(√
1 + 2k̃ + 1√

1 + 2k̃

)

× sinh(t
√

1 + 2k̃) + cosh(t
√

1 + 2k̃)

] 1
2

, (43)

where k̃ = ikF + k2. To satisfy the condition of Eq. (43)
proposed in Ref. [60], we assume that the initial position y0

in Eqs. (28) and (39) obeys the equilibrium distribution of the
Ornstein-Uhlenbeck process y(t ), i.e., a Gaussian distribution
with mean zero and variance 1/2:

peq(y0) = 1√
π

exp
(−y2

0

)
. (44)

This equilibrium distribution is also employed throughout
all the simulations in Sec. VI. The expression of p̃(k, t ) in
Eq. (43) is exact for any time t , based on which we can
evaluate the asymptotic moments and PDFs in x space for
short and long times.

For the moments, performing the Taylor expansion of the
exponential function in Eq. (42) yields

p̃(k, t ) =
∫ ∞

0
e−k̃sO(s, t )ds

= 1 − k̃〈s(t )〉 + k̃2

2
〈s2(t )〉 + · · · . (45)

Then we use the formula 〈xn(t )〉 = in ∂n

∂kn p(k, t )|k=0 and obtain
the first four moments,

〈x(t )〉 = F 〈s(t )〉,
〈x2(t )〉 = 2〈s(t )〉 + F 2〈s2(t )〉,
〈x3(t )〉 = 6F 〈s2(t )〉 + F 3〈s3(t )〉,
〈x4(t )〉 = 12〈s2(t )〉 + 12F 2〈s3(t )〉 + F 4〈s4(t )〉. (46)

To obtain both short-time and long-time asymptotics, we need
the accurate expressions of 〈sn(t )〉, which are presented in
Appendix B. We find that at the long-time limit,

〈xn(t )〉 � F n

2n
tn. (47)

The relation between the first moment for the case with a
constant force and the second moment for the force-free case
is

〈x(t )〉 � F

2

〈
x2

0 (t )
〉
, (48)

which satisfies the Einstein relation in Eq. (6).
Based on Eq. (46) and the accurate expression of 〈sn(t )〉 in

Appendix B, the MSD is equal to

〈�x2(t )〉 =
(

F 2

2
+ 1

)
t + F 2

4
(e−2t − 1)

�
{

t, t → 0,(
F 2

2 + 1
)
t, t → ∞.

(49)

When F = 0, it recovers to the constantly normal diffusion
〈x2(t )〉 = t . Under the influence of a constant force, the par-
ticles still exhibit normal diffusion, but the effective diffusion
coefficient increases from 1 to F 2/2 + 1 as time passes. Sim-
ilar to the MSD in Eq. (49), the asymptotic expressions of
the fourth moment can be obtained from Eqs. (46) and Ap-
pendix B:

〈�x4(t )〉 �
{

9t2, t → 0,

3
(

F 2

2 + 1
)2

t2, t → ∞.
(50)

The constant force enhances the diffusion slightly since it
only increases the diffusion coefficient without changing the
diffusion behavior at the long-time limit.

Here we also evaluate the kurtosis to predict the shape of
the PDF p(x, t ) for the case satisfying FDT. Considering the
definition of kurtosis in Eq. (33), and combining the moments
in Eqs. (49) and (50), we find

K �
{

9, t → 0,

3, t → ∞.
(51)

Surprisingly, this result is consistent to the force-free case and
the result in Eq. (34), which implies a possible crossover of
PDF from exponential distribution to Gaussian distribution as
in the force-free case.

For the asymptotic expression of PDF p(x, t ), taking t → 0
in Eq. (43) yields

p̃(k, t ) � t− 1
2

(
ikF + k2 + 1

t

)− 1
2

. (52)
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The normalization of the asymptotic PDF can be verified by
p̃(k = 0, t ) = 1. The inverse Fourier transform of p̃(k, t ) can-
not be obtained easily. Since t → 0, whenever k → 0 or k →
∞, the imaginary part in the large parentheses of Eq. (52) is
much smaller than the real part, i.e., kF � k2 + 1/t . There-
fore, the constant force F here only makes a slight bias on
the original PDF. The expression of the biased PDF will be
explicitly given through a superstatistical approach in the fol-
lowing. The asymptotic behavior at the short-time limit should
be consistent with the corresponding superstatistical result.

In the superstatistical approach, the effective PDF ps(x, t )
is given as the weighted average of the conditional Gaussian
distribution over the stationary distribution pD(D), i.e.,

ps(x, t ) =
∫ ∞

0
pD(D)G(x, t |D)dD

= 1√
4π2t

e
Fx
2

∫ ∞

0

1

D
e
−D

(
1+ F2

4 t
)
e− x2

4Dt dD

= 1

π
√

t
e

Fx
2 K0

(√
4 + F 2tx

2
√

t

)
, (53)

where G(x, t |D) = 1√
4πDt

e− (x−FDt )2

4Dt has been used. Then us-

ing the asymptotic behavior K0(z) �
√

π
2z e−z as z → ∞, we

arrive at

ps(x, t ) � 1√
2π |x|t1/2

1√
(1 + F 2t/4)1/2

× exp

(
Fx

2
−
√

1 + F 2t/4
|x|
t1/2

)
. (54)

Corresponding to the short-time asymptotics in Eq. (52), we
take t � 4/F 2 in Eq. (54), and we obtain

ps(x, t ) � p0(x, t ) exp

(
Fx

2

)
, (55)

where

p0(x, t ) = 1√
2π |x|t1/2

exp

(
− |x|

t1/2

)
(56)

is the PDF of free particles in the superstatistical case. It can
be seen that the constant force only adds a time-independent
correction eFx/2 to the PDF of free particles at the short-time
limit. Compared with the exponential part in p0(x, t ), the ex-
ponential correction eFx/2 is negligible at the short-time limit
since the exponential coefficient satisfies F/2 � 1/t1/2. This
result is consistent to the previous kurtosis K � 9 in Eq. (51)
at the short-time limit and the analyses following Eq. (52).

On the other hand, the long-time asymptotics t  4/F 2 of
ps(x, t ) is

ps(x, t ) � p0(x, t )CF (x, t ), (57)

where

CF (x, t ) =
⎧⎨
⎩

1√
Ft1/2/2

exp
(

x
2t1/2

)
, x > 0,

1√
Ft1/2/2

exp (Fx), x < 0.
(58)

The constant force makes the PDF biased to the positive direc-
tion, i.e., decaying more slowly for x > 0 but faster for x < 0.

Furthermore, the change in PDF at x < 0 is more obvious
than that at x > 0. For the long-time limit, the exponential
coefficient F in CF (x, t ) is much larger than t−1/2 in p0(x, t ),
i.e., F  1/t1/2. So the dominating term of decaying when
x < 0 is eFx.

In contrast to the superstatistical results above, the real
long-time asymptotics of the Langevin system in Eq. (39) can
be found by taking t → ∞ in Eq. (43). The asymptotic result
is

p̃(k, t ) �
√

2 exp
(

t
2 (1 −

√
1 + 2k̃)

)
[

1
2

(√
1 + 2k̃ + 1√

1+2k̃

)+ 1
]1/2 . (59)

Then we consider the large-x behavior by taking k → 0, and
we obtain

p̃(k, t ) � exp

(
− iFt

2
k − (2 + F 2)t

4
k2

)
. (60)

With the inverse Fourier transform, the Gaussian distribution
with mean Ft/2 and variance (F 2/2 + 1)t is obtained:

p(x, t ) � 1√
2π
(

F 2

2 + 1
)
t

exp

(
−
(
x − F

2 t
)2

2
(

F 2

2 + 1
)
t

)
. (61)

This Gaussian shape is also consistent with the previous kur-
tosis K � 3 in Eq. (51) at the long-time limit.

VI. SIMULATIONS

In all our simulations, the initial position y0 of the Langevin
systems in Eqs. (28) and (39) is taken from the equilibrium
distribution N (0, 1/

√
2) in Eq. (44), and the two models in

Eqs. (28) and (39) are recorded briefly as “Model I” and
“Model II,” respectively. For a clear comparison between the
two models, we put the simulation results of the same ob-
servable in one figure, with their moments in Fig. 1, kurtosis
in Fig. 2, short-time PDFs in Fig. 3, and long-time PDFs in
Fig. 4.

In Fig. 1, we simulate the first four moments 〈xn(t )〉 of two
models, which agree with the theoretical results very well.
According to the theoretical results in Eqs. (31) and (47), we
find that the moments of two models only differ by a constant
multiplier, i.e.,

〈xn(t )〉I = 2n〈xn(t )〉II. (62)

As a result, the solid and dashed lines (or circle and star
markers) in Fig. 1 are parallel for the same n.

In Fig. 2, we simulate the kurtosis for two models. They
have the same asymptotic results in Eqs. (34) and (51) with
a crossover from K = 9 at the beginning to K = 3 at infinity.
In addition to the asymptotic results, the exact expressions of
kurtosis can be obtained by use of the definition in Eq. (33)
and the first four moments 〈xn(t )〉 in Eqs. (30) and (46).
For convenience, the exact expressions are presented in Ap-
pendix C, where the latter [Eq. (C2)] recovers the former
[Eq. (C1)] when F = 0. The kurtosis of Model I is the same
as the force-free case [22] due to its Galilei invariant property.
In contrast to the monotone decreasing kurtosis from 9 to 3 in
Model I, the kurtosis of Model II has a maximum value around
t = 0.5, which means that at the short-time limit, the PDF of
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10-1 100 101 102 103
10-5

100

105

1010

1015

Sim-Model I
Sim-Model II
Theo-Model I
Theo-Model II

FIG. 1. Moments 〈xn(t )〉 with n = 1, 2, 3, 4. Model I (in red) and
Model II (in blue) represent the Langevin systems in Eqs. (28) and
(39), respectively. The circle and star markers denote the simula-
tion results, while the solid and dashed lines denote the theoretical
results in Eqs. (31) and (47), respectively. Based on Eqs. (31) and
(47), the two lines with the same n are parallel for two models,
i.e., 〈xn(t )〉I = 2n〈xn(t )〉II. Correspondingly, each set of two lines (or
markers) from the bottom to the top represent the first, second, third,
and fourth moments, respectively. Parameters: T = 103, F = 2, and
103 samples are used for ensemble average.

Model II undergoes a significant deviation from the Gaussian
distribution. The reason can be found from the asymptotic
PDF at the short-time limit in Eq. (55). The additional term
eFx/2 brings a bias to the original exponential distribution

10-2 10-1 100 101 102
2

4

6

8

10

12
Sim-Model I
Sim-Model II
Theo-Model I
Theo-Model II

FIG. 2. Kurtosis [defined in Eq. (33)] in Model I (in red) and
Model II (in blue), which represent the Langevin systems in Eqs. (28)
and (39), respectively. For the two models, the circle and star markers
denote the simulation results, while the solid and dashed lines denote
the theoretical results in Eqs. (C1) and (C2), respectively. The kur-
tosis in Eqs. (34) and (51) both have the same asymptotics as the
force-free case. In contrast to the monotone decreasing behavior of
the kurtosis line of Model I, that of Model II has a maximum value
around t = 0.5. Parameters: T = 102, F = 2, and 106 samples are
used for ensemble average.

-2 -1 0 1 2 3
10-3

10-2

10-1

100

101

Sim-Model I
Sim-Model II
Theo-Model I
Theo-Model II

FIG. 3. Short-time PDFs in Model I (in red) and Model II (in
blue), which represent the Langevin systems in Eqs. (28) and (39),
respectively. For the two models, the circle and star markers denote
the simulation results, while the solid and dashed lines denote the
theoretical results in Eqs. (36) and (55), respectively. The PDF of
Model I is a symmetric exponential distribution with the center at
x = Ft , while the PDF of Model II is an asymmetric skewed expo-
nential distribution. Parameters: T = 0.1, F = 1, and 107 samples
are used for ensemble average.

p0(x, t ) in Eq. (56). At the long-time limit, the PDF converges
to the Gaussian distribution in Eq. (61), corresponding to the
monotone decreasing kurtosis after t = 0.5 in Model II.

The asymptotic PDFs of two models at the short-time limit
are presented in Fig. 3. The corresponding theoretical results
are given in Eqs. (36) and (55), respectively. For Model I,
the PDF is exactly a translation to the positive direction with

-10 0 10 20 30
10-2

10-1

Sim-Model I
Sim-Model II
Theo-Model I
Theo-Model II

FIG. 4. Long-time PDFs in Model I (in red) and Model II (in
blue), which represent the Langevin systems in Eqs. (28) and (39),
respectively. For the two models, the circle and star markers denote
the simulation results, while the solid and dashed lines denote the
theoretical results in Eqs. (35) and (61), respectively. Both of the
PDFs of the two models are Gaussian shapes. The PDF of Model
I has the mean Ft and the variance t , while that of Model II has a
smaller mean Ft/2 but a larger variance (F 2/2 + 1)t . Parameters:
T = 20, F = 1, and 107 samples are used for ensemble average.
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the magnitude x = Ft of the original PDF p0(x, t ) for the
force-free case. In contrast to Model I, the PDF of Model
II is asymmetric due to the term eFx/2 in Eq. (55). It can be
found that the lines in a semilog graph (Fig. 3) are not exactly
straight. The slight deviation from straight lines comes from
the power-law correction term |x|−1/2 in p0(x, t ) in Eq. (56).

The asymptotic PDFs of two models at the long-time limit
are presented in Fig. 4. The corresponding theoretical results
are given in Eqs. (35) and (61), respectively. Corresponding
to the behavior of the kurtosis tending to 3 in Fig. 2, the PDFs
for two models both converge to the Gaussian distribution at
the long-time limit. As the shape of PDFs in Fig. 4 shows,
the PDF of Model I has the mean Ft and the variance t ,
while that of Model II has a smaller mean Ft/2 but a larger
variance (F 2/2 + 1)t . This feature comes from the fact that
the constant force F is multiplied by a stochastic process D(t ),
which enhances the fluctuation, and that the mean of D(t ) at
steady state is 1/2, which weakens the effective drift by half.

VII. CONCLUSION

Much attention has been given to the scenarios of how
external force (or constant force) influences a dynamic system
with a power-law distributed waiting time [2,39,42,58,61].
This paper extends this issue to the random diffusivity model
with a diffusing diffusivity D(t ), and it explores how the
diffusing diffusivity D(t ) acts in a system under an external
force. Considering the importance of the FDT in the statistical
mechanics of nonequilibrium dynamics, we build two kinds
of random diffusivity models with an external force based on
whether the FDT is satisfied or not.

The main studies on the two models can be divided into
two parts: one derives the Fokker-Planck equation of random
diffusivity models with arbitrary external force, and another
one investigates in detail some common quantities by taking
a specific constant force. In the first part, the Fokker-Planck
equations for the bivariate PDF p(x, y, t ) of two random dif-
fusivity models under an arbitrary external force field are
derived in Eqs. (16) and (21). Corresponding to the fact
that the only difference between the original Langevin equa-
tions (7) and (8) is F (x) versus D(t )F (x), the difference
between the Fokker-Planck equations is only embodied at
the external force term, F (x) versus y2F (x). Although D(t )
is a diffusion process, the role of D(t ) in the expression of
Fokker-Planck equations is similar to a deterministic function.
The structure of the derived Fokker-Planck equations has a
striking character. Due to the independence between the evo-
lution of the concerned process x(t ) and auxiliary process
y(t ), the right-hand side of the Fokker-Planck equations (16)
and (21) can be divided into two parts, being the terms in
the corresponding Fokker-Planck equation governing the PDF
p(x, t ) and p(y, t ), respectively.

In the second part, we investigate the case with constant
force field and the diffusivity D(t ) being the square of the
Ornstein-Uhlenbeck process by studying the moments, Ein-
stein relation, the kurtosis and the asymptotic behaviors of the
PDF in detail. For the random diffusivity model in Eq. (28)
with the FDT broken, we establish the relation between the
concerned process x(t ) under the effect of a constant force and
the displacement x0(t ) of a free particle by x(t ) = x0(t ) + Ft .

Thus we find that this model is Galilei invariant, similar to
the discussed anomalous processes [2,57,58]. The diffusion
behavior is not changed by the constant force. The mean value
is Ft and the Einstein relation is not valid in this model.
Compared with the PDF of the force-free case, the PDF is
translated to the positive direction with a bias Ft , with the
kurtosis and the asymptotic behaviors of PDF unchanged.

For the random diffusivity model in Eq. (39) satisfying
the FDT, the results are quite different from the force-free
case. The theoretical derivations are based on the technique
of splitting the first equation of Eqs. (39) into a Langevin
equation in subordinated form. We find that the mean value
of displacement is 〈x(t )〉 = Ft/2 in this case, satisfying the
Einstein relation Eq. (48). Although the kurtosis has the same
asymptotic behavior at t → 0 and t → ∞, it is not monotone
anymore. It increases at the short-time limit and reaches the
maximum around t = 0.5, as Fig. 2 shows. At the long-time
limit, the PDF surprisingly converges to a Gaussian distribu-
tion as the force-free case, while the PDF in the short-time
limit is biased due to a correction eFx/2 compared with the
force-free case.

Many significant differences between the two models im-
ply that the FDT also plays an important role in random
diffusivity systems. Through detailed analyses on the kur-
tosis and the shape of the PDF, the model satisfying the
FDT shows many interesting dynamic behaviors due to the
existence of random diffusivity D(t ). These results will bring
benefits to the discussions on how anomalous diffusion parti-
cles response to the external force in more random diffusivity
systems.
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APPENDIX A: EQUIVALENCE BETWEEN
EQS. (7) AND (12)

The main idea of proving the equivalence is to combine the
two equations in Eqs. (12) and to transform them into Eq. (7).
Noting that the diffusing diffusivity D(t ) is independent of
the noise ξ , D(t ) can be regarded as a deterministic function,
and the ensemble average only acts on ξ in the following.
Integrating the first equation in Eq. (12) yields

x(s) =
√

2
∫ s

0
ξ (s′)ds′ +

∫ s

0
F (x(s′))ds′, (A1)

where we have assumed the initial condition x(0) = 0. Since
the concerned process x(t ) has been written as a compound
process x(t ) := x(s(t )), x(t ) can be obtained by replacing s
with s(t ) in Eq. (A1), i.e.,

x(t ) =
√

2
∫ s(t )

0
ξ (s′)ds′ +

∫ s(t )

0
F (x(s′))ds′. (A2)

By using the second equation of Eqs. (12) and performing the
derivative over time t on both sides of Eq. (A2), one arrives at

d

dt
x(t ) =

√
2D(t )ξ (s(t )) + D(t )F (x(t )). (A3)
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Now the only difference between Eqs. (A3) and (7) is the first
term on the right-hand side. It is sufficient to prove that they
share the same correlation function since ξ is white Gaussian
noise. A formula about the δ-function,

δ(h(x)) =
∑

i

δ(x − xi )

|h′(xi )| , (A4)

will be used, where xi is the ith simple root of h(x) = 0. Utiliz-
ing this formula and a truth that s(t ) is monotone increasing,
we have

〈ξ (s(t1))ξ (s(t2))〉 = δ(s(t1) − s(t2))

= 1

D(t1)
δ(t1 − t2). (A5)

Therefore, it can be found that both of the correlation func-
tions of the first term in Eqs. (A3) and (7) are

2D(t1)δ(t1 − t2). (A6)

APPENDIX B: MOMENTS OF PROCESS s(t )

The moments of process s(t ) in Eq. (40) can be obtained
from its PDF in Laplace space by use of the formula

〈sn(t )〉 = (−1)n ∂n

∂λn
Ô(λ, t )

∣∣∣∣
λ=0

, (B1)

where Ô(λ, t ) is the Laplace transform of O(s, t ), and [22,60]

Ô(λ, t ) = exp

(
t

2

)/[
1

2

(√
1 + 2λ + 1√

1 + 2λ

)

× sinh(t
√

1 + 2λ) + cosh(t
√

1 + 2λ)

] 1
2

. (B2)

With some tedious calculations, it holds that

〈s(t )〉 = t

2
,

〈s2(t )〉 = 1

4
(e−2t − 1 + 2t + t2),

〈s3(t )〉 = 1

8
(3(4 + 5t )e−2t − 12 + 9t + 6t2 + t3),

〈s4(t )〉 = 1

16
(6(27 + 50t + 25t2)e−2t + 9e−4t

− 171 + 60t + 54t2 + 12t3 + t4). (B3)

APPENDIX C: EXACT KURTOSIS

The exact theoretical expressions of kurtosis for two mod-
els in Eqs. (28) and (39) are

K = 3

t2
(−1 + e−2t + 2t + t2) (C1)

for Model I, and

K =
{
−3 − 18F 2 − 171

16
F 4 +

(
6 + 33

2
F 2 + 27

4
F 4

)
t +

(
3 + 3F 2 + 3

4
F 4

)
t2

+
[

3 +
(

18 + 39

2
t

)
F 2 +

(
81

8
+ 63

4
t + 6t2

)
F 4

]
e−2t + 9

16
F 4e−4t

}/[(
F 2

2
+ 1

)
t + F 2

4
(e−2t − 1)

]2

(C2)

for Model II.
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