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Revised scattering exponents for a power-law distribution of surface and mass fractals
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We consider scattering exponents arising in small-angle scattering from power-law polydisperse surface and
mass fractals. It is shown that a set of fractals, whose sizes are distributed according to a power law, can
change its fractal dimension when the power-law exponent is sufficiently big. As a result, the scattering exponent
corresponding to this dimension appears due to the spatial correlations between positions of different fractals. For
large values of the momentum transfer, the correlations do not play any role, and the resulting scattering intensity
is given by a sum of intensities of all composing fractals. The restrictions imposed on the power-law exponents
are found. The obtained results generalize Martin’s formulas for the scattering exponents of the polydisperse
fractals.

DOI: 10.1103/PhysRevE.106.024108

I. INTRODUCTION

Small-angle scattering (SAS) of x-rays and neutrons is a
very important tool for investigating the structural proper-
ties of partially or completely disordered systems at nano-
and microscales [1,2]. SAS is particularly useful to describe
complex hierarchical structures such as fractals [3], since it
provides information that is not accessible to other methods.
This information is extracted from the behavior of the SAS
intensity I (q) ≡ (1/V ′)dσ/d� as a function of the scattering
wave vector q ≡ (4π/λ) sin θ . Here V ′ is the unit volume of
the sample measured, dσ/d� is the elastic cross section, λ

is the wavelength of incident radiation, and θ is half of the
scattering angle.

For fractals, there is always a q-range over which the inten-
sity can be described as [1]

I (q) ∝ q−α, (1)

where α is called the scattering exponent. The general con-
sensus is that when α is an integer, the scattering arises from
a regular d-dimensional Euclidean object (α = 1, 2, and 4 in
one, two, and three dimensions, respectively) [4]. Otherwise
the scattering is considered to arise from a fractal structure,
and in this case α is related to the fractal (Hausdorff) dimen-
sion D [3,5,6]. Simply speaking, the dimension is given by the
exponent in the relation N ∝ (L/a)D when a → 0, where N is
the minimum number of open sets of diameter a required to
cover an arbitrary set of diameter L.

The SAS method enables us to distinguish between mass
[7] and surface [8] fractals. Let us consider a two-phase
geometric configuration in d-dimensional Euclidean space
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consisting of a set of dimension Dm (i.e., the phase labeled
as “mass”) and of its complement of dimension Dp (i.e., the
phase labeled as “pores”). The dimension of the boundary
between the two phases is denoted by Ds. Then the scattering
exponent is α = Ds = Dm < d with Dp = d for mass fractals,
and α = 2d − Ds with d − 1 � Ds < d and Dm = Dp = d
for surface fractals [9–11]. For instance, in two dimensions
(d = 2), the sample is a mass fractal when α < 2, and it is a
surface fractal when 2 < α < 3. Physically, for a mass fractal,
the smaller the value of α, the lower its fractal dimension and
the more open it is, while for a surface fractal, the situation
is reversed. For instance, for a perfectly smooth line in 2d ,
Ds → 1 and α → 3. When the line is so “wriggled” that it
almost fulfills the plane, Ds → 2 and α → 2.

However, for a system of power-law polydisperse fractals,
the scattering exponent α is changed for high polydispersity.
Martin showed [12] that the scattering exponent of a power-
law polydisperse mass fractal lies in the interval [0, d] and
always depends on the mass fractal dimension. For surface
fractals, the scattering exponent lies within [0, d + 1] and it is
independent of the surface fractal dimension for a large range
of the polydispersity exponent. The total scattering intensity
was obtained by Martin merely as a sum of intensities, which
assumes the absence of spatial correlations between the posi-
tions of separate fractals.

By extending Martin’s approach, we demonstrate that for
a set of fractals, whose sizes are distributed according to a
power law, the spatial correlations can play an important role.
As is shown below, the scattering exponent α changes due
to the correlations between positions of different fractals, pro-
vided the power-law exponent is sufficiently big. However, for
large values of the momentum transfer, the spatial correlations
do not play any role, and the resulting scattering intensity
is indeed given by a sum of intensities of the composing
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fractals. Thus Martin’s results are recovered in the range of
high momentum transfer. To simplify numerical simulations,
only two-dimensional models are considered.

The paper is organized as follows. We start in Sec. II with
a mathematical background for describing the connection be-
tween the fractal dimension of a polydisperse fractal system
and the exponent of power-law distribution of fractal sizes. In
Sec. III we obtain the scattering exponents for polydisperse
mass and surface fractals in terms of the power-law exponent.
This is followed in Secs. IV, V, VI, VII, and VIII by present-
ing models and numerical simulations for both discrete and
continuous power-law distributions of fractal sizes. Finally, in
Sec. IX we discuss the differences between our and Martin’s
results.

II. THE FRACTAL DIMENSION OF THE
POLYDISPERSE FRACTAL SYSTEM

To study the influence of the power-law polydispersity
on the scattering exponent of SAS intensity, we consider a
polydisperse system of nonoverlapping fractals embedded in
a finite region of d-dimensional space. The total number of
fractals are supposed to be infinitely large, and their shape and
structure are assumed to be the same, so each of them can be
obtained from another one by uniformly scaling. Their sizes
vary from 0 to R and obey the power-law distribution 1/rγ+1,
where the power-law exponent1 lies in the range 0 < γ � d .
This means that the number of fractals dN (r) whose sizes fall
within the range (r, r + dr) is proportional to dr/rγ+1.

The question arises, what is the fractal (Hausdorff) dimen-
sion of the entire fractal system if the dimension of each
composing fractal is D? To answer this question, we introduce
a lower cutoff length a and consider a finite number of fractals
with sizes a � r � R. According to the definition of fractal
dimension, the minimal number of balls of radius a needed to
cover a fractal of size r is proportional to (r/a)D. The minimal
number of balls for covering the entire system with a finite
cutoff length a is given by the integral

N (a) ∝
∫ R

a
dr r−γ−1

( r

a

)D
=

× 1

aD

1

D − γ
(RD−γ − aD−γ ). (2)

When a → 0, the main asymptotics of N (a) depends on the
sign of D − γ . If it is positive, then the first term in the
parentheses dominates and, hence, N (a) ∝ 1/aD. If the sign
is negative, the second term dominates, and the asymptotics
is given by N (a) ∝ 1/aγ . In accordance with the definition
of Hausdorff dimension, N (a) ∝ 1/aDtot , and we obtain the
fractal dimension of the entire system

Dtot =
{

D for γ � D,

γ for D � γ � d.
(3)

Here the inequality γ � d is needed to avoid overlapping
between the fractals. This is because the fractal dimension

1Compared to the review [10], the exponent γ is shifted by 1, which
is technically more convenient.

of the entire system cannot exceed the maximum Hausdorff
dimension d , which corresponds to complete filling of a finite
region of d-dimensional space.

Some caveats should be made. The above considerations
suppose implicitly that the entire set of the power-law poly-
disperse fractals of dimension D forms a fractal of dimension
Dtot. Strictly speaking, this is not the case in general. This
is because self-similarity in fractals implies that a vicinity of
any point that belongs to a fractal is its small copy. However,
a small vicinity of an inner point of each separate fractal is
self-similar to this fractal but not the entire set. Nevertheless,
the fractal dimension of the entire set of the polydisperse
fractals is correctly given by Eq. (3). Below we show that this
overall set exhibits the fractal properties related to small-angle
scattering.

III. THE SCATTERING EXPONENT OF THE
POLYDISPERSE MASS AND SURFACE FRACTALS

As discussed in Sec. I, the scattering exponent of the small-
angle scattering (I ∝ q−α) is directly related to the fractal
dimension [8,13]

α =
{

Dm for mass fractals,
2d − Ds for surface fractals. (4)

Besides, the fractal dimensions always obey the inequalities
0 < Dm � d and d − 1 � Ds < d .

We find from Eqs. (3) and (4) the scattering exponents for
the polydisperse mass and surface fractals, respectively:

αm =
{

Dm for γ � Dm,

γ for Dm � γ � d,
(5)

αs =
{

2d − Ds for γ � Ds,

2d − γ for Ds � γ � d.
(6)

Let us compare these results with Martin’s [12]. He orig-
inally related the scattering exponent with the exponent of
mass distribution, but his equations can be written in terms
of the exponent of size distribution [10] (see footnote 1):

αm =
{

Dm for γ � Dm,

2Dm − γ for Dm � γ � 2Dm,
(7)

αs =
{

2d − Ds for γ � Ds,

2d − γ for Ds � γ � 2d.
(8)

One can see two main differences between the exponents
given by Eqs. (5) and (6) and those of Eqs. (7) and (8),
respectively; see Fig. 1. First, we have the restriction related
to dense packing of subsets in d-dimensional space, discussed
above in Sec. II: the resulting dimension cannot exceed d .
This leads to the constraints α � d for both mass and surface
fractals. Second, the scattering exponent for mass fractals
should increase as a function of the power-law exponent when
Dm � γ until its value reaches the maximum value Dm = d .
The reason for this is that an increment of γ increases the
density of the fractal set and, as a consequence, the resulting
fractal dimension.

Note that the exponent α cannot be negative even when
2d − γ < 0, but it remains zero in this case. We study this
regime numerically in Secs. V and VI below.
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FIG. 1. The dependence of the scattering exponent α on the
power-law exponent γ for 3D mass (black lower lines) and surface
(red upper lines) fractals. (a) Results obtained in this paper given by
Eqs. (5) and (6). (b) Martin’s results [12] given by Eqs. (7) and (8).

IV. DISCRETE POWER-LAW DISTRIBUTION: CANTOR
SURFACE FRACTALS CONSISTING OF

CANTOR MASS FRACTALS

A. Model

As was shown by the authors of Refs. [14–16], the
“discrete” power-law distribution can be realized as a su-
perposition of various iterations of the generalized Cantor
mass fractals (CMF) [17]. This model is easier to handle
numerically than the continuous power-law distribution, since
it enables an analytical representation of the scattering ampli-
tude.

By analogy with the previous papers [6,14–17], we con-
sider a set of clusters, which are completely uncorrelated in
positions and orientations. For instance, this is realized when
the set is sufficiently diluted in space. Below a single cluster
is described.

We consider a construction in a plane (d = 2), which
realizes the discrete analog of the power-law distribution
of “building blocks” with the exponent γ (see Sec. 4 of
Ref. [14]). We put into the plane one block of size h, k similar
blocks of size βh, k2 blocks of size β2h, and so on. The scaling
factor is given by β = k−1/γ . Here and below we specify
the number of blocks generating at each iteration: k = 4. In
Ref. [14], the composing blocks were disks.

FIG. 2. Construction of a system with discrete power-law distri-
bution: CMF of scaling factor βm = 0.33, fractal dimension Dm =
1.25, and the smallest iteration m = 1 is distributed with the ex-
ponent γ = 1.15 corresponding to the scaling factor β = 0.3. The
number of the “block” iterations is given by n = 2, and, besides,
f = 1. Black dots: scattering units from 0th block (see the main text
for details). Red dots: scattering units from 1st block. An object from
this block is encircled in the green circle. Blue dots: scattering units
from 2nd block. An object from this block is encircled in the orange
circle. d0 = l2/β

3
m and d1 = l2/β

2
m are the overall lengths of CMF

at iterations three and two, respectively. L is the overall size of the
construction, and li, with i = 0, 1, 2, are the sizes of objects from the
ith block (see the main text).

Here we consider a similar construction where the primary
composing blocks are replaced by mass fractals (see Fig. 2).
These fractals can be the generalized Cantor fractals with a
different scaling factor, which we denoted by βm. The scaling
factor is related to the mass fractal dimension by the equation
βm = k−1/Dm . The restrictions γ < d and Dm < d lead to β <

1/2 and βm < 1/2, respectively.
The construction (Fig. 2) is composed from n + 1 blocks,

and the ith block consists of ki objects with the same size li =
L f (1 − 2β )β i, i = 0, 1, . . . , n. Here L is the overall size of
the construction, and f is an additional dimensionless factor
to control the sizes. It obeys the restriction 0 < f � 1. The ith
object is the mass fractal of iteration j depending on i. The jth
mass fractal iteration consists of k j points, where each point
is supposed to have unit mass and unit scattering amplitude.
We assume that the smallest nth object amounts to the mth
mass fractal iteration of the size ln = L f (1 − 2β )βn. Then the
object corresponding to the ith block contains the jth mass
fractal iteration of size ln/β

p
m, where j = m + p(i) and

p(i) =
⌊

(n − i)
Dm

γ

⌋
. (9)
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Here the symbol �x� stands for the floor function, that is, the
greatest integer less than or equal to x.

Such a complicated construction is needed since we build
the mass fractal “from bottom up” with the fixed size of
the smallest unit, and therefore the mass fractal sizes can be
changed only in discrete steps. If the size of the mth iteration
is ln = L f (1 − 2β )βn, then the higher iterations are of sizes
ln/β

p
m with p = 1, 2, . . . . The number p for the ith block takes

its possible maximum value in order to “inscribe” the biggest
mass fractal into the square bounding the ith block.

B. Small-angle scattering properties

With the methods developed in Refs. [14,16], one can
write down the normalized scattering amplitude of the entire
construction as

F (q) =
∑n

i=0 ki+p(i)Gi(q)F C
m+p(i)(β

iq)∑n
i=0 ki+p(i)

, (10)

where Gi(q) = G1(q)G1(βq) · · · G1(β i−1q) for i = 1, . . . , n
and G0(q) = 1, and F C

j (q) is the amplitude of the
jth iteration of the CMF: F C

0 (q) = 1 and F C
j (q) =

G1(q)G1(βmq) · · · G1(β j−1
m q) for j � 1. The generating func-

tion G1 is given by G1(q) = cos qxL(1−β )
2 cos qyL(1−β )

2 . By
replacing the CMF amplitudes by 1, we arrive at the structure-
factor amplitude of the entire construction,

G(q) =
∑n

i=0 ki+p(i)Gi(q)∑n
i=0 ki+p(i)

. (11)

Then the total intensity and the structure factor can be
written down through the averages over all directions of the
momentum transfer q:

I (q) = 〈|F (q)|2〉, S(q) =〈|G(q)|2〉, (12)

respectively. The long-range asymptotics of the structure fac-
tor can be obtained from Eqs. (11) and (12) if we take into
account the asymptotics [6] 〈Gi(q)Gj (q)〉 
 k−iδi j , with δi j

being the Kronecker symbol:

Sas =
∑n

i=0 ki+2p(i)

(∑n
i=0 ki+p(i)

)2 . (13)

The amplitude (11) corresponds to a set of pointlike objects
with different weights. The ith term in the sum is the normal-
ized structure-factor amplitude of the ith Cantor mass fractal
weighed by the factor ki+p(i). This construction is merely
the fractal-like structure (see the discussion in Sec. II) with
the dimension Dtot, and hence its scattering intensity can be
described qualitatively as follows [6]. It is equal to 1 in the
Guinier range q � 2π/L, and then it falls off with the expo-
nent −Dtot within the range 2π/L � q � qas, and finally takes
the constant value Sas when q � qas. Once its asymptotics (13)
is known, the upper border of the fractal range can easily be
estimated as

qas 
 S−1/Dtot
as /L. (14)

For deterministic fractal structures, the corresponding scat-
tering intensity is characterized by a generalized power-law

decay, i.e., a succession of maxima and minima superimposed
on a simple power-law decay [6,17]. To properly estimate
the scattering exponent α, we need to smooth the intensity
without changing the value of the exponent. The smoothing
can be attributed to an additional polydispersity, which does
not change the exponent, or to the resolution of the measur-
ing device. Without loss of generality, we use a log-normal
distribution, defined as

DN(L) = 1

σL(2π )1/2
exp

(
− [ln(L/μ0) + σ 2/2]2

2σ 2

)
, (15)

where σ = [ln(1 + σ 2
r )]1/2. The quantities μ0 and σr are the

mean length and relative variance, i.e., μ0 ≡ 〈L〉D and σr ≡
(〈L2〉D − μ2

0)1/2/μ0, and 〈· · · 〉 ≡ ∫ ∞
0 · · · DN(L)dL. Then the

smoothed scattering intensity is given by [6,17]

Ism(q) =
∫ ∞

0
I (q)DN(L)dL. (16)

Figure 3 represents the scattering curves for the model of
the discrete power-law distribution of CMF (see Fig. 2). All
three main cases are considered: γ > Dm and 2Dm − γ > 0
[Fig. 3(a)], γ > Dm and 2Dm − γ = 0 [Fig. 3(b)], and γ <

Dm [Fig. 3(c)]. In all subfigures, the monodisperse structure
factors S(q) [Eqs. (11) and (12)] are given in magenta, the
monodisperse scattering intensities I (q) [Eqs. (10) and (12)]
in black, and the smoothed intensities Ism(q) [Eq. (16)] in
green (light gray).

The smoothed curve of I (q) in Fig. 3(a) is characterized
by a succession of three power-law regimes. For 2π � qL �
qas1L ≡ S−1/γ

as , the scattering exponent is α = Dtot = γ in ac-
cordance with Eq. (5), where the upper border of this fractal
range is given by Eq. (14). For qas1 � q � qm the scattering
exponent is described by Martin’s formula (7) α = 2Dm − γ ,
where the upper border of this fractal range is qm 
 2π/ln,
where ln = L f (1 − 2β )βn [with β = (1/4)1/γ ] is the size of
the smallest block (see the discussion in Sec. IV A). Since this
block consists of the mth iteration of CMF, the curve decreases
further as the mass-fractal intensity does [6]: when qm � q �
qas2, we have α = Dm, where qas2 
 qm/βm

m. Finally, all the
correlations decay, and for q � qas2 the asymptotics Ias 

1/Ntot is attained, where Ntot is the total number of scatter-
ing points in the entire structure. As expected, the total and
structure-factor intensities coincide up to q 
 qas1 as long as
the spatial correlations between different fractals play a role.
This region is then followed by the asymptotics (13) with a
very good accuracy.

For the control parameters of Fig. 3(b), both intensities
I (q) and S(q) are very similar to the previous case. The main
difference is that for qas1 � q � qm, the smoothed curve is
almost constant. This is because Martin’s relation (7) yields
α = 2Dm − γ = 0. The length of this range is controlled by
the parameter f .

Figure 3(c) shows the scattering curves in the regime γ <

Dm. The power-law decay with α = γ is very short and practi-
cally invisible. We observe that the exponent of the smoothed
intensity I (q) is equal to α = Dtot = Dm in accordance with
both formulas (5) and (7). In this regime, the main contribu-
tion to the intensity comes from CMF of the same size, and
correlations between CMF with different sizes are negligible.
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(a)

(b)

(c)

FIG. 3. The normalized total (black) and structure-factor (ma-
genta) intensities, given by Eq. (12), vs the momentum transfer (in
units of 1/L) for the structure shown in Fig. 2. L is the overall
size of the entire structure. Smoothed intensity (16) [shown in green
(light gray)] is obtained with Eq. (15). (a) The regime γ > Dm and
2Dm − γ > 0. (b) γ > Dm and 2Dm − γ = 0. (c) γ < Dm. Vertical
dotted lines indicate the borders of the ranges with different expo-
nents (see the discussion in the text). Dashed horizontal lines show
the asymptotics Sas (13) and Ias 
 1/Ntot . Here Ntot is the total number
of scattering points in the entire structure.

Note that the maximal CMF iteration in the central block
amounts to m + p(0) = 11 with p(0) = 7 by Eq. (9). This is
confirmed by the presence of 11 pronounced minima of I (q),
superimposed on the power-law decay.

L

(a)

L

(b)

FIG. 4. The 2D Apollonian gasket (orange) consisting from 121
disks. (a) The scaling factor f = 1. (b) f = 0.6. Black circles are
added for better visualization.

V. CLASSICAL APOLLONIAN GASKET

A. Model

Continuous power-law distributions are simulated by the
2D Apollonian gaskets (AG). The construction of AG starts
from a three initial disks, each one tangent to the other two,
and filling the space between them with disks of smaller radii
such that each is tangent to another three. Figure 4(a) shows
such a construction for 121 disks. The central disk has the
radius R0 and is tangent to all three initial disks (not shown
here since they do not belong to AG, but they can be imagined
as being situated at the left, right, and bottom parts of the
AG, respectively, as indicated by their arcs). The next three
smaller disks (of radii R1) are placed such that they are tangent
to the disk of radius R0 and two of the initial three disks.
Repeating this procedure infinitely leads to complete filling
of the space between the three initial disks. The resulting
set of disk borders (circles) forms a fractal with with fractal
dimension Ds = 1.31 . . . [18]. In addition, the distribution of
disk sizes obeys a power law with the exponent γ = Ds.

It is convenient to construct a modification of the AG. Let
us keep the positions of the disk centers unchanged and scale
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their radii by a factor f < 1. A typical configuration is shown
in Fig. 4(b) for f = 0.6. We denote the overall size of the AG
as L. Note that L is independent of the scaling factor f .

For instructive purposes, we adopt a simplified model of
mass-fractal structure inside each disk of AG. We assume that
only the mass of a disk of radius Rj is proportional to RDm

j
in accordance with the mass-radius relation for fractals [5].
Below in Sec. VI A, we consider a more realistic model.

B. Scattering properties

We calculate the scattering amplitude from the AG of Fig. 4
with the methods of Refs. [6,17]. It is assumed that the disks
are composed from a mass fractal of dimension Dm, and hence
the amplitude Aj (q) of a disk of radius Rj is proportional to
RDm

j . Then the normalized scattering amplitude is given by

F (q) =
∑

j A j (q)eiq·r j∑
j A j (q)

, Aj (q) = RDm
j F0(Rjq), (17)

where vectors r j are positions of the disk centers. Here the
normalized scattering amplitude of the disk of unit radius
is given by F0(q) = 2J1(q)/q, with J1(q) being the Bessel
function of the first kind. The structure-factor amplitude G(q)
is calculated with the same Eq. (17) but with F0 = 1 as if the
scatterers were pointlike objects. The normalized SAS inten-
sity and structure factor are obtained by means of relations
(12).

For sufficiently large momenta, only the diagonal terms
survive due to the randomness of the phases in the exponen-
tial. As a result, we obtain the asymptotics of the structure
factor of AG,

Sas =
∑

i R2Dm
i( ∑

i RDm
i

)2 . (18)

Figure 5 shows the scattering curves when γ > Dm and
2Dm − γ > 0 [Fig. 5(a)] and 2Dm − γ < 0 [Fig. 5(b)]. The
color coding is the same as for Fig. 3, and the total number of
disks is equal to

∑n
i=0 3i = 9841 for the number of iterations

of AG, n = 8.
The scattering intensities are very similar to those of Fig. 3.

For 2π/L � q � qas1, we obtain again α = Dtot = γ for γ >

Dm by Eq. (5). Here, qas1 is given again by Eq. (14) with
asymptotic values Sas (18). It follows from these equations that
the length of this region increases with increasing the mass-
fractal dimension Dm. For qas1 � q � qm, we also recover
α = 2Dm − γ , where qm = 2π/( f βn) and β = (1/3)1/γ . For
q � qm, as opposed to scattering from discrete power-law
distribution in Fig. 3, the power-law decay obeys the Porod
law α = 3 in two dimensions. This is because disks are regular
nonfractal structures.

The structure factor describes the scattering from pointlike
objects weighted with the mass RDm

j of each disk, and it still
decays with the exponent γ . We conclude that the predicted
exponent γ [in accordance with Eq. (5)] arises due to spatial
correlations between different mass fractals, and the inter-
nal structure of fractals does not play a role. For q � qas1,
the structure factor does not change anymore, which implies
that these correlations completely decay. Then the exponent
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FIG. 5. The normalized total intensity (black), smoothed inten-
sity [green (light gray)], and structure factor (magenta) vs momentum
transfer (in units of the inverse overall size 1/L) for the structure
shown in Fig. 4. (a) γ > Dm and 2Dm − γ > 0. (b) γ > Dm and
2Dm − γ < 0. Vertical dotted lines mark the regions with different
power-law exponents (see the main text for details). The dashed
horizontal line represents the asymptotic values Sas (18).

2Dm − γ appears as a sum of the intensities of the mass
fractals, in agreement with Martin’s approach [9,10].

VI. APOLLONIAN GASKETS CONSISTING OF
CANTOR MASS FRACTALS

A. Model

In the previous section, we did not specify a model of mass
fractal inside the disks of AG. In this section, the approach is
model-dependent: we replace the disks by CMFs of dimension
Dm (see Fig. 6). In turn, the CMFs are composed of pointlike
objects as for the discrete power-law distribution of Sec. IV.
The smallest disks contain the smallest mass-fractal iteration
m of the same size (m = 1 in the figure). Further, the maximal
possible iterations more than m are inscribed into the circles
as long as their radii grow.

Specifically, Fig. 6 shows the model for two sets of param-
eters at f = 1 and with CMF placed inside the first 40 disks
of AG. Figure 6(a) corresponds to the case 2Dm − γ > 0,
where Dm = 0.9. The construction is as follows: first, we
consider CMF at various iterations m, with m = 1, . . . , mmax

(here mmax = 4). The diagonal d1 of CMF at m = 1 is set to
be equal to 2rmin, where rmin is the smallest radius for the

024108-6



REVISED SCATTERING EXPONENTS FOR A POWER-LAW … PHYSICAL REVIEW E 106, 024108 (2022)

L

(a)

L

(b)

FIG. 6. The model based on the AG shown in Fig. 4(a): the
disks are replaced by CMFs. The first 40 fractals are represented.
The circles are imaginary and shown for better visualization. (a)
Dm = 0.9, for which 2Dm − γ > 0. The fractal iteration number
inside the smallest AG disk is chosen to be m = 1 (blue disks).
Higher iterations of CMF m = 2 and 3 are given in red and black,
respectively. (b) Dm = 0.65, for which 2Dm − γ = 0. The fractal
iteration number inside the smallest AG disk is chosen to be m = 1
(red dots). The second iteration of CMF is indicated with black dots.

set of considered disks. Then, the diagonals d2, d3, and d4

of CMF at m = 2, 3, and 4, respectively, are calculated using
a bottom-up approach, as described in Sec. IV A. This gives
d2 = β−1

m d1 > d1 since 0 < βm < 1/2, d3 = β−2
m d1 > d2, and

d4 = β−4
m d1 > d3, respectively. The CMF of size d1 is placed

in all AG disks whose diameters are smaller than d2 (blue
disks). The CMF of size d2 is placed in all AG disks whose
diameters are greater than or equal to d2 but smaller than d3

(red disks). Finally, the CMF at m = 3 is placed in all AG
disks whose diameters are greater than or equal to d3 but
smaller than d4 (black disks). The same procedure is used
in Fig. 6(b) when 2Dm − γ = 0 with Dm = 0.65. Here the
smallest CMF iteration m = 1 is shown in red, while the itera-
tion m = 2 is depicted in black. Note that the maximal number
of CMF iterations mmax depends on Dm. We emphasize that
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FIG. 7. The scattering curves for the structure shown in Fig. 6.
The notations are the same as in Fig. 5. (a) γ > Dm and 2Dm − γ >

0. (b) γ > Dm and 2Dm − γ < 0. The lower dashed horizontal line
is Ias = 1/Ntot , where Ntot is the total number of scattering points.

the circles are imaginary and serve only as a delimiter of the
region occupied by AG disks.

B. Scattering properties

The scattering amplitude is calculated by analogy with the
previous section. It is given by Eq. (17) with the amplitudes of
CMF of the appropriate iteration and scale, which are deter-
mined by the CMF constructions described in Sec. VI A. The
total number of disks

∑n
i=0 3i ≡ 29 524 for n = 8 iterations of

AG.
The behavior of the scattering curves (Fig. 7) is similar to

those in Fig. 5. As expected, instead of the Porod decay in
Fig. 5, we observe the decay of CMF with α = Dm. The range
of the mass-fractal behavior is very short, since m = 1. Due to
the pointlike structure of the entire construction, the intensity
does not fall off to zero but tends to Ias = 1/Ntot , where Ntot is
the total number of scattering points.

VII. DENSE RANDOM PACKING WITH A POWER-LAW
SIZE DISTRIBUTION

The models suggested in the previous sections might seem
somewhat artificial. In this section, we consider a more re-
alistic model of dense random packing of disks obeying a
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FIG. 8. (a) Dense random packing of N = 2067 disks inside a
square. The disk radii follow the power-law distribution with the
exponent γ = 1.5. The scaling factor f = 1. (b) The same diagram
with f = 0.6. Black circles are added for better visualization.

power-law size distribution. Such distributions are often used
in the literature to describe the structure of various systems
such as colloids, biological systems, gases, or granular mate-
rials [19]. In particular, the degree of packing fraction plays
an important role in the coalescence of concentrated high
internal-phase-ratio emulsions [20] and in the disorder-order
phase transitions [21].

A. Model

We consider a set of N nonoverlapping disks randomly
put into a square and with radii following a power-law dis-
tribution. The radii Ri obey the inequalities L/2 � R = R1 >

· · · > RN and Ri = R i−1/D, where i = 1, . . . , N . Here L is
the edge of the square, and R is the largest radius. Then,
we put the center of the largest disk at a random position
inside the square such that the entire disk is found inside the
square. The same operation is repeated in turn for each of
the remaining disks, which are all embedded in the remaining
free space inside the square. By simple algebraic operations,
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FIG. 9. The normalized total intensity (black), smoothed inten-
sity [green (light gray)], and structure factor (magenta) vs momentum
transfer (in units of the inverse overall size 1/L) for the structure
shown in Fig. 8. (a) γ > Dm and 2Dm − γ > 0. (b) γ > Dm and
2Dm − γ = 0. Vertical dotted lines mark the regions with different
power-law exponents (see the main text for details). The dashed
horizontal line represents the asymptotic values Sas (18).

we find the upper limit R/L 
 0.329 for which the algorithm
can be applied [22]. Figure 8(a) shows a configuration of
disks with the packing fraction 0.937 when R/L 
 0.298. By
scaling the disk sizes by the factor f = 0.6 and keeping the
positions of their centers unchanged, we obtain the config-
uration shown in Fig. 8(b). As in the previous Secs. V and
VI, the disks are supposed to be replaced by mass fractals
with fractal dimension Dm. Thus we arrive at the model of a
power-law polydispersity of mass fractals with random
positions.

B. Scattering properties

The scattering amplitudes are calculated also with Eq. (17),
and the scattering intensity and the structure factor with
Eq. (12). Figure 9 shows the corresponding curves when
γ > Dm and 2Dm − γ > 0 [Fig. 9(a)] and 2Dm − γ = 0
[Fig. 9(b)] for N = 2067 disks. In both cases, the scatter-
ing curves are qualitatively similar to that of AG shown in
Fig. 5. We recover the exponents α = Dtot = γ for γ > Dm

and 2π/L � q � qas1, α = 2Dm − γ for qas1 � q � qm, and
α = 3 for qm � q. Here, qas1 is given by the same Eq. (14),
but qm is estimated directly from the minimal distance δ
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FIG. 10. The normalized total intensities without and with
smoothing at various values of parameter f vs momentum transfer
(in units of the overall size 1/L) when 2Dm − γ > 0. The relative
variance σr for the smoothed curves is equal to 0.2. From left to
right: f = 1, 0.4, 0.2, 0.1, and 0.05. The vertical dotted line marks the
transition of intensities with exponents from α = γ to α = 2Dm − γ .
The intersection of the continuous horizontal line at about 2.5 × 10−6

with scattering curves is an estimation of the position of the transition
point between intensities with exponents α = 2Dm − γ and α = 3.

between disk centers, i.e., qm 
 2π/δ. The scaling factor f is
directly related to the system porosity, but it does not change
the distance correlations between disk positions. We check
whether the qualitative behavior of scattering intensity re-
mains unchanged for highly concentrated systems. Figure 10
represents the normalized scattering intensities at γ = 1.5
and Dm = 0.9 for various values of f . The results show that
the slope α = γ in the region q � qas1 is kept unchanged
for each value of f . However, the length of the region with
α = 2Dm − γ decreases, since the crossover point between
intensities with exponents α = 2Dm − γ and α = 3 shifts to
the left with increasing f .

Thus the behavior predicted by our Eq. (5) is still visible
for concentrated systems. The smaller the scaling factor f ,
the more pronounced the behavior with Martin’s exponent (7).
Note that in the absence of scaling ( f = 1), Martin’s exponent
α = 2Dm − γ is surprisingly replaced by the exponent α = 2.

VIII. DENSE RANDOM PACKING OF NONOVERLAPPING
CANTOR MASS FRACTALS

In the previous section, the mass-fractal nature of the disks
was taken into consideration by choosing the appropriate
weight RDm

j when calculating the total scattering amplitude
[see Eq. (17)]. Here we consider a specific “microscopic”
model of the fractals by analogy with Sec. VI.

A. Model

The model-dependent approach is similar to that used for
AG and it involves replacing the disks by CMF of dimension
Dm. Figure 11 shows the model for the two sets of parameters
at f = 1, and with CMF placed inside the first 40 disks, dis-
tributed randomly. The radii obey the power-law distribution

L

(a)

L

(b)

FIG. 11. The model-dependent construction consisting from
CMF of fractal dimension Dm inside a power-law distribution of
disks (black) with exponent γ = 1.5, at f = 1. (a) Dm = 0.9 and
2Dm − γ > 0. (b) Dm = 0.75 and 2Dm − γ = 0.

with the exponent γ = 1.5. In the construction process, the
maximum fractal iteration number of CMF is mmax = 4 in
Fig. 11(a) and mmax = 3 in Fig. 11(b). Both structures are
depicted in black. Smaller fractal iteration numbers are shown
in red [m = 3 in Fig. 11(a) and m = 2 in Fig. 11(b)] and blue
[m = 2 in Fig. 11(a) and m = 1 in Fig. 11(b)].

B. Scattering properties

Figure 12 represents the corresponding scattering intensity
and the structure factor at given control parameters. As in the
case of AG consisting of CMF (see Fig. 7), we recover α =
Dtot = γ for γ > Dm and 2π/L � q � qas1, α = 2Dm − γ

for qas1 � q � qas2, and α = Dm for qas2 � q � qm.

IX. CONCLUSIONS

In Sec. II, we showed that a power-law distribution of
fractals forms a fractal-like structure, whose Hausdorff dimen-
sion changes provided the exponent γ of the distribution is
sufficiently big; see Eq. (3). Moreover, the condition γ � d is
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FIG. 12. The scattering curves for the structure shown in Fig. 11.
The notations are the same as in Figs. 5 and 7. (a) γ > Dm and
2Dm − γ > 0. (b) γ > Dm and 2Dm − γ = 0. The lower dashed hor-
izontal line is Ias = 1/Ntot , where Ntot is the total number of scattering
points.

satisfied. Here d is the Euclidean dimension of the embedding
space, and the upper bound for the exponent γ is needed in
order to avoid overlapping between fractals.

By using the relations between the fractal dimension and
the scattering exponent for mass and surface fractals, we
obtained the scattering exponents (5) and (6) for power-law
polydisperse fractals. The exponent for mass fractals (5) dif-
fers from the exponent found by Martin [12] many years
ago (see Fig. 1). In addition, we pointed out that there are
restrictions on the resulting exponent, which follow from the
restriction imposed on γ .

To verify our predictions, numerical simulations were per-
formed for five models of polydisperse mass fractals: discrete
distribution of CMF (Sec. IV), two constructions of Apollo-
nian gaskets consisting of the mass fractals (Secs. V and VI),
and compact packing of power-law polydisperse disks with
embedded mass fractals (Secs. VII and VIII). We obtained
that the exponent (5) is observed just after the Guinier region
due to the spatial correlations of mass fractal positions. In
the subsequent range of momentum transfer, the spatial cor-
relations decay, and thus the total SAS curve is given by a
sum of intensities of separate mass fractals with the exponent
(7). Thus, both our and Martin’s exponents are realized but in
different ranges of momentum transfer.

We emphasize that the ranges of wave vectors in Figs. 3, 5,
7, 9, 12 are deliberately chosen to be of eight orders of magni-
tude. This is practically not feasible with a single experimental
tool, whose range spans about two or three orders. Then, in
practice, any “window” of about two or three orders can be
observable, and our purpose is to show all possible behavior
patterns within a narrow region. Note also that the ranges with
our and Martin’s exponents are located and observed within
the first four or five orders of qL.

As a prospect, one can study the scattering exponents for
dense random packing of power-law polydisperse fractals.
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