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We study the behavior of stationary nonequilibrium two-body correlation functions for diffusive systems with
equilibrium reference states (DSe). We describe a DSe at the mesoscopic level by M locally conserved continuum
fields that evolve through coupled Langevin equations with white noises. The dynamic is designed such that
the system may reach equilibrium states for a set of boundary conditions. In this form, we make the system
driven to a nonequilibrium stationary state by changing the equilibrium boundary conditions. We decompose
the correlations in a known local equilibrium part and another one that contains the nonequilibrium behavior
and that we call correlation’s excess C(x, z). We formally derive the differential equations for C. To solve them
order by order, we define a perturbative expansion around the equilibrium state. We show that the C’s first-order
expansion, C'V, is always zero for the unique field case, M = 1. Moreover, C'V is always long range or zero
when M > 1. We obtain the surprising result that their associated fluctuations, the space integrals of C"), are
always zero. Therefore, fluctuations are dominated by local equilibrium up to second order in the perturbative
expansion around the equilibrium. We derive the behaviors of C" in real space for dimensions d = 1 and 2
explicitly. Finally, we derive the two first perturbative orders of the correlation’s excess for a generic M = 2 case

and a hydrodynamic model.
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I. INTRODUCTION

Particle systems are characterized by the dynamics they
follow: classical or quantum for material particles, stochastic
rules for models in ecology, biology, etc. Moreover, boundary
conditions are an essential part of dynamics because they
determine the values that some variables must take in some
spatial regions. Today, we can establish from first principles,
theories, and observations the dynamical rules of a given sys-
tem with reasonable precision. However, to extract valuable
information for our understanding, we need to solve coupled
ordinary nonlinear differential equations, partial differential
equations, or stochastic equations with many degrees of free-
dom. Our mathematical tools are minimal for this enormous
task.

However, we managed to get an idea of the properties of the
system by simplifying the original dynamics by focusing on
the aspects that we consider relevant to studying a particular
observed phenomenon. The most common strategy is to adapt
the modeling of the system to our mathematical knowledge.
That allows us to use the tools that we master to extract some
answers from those complex equations. This natural-looking
scheme has some drawbacks. In our opinion, the most rele-
vant is the robustness of the chosen model, whether or not
small changes in the dynamic rule imply proportionally small
changes in the observed behavior. This problem is far from
trivial, but it is generally neglected because we know many
relevant physical situations in which the models we build are
robust by construction. For example, we know that most de-
tails of the structure of a molecule and the interaction between
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them are irrelevant to describing equilibrium macroscopic
properties of a system as the equation of state. Moreover,
for equilibrium systems we have thermodynamics and the
ensemble theory that help us to design simple microscopic
models that contain the phenomena we want to characterize
with detail. In conclusion, we are in a controlled environment
in many developed theories where we have models that are
reasonably simple and typically robust. Let us mention as a
counterexample that there are very relevant equilibrium sys-
tems, such as water, where we do not know a simple model
that contains all the rich set of properties and phases [1] that
has been observed.

Nature is far from an equilibrium state. There are currents
and flows of particles and energy, unbalanced chemical re-
actions, births, and deaths. Dynamic details and boundary
conditions frequently determine the system’s overall qual-
itative behavior. Therefore, the modeling of these systems
becomes a very subtle issue, and robustness is always un-
der deep scrutiny. Fortunately, there are cases in which we
have successfully managed all those issues. For instance, after
centuries of observation, experiments, and theories, we de-
rived a successful macroscopic theory as the Navier-Stokes
equations for fluids. They have been the starting point to un-
derstanding many exciting phenomena associated with them
such as turbulence and convection [2]. Moreover, many efforts
have been made in ecology to determine the basic principles
and build resilient models [3]. In other relevant cases, as in
the evolutionary potential games, there are profound develop-
ments in models and methods for understanding the behavior
of a set of players in a general sense [4].

In recent years, we have been interested in looking for
a common theoretical framework that permits us to model
different systems from diverse disciplines, each with its own
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particular dynamic rules. That lets us look for generic prop-
erties that can be of common interest. The first step in this
direction was the Onsager-Machlup’s theory for irreversible
processes [5] where a Markovian mechanism is proposed to
explain how the thermodynamic variables relax and fluctu-
ate toward and around their equilibrium value. They assume
that the macroscopic variables evolve by a Langevin equa-
tion where its deterministic evolution is proportional to the
causes that provoke it and call them thermodynamic forces.
For instance, for fluids, the local heat current is proportional to
the local temperature gradient (Fourier’s law), or the local par-
ticle current is proportional to the chemical potential gradient
(Fick’s law). Moreover, the stochastic process is a white noise
design, so the model fulfills the fluctuations at equilibrium.

The Onsager and Machlup idea was recently extended by
Bertini et al. [6] to nonequilibrium systems where the time
reversibility is lost, which is typical in equilibrium. They
developed the macroscopic fluctuating theory (MFT) in the
context of diffusive systems because we know rigorous results
about hydrodynamic limits and large deviation properties.
Many MFT ideas were already developed for systems with
a discreet number of degrees of freedom [7], and they are
easily generalized to different models with or without local
conserved quantities [8]. It is, in our opinion, the natural
context to develop theoretical tools that help us understand
the complex behavior of nonequilibrium systems.

One exciting object in MFT is the quasipotential that de-
fines the stationary measure in the weak noise limit. It is the
nonequilibrium equivalent to the thermodynamic potential for
systems at equilibrium. The quasipotential has been derived
for some one-dimensional systems [9,10]. Also, there is some
algebraic method that may help in getting them as the solution
from a Hamilton-Jacobi equation [11]. The quasipotentials
have a highly complex structure with a nonlocal behavior
that strongly depends on the boundary conditions. That makes
it very difficult to find regularities and generic behaviors to
build, if possible, complete nonequilibrium thermodynamics
beyond the one based on local-equilibrium assumptions [12].
Therefore, it is convenient to get some more insight into the
system’s behavior by studying the correlations. We know that
the correlations are just the inverse of the kernel coming from
the second-order expansion of the quasipotential around the
stationary state. Moreover, they contain precious physical in-
formation about the system’s physical structure. Correlations
have been extensively studied in fluids by experiments and
theories. Here, we can mention the fluctuating hydrodynamics
that is an MFT [13]. Fluctuating hydrodynamics is built fol-
lowing an Onsager-Machlup’s type of assumption by adding
a local equilibrium white noise to the deterministic Navier-
Stokes equations. In this context, we may highlight a couple
of classical works by Tremblay et al. [14] and by Mansour
et al. [15] where they deeply study the correlations for fluid by
linearizing the Navier-Stokes equations in different situations
and approximations.

Inspired by the classical works in fluids, we study the
two-body correlations in a generic nonequilibrium model with
three main properties: (1) the system is described by M fields
that are locally conserved by the dynamics, (2) the local cur-
rents are proportional to the local field’s gradients, and (3) the
equilibrium state may be reached by the system for a given set

of external parameters. We call these systems DSe: diffusive
systems with reference equilibrium states. We will use the last
property to have a reasonable definition for the noise term and,
later, to make a perturbative expansion around the equilibrium
to get precise results.

Section II presents the model definition through the
Langevin equations and its connection with the reference
equilibrium state. We also point out the properties we will
assume in the paper, for instance, an unique locally stable
stationary state. Section III obtains the partial differential
equations for the two-body equal time correlation functions
from the Hamilton-Jacobi equation for the quasipotential.
We also decompose the correlations in a local equilibrium
contribution and a correlation excess that carries the nonequi-
librium structure because it is equal to zero at equilibrium.
Section IIT is devoted to extracting some general property
by doing a perturbative expansion of the correlation excess
around the equilibrium. For example, we find that all DSe
systems with only one field have a zero first-order correction.
We also find that, in general, all DSe with parallel plates as
boundary conditions have their field fluctuations (integrals
over the space of the two-body correlations) equal to zero at
first order in the expansion around the equilibrium, although
their correlation excess to such order being nonzero. In Sec. V,
we focus on studying the basic correlation function F', which
is the common part for the correlation excess at first order
in the perturbation for any model. We study its behavior
numerically in one dimension in real space after a nontrivial
transformation. We also look at dimensions greater than one
in the thermodynamic limit but near a system’s boundary. We
see the rich power-law behaviors depending on how we do
the long-distance limits. In Sec. VI, we show the first-order
perturbation correlation excess in the case of two fields in
dimensions one and two. Finally, Sec. VIl is devoted to getting
the correlation excess up to second order in the perturbation
expansion for a two-dimensional particle model whose hy-
drodynamic equations have been derived recently [16]. Some
comments, most of the detailed computations, and the math
relations we have derived to get the results shown in the
central part of the paper have been left to the six Appendixes.

II. THE MODEL

Let us define a mesoscopic system defined by M conserved
real fields ¢, (x,7), « = 1,..., M in a d-dimensional region
x € A C RY. The fields evolve by the Langevin equation:

0o (x, 1)+ Viy(x,t) =0. 1)

J 1s the local vector current associated to the ¢, field that it
is composed by a deterministic part, J?, and a fluctuating one,
JR:

Jo G, 1) = JP 0, 1) + IR (x, 1). )

We study in this paper diffusive systems with equilibrium
reference states (DSe). That is, we impose two conditions on
the form of the currents: (1) J? should be linear combinations
of the field’s gradients (diffusive system) and (2) it should
describe an equilibrium system with the appropriate boundary
conditions (equilibrium reference state). We will assume in
this paper only spatially uniform equilibrium reference states,
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and we will not consider the action of external fields, like
gravity, on the system. We may think of this model as the
linear approximation around a given stationary state of a
much more complex nonequilibrium conserved model as, for
instance, the fluctuating hydrodynamics [13] that, as we know,
contains equilibrium states as a part of its description. In this
class of models, nonequilibrium stationary states are built by
changing the boundary conditions without introducing any
other external effect. Therefore, DSe’s currents have the form

IP0) =" gup(¢(x)Vep(x) 3)
B
and

d M
IR )= 0uip (@ O (x.t) i=1,....d.

j=1 p=1
“4)

All the sums over Greek symbols run from 1 to M (the number
of fields), and the ones with Latin symbols from 1 to d (the
spatial dimension). ¢(x,t) = {¢y(x, t)}y:], Ye.i(x, 1) is an
uncorrelated white noise,

(Vi o, DYp (0, 1)) = Q7184481 18(x — )t — 1), (5)

and 2 > 1 is a large parameter that characterizes the separa-
tion between the microscopic and macroscopic scales.

The condition of having an equilibrium reference state
implies a relation between g and o. We know from MFT
[6,8] that the deterministic current that describes a system at
equilibrium should be of the form

by L o 8Veql ]
D) = 2;;xa,z;y,]<¢(x>)ak e ©
where
Xaip (D) =Y D Ouiey k($(0)0p iy k(B(x)  (7)
14 k

and V4 is the equilibrium mesoscopic potential that defines
the equilibrium probability distribution:

Peq[¢] = CXP[ - QVeq[(p]]’

In order to get the linear form (3) from (6) we need to assume

Xa,isp k(@) = 2Lg p($)d; 1,
§Veglp] _ 95(¢)
8o (x) 9¢q
where L is a positive defined symmetric matrix by construc-

tion and 3(¢) is a function of M variables. Finally, we find
that

Q - 0. (8)

+ cte, €))
$=¢(x)

g=1LS, (10)
Su.p(¢) = 3%3()/d¢o I In conclusion, the Langevin equa-
tion for DSe models is completely determined by giving the L
symmetric matrix and the function 5(¢).

From Eq. (9) we may deduce, by a simple integration, the
particular form of the equilibrium potentials that give rise to

this linear set of currents:

Vg ] = — fA dx [s(qs(x)) — $(deg)

N
= Y () — g 22

, (11)
I¢a ¢=¢J

where we have made use of the known properties Veg[¢heq] = 0
and 8V [@1/8¢alp=¢, = 0. ¢eq are the equilibrium values of
the fields.

The deterministic current structure (3) reminds us of the
macroscopic linear laws we observe in nature as Fick’s law
for diffusion or the Fourier’s law for heat conduction. We
know that there is a set of theories that describe how a system
characterized by its mesoscopic variables fluctuates around its
equilibrium state (see Einstein’s theory of fluctuations [17]
and Appendix A) or how it relaxes toward the equilibrium
(Onsager’s theory [5]). Both of them are contained in the
so-called nonequilibrium thermodynamics [12]. Let us con-
nect our description above with this classic point of view.
Let s(¢) be the entropy per unit volume of a system in equi-
librium with macroscopic observables ¢ = (¢1, ¢, ..., du).
It is reasonable to think that a macroscopic system relaxing
to the equilibrium state from a nearby initial state is locally
at equilibrium with an entropy s(¢(x)) at each macroscopic
point x € A in the system. It is again assumed that s(¢)
does not contain an explicit dependence on position x due to
the action of an external field such, for instance, gravitation.
In this situation, the macroscopic currents associated to the
conserved fields, ¢, are found to have the form

I2:0) =" Laipa@)Xp (@), (12)

Bk

where L (the Onsager’s coefficients) is a symmetric matrix
on the («, i) index and X’s are the so-called thermodynamic
forces that are defined from the local entropy s(¢):

ds(¢)
I

Xai(@) = 35u(P),  Jul@) = 13)

Observe that this classical description coincides with ours
above if we identify 5(¢) = s(¢), the thermodynamic en-
tropy, and I:O,,,;,g,k = Ly g8 1. Moreover, the expression (11)
can be derived from equilibrium statistical mechanics (see
Appendix A). Our model includes the classical description
of how the macroscopic variables of systems perturbed from
their equilibrium state evolve effectively toward it by assum-
ing that local equilibrium is fulfilled.

A final property is asked for J?: The equilibrium state
is stable under small perturbations at the deterministic level.
That is, the deterministic evolution starting from any initial
set of fields near the equilibrium should relax toward it. The
deterministic evolution equation is

Ay (x,1) = —V[Z gaﬂ(qu)Vcb,?}. (14)
B
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Let us assume that ¢, (x, 1) = ¢eg,o + 6(x, 1) with 6 small and
we expand the deterministic equation up to first order in 6:

360 1) = = Y 8up(9e)VOs(x.1) + O@%).  (15)
B

We see that the evolution is characterized by the g matrix eval-
uated at equilibrium. We rewrite this evolution equation for
the Fourier transform of 6, 0:

00u(k, 1) =K gup(eg)Op(k, 1) (16)
B

and then expand @ in the eigenvector basis of g:

Ouk.t) =Y ayk. s U4 = Ay, (I7)

n

and the resulting evolution equation for a’s is given by
dan(k, 1) = kK*ryan(k, 1) (18)
whose solution is
an(k, ) = a,(k, 0) exp[A,k*t]. (19)

The evolution of a, goes to zero and then the equilibrium state
is stable if and only if all the eigenvalues of g have their real
part negative:

Re(r,) <0 Vn. (20)

Throughout the paper, we will consider only g matrices that
can be diagonalized and have positive the real part of all
eigenvalues, and these cases are the most common ones. Nev-
ertheless, further research is going to be needed to study other
possibilities.

These equations describe the dynamics of a DSe relaxing
to the equilibrium state whenever the boundary conditions are
compatible with such state, for instance, ¢(x) = ¢, Vx €
d A. If we change such boundaries, the stationary distribution
is no longer the equilibrium one defined by V,,[¢]. Moreover,
the local equilibrium property is lost, and the stationary state’s
quasipotential has a nonlocal structure that implies long-range
correlations (see, for instance, Refs. [9—11]). This model per-
mits us to answer some interesting and refined questions:
What happens near the equilibrium? How is local equilibrium
lost? What are the fluctuations of the observables?

Once we have constructed the model, let us study its be-
havior in a generic nonequilibrium stationary state. First, the
deterministic stationary solution would depend on x, ¢*(x),
and it is solution of

VIP()=0= V[Z gaﬂw*(x))w;(x)} =0. Q@
B

The boundary conditions affects dramatically the system be-
havior. Typically they are assumed to be of Dirichlet type,
¢(x) = ¢o(x)Vx € A. As a helpful example, we discuss in
Appendix B the conditions on the system’s boundaries and/or
in the system’s dynamics when we require to have constant
currents fa =y g 8ap (¢*)§¢;‘;. Moreover, there could also be
global conservation laws of a field, f A dxdy(x) = cte, so that
we also discuss their effect in the correlations in Appendix C.

The fluctuating properties of such nonequilibrium station-
ary states are studied by using the Fokker-Planck equation as-
sociated to the above Langevin equation:

8,Plg:1] = ZZ /A dx <8i%>[

g Z( 3¢ (x )>[Lw/3(¢)P[¢t i| (22)

— J2,(0)P[¢;1]

The stationary distribution when  — o0 is of the form

Py[¢] ~ exp[ — QVo[o]], (23)

where Vy[¢] is called the quasipotential that it is solution of
the Hamilton-Jacobi equation:

§Wole]
0= ;Z/Adx (8"5%@))

x [ (x)+ZLaﬁ(¢>a

§Wolo] ] 24)

Spp(x)

This simple derivation of the Hamilton-Jacobi equation hides
a set of important quasipotential properties that we do not
address here. We ask the reader to look at Refs. [6,7] for a
complete description of them. The quasipotential contains all
the relevant behavior about the system’s stationary state, but it
is not easy to get explicit solutions from the Hamilton-Jacobi
equation for generic cases [11]. However, let us show that
from the Hamilton-Jacobi equation, we can derive a set of
closed equations for the equal-time correlation functions of
the stationary state. We know that these capture the essential
features of the system’s spatial structure and are closely re-
lated to the quasipotential shape around the stationary state.

III. EQUAL-TIME CORRELATION FUNCTIONS

The correlations for our M-field model are defined as
Calaz...a,, (xl s X2 et -xn)

= ([, 1) = (e, 1)), ] - - - [P, () — (e, ), ),

(25)

where (-)y = [ D¢ - Py[@].

In the weak noise limit (large values of €2), we can use the
quasipotentical V; to compute the correlations. It is a matter
of algebra to show that

— 1; -1
Calaz...a,, (xlv X2 .. -xn) = th Q" COt]Otz...Ot,, (xls X2 ... xn)

__ 8F[¢"[b]. D]
8bg, (x1) . . . 8bg, (Xy)

. (260)
b=0

where
M
Flg. bl =Volp] = Y / dxby(ga(x)  (27)
a=1 A

and ¢*[b] is solution of
3F[¢, b)

o Valg)
8¢a(x) lp—gr1p)

5.0 = by(x). (28)

¢=¢*[D]
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¢*[0] = ¢* is the stationary solution of the Langevin equa-
tion without noise given by Eq. (21). We construct a set of
closed equations for the correlations by using the Hamilton-
Jacobi equation (24) with ¢ — ¢*[b] and then expanding the
equation in powers of b’s (see for instance Ref. [8] for a
detailed computation for the M = 1 case). We get, at order
b?, the general equations for the two-body correlations:

> / dy[Kap (6. Y)Cpy (. 2) + Ky (2. Y)Cpa (3. )]
8 A

=2 04,0, [Lay (6" ()8 (x — 2], (29)
where
SVJP(x)
Kyp(x,y) = —2— . 30
p(x,y) 5050) |y (30)

We can now substitute the J” corresponding to the DSe (3)
and we get

D Valbap(x)Cpy (x, 2) + ap(@* (1)) ViCpy (x, 2)]
B

+ 3 Velby p(2)Cha(2. X) + 8yp(¢* () V:Cpa (2. )]
B

= 20,0, [Lay (" () (x — 21, 31)
where
B, 9ga
bup) = %“” Vi (). (32)
Y ¢ﬁ p=0¢*

In the equilibrium case ¢*(x) = ¢q. Therefore, Ea,g x)=0
and the equations (31) become

D 8up(@e) VICH) (X, 2) + D 8yp(eg) VICho (2, X)
B B

= —2Ly, (eq) VIS (x — 2) (33)

whose solution for boundary conditions such that ¢(x) =
Geq VX € 0A is

COG, ) = —(5 up(Beg)5x — ).

This result could be obtained directly from the equilibrium
quasipotential Veq[¢]:

(34)

8*Veql ]
8o (x)3p(¥)

In this paper, we are going to consider only the case
of equilibrium fluctuating boundary conditions: Cng(x, z) =
C;?S)(x, zZ)Vxorz e dA.

At this point, it is convenient to decompose the correla-
tions in two terms, one that represents the local-equilibrium
contributions (equilibrium correlations evaluated at each
macroscopic point with the corresponding field values of the
stationary state) and the rest that contains the strong nonequi-
librium behavior:

Cop(x,y) = —(§ap(@* ())S(x — y) + Cop(x, y).

-1
Cly(x,y) = ( ) (Be)dx —y). (39

(36)

After substituting Eq. (36) into Eq. (33), we obtain the central
equation for the two-body correlations:

D Valbap(x)Cpy (x, 2) + gaple™ ())1V,Cpy (x, 2)]
B

+ Z Vz[l;yﬂ(z)cﬁa (z,x) + 8yB [‘P*(Z)]Vzcﬂa(zv x)]
B

= [Vihyy (D18(x — 2) + [Agy (x) — A0 ()] V.8 (x — 2),
(37)
where

Aay(x) =) [bap)(S gy + 8apld™ (DIVL(S gy ] (38)
B

with boundary conditions: Cyg(x,z) =0V x or z € dA. This
equation has the symmetry (o, x) <> (¥, z) and also that the
V§ term does not exist in the one-field case. We see that
these coupled equations for the correlation’s excess are highly
nonlinear because it depends on the nonequilibrium stationary
state ¢*(x), on the equilibrium reference state represented
by the entropy Hessian S, and on the diffusive model g. We
are interested in studying the role of the local equilibrium
at the level of correlations. Therefore, we will expand these
correlations near the equilibrium state to get some generic
results on their properties.

We should mention that our system is typically open be-
cause of the boundary conditions. However, we could think
of models where some fields have global conservation con-
straints, for instance, in a system of particles enclosed in a
container where only energy is exchanged at the boundaries.
The field corresponding to the density is precisely conserved
at any time, but, in contrast, the field associated with the
energy is not strictly conserved. In Appendix C, we study
the effect in the correlations of the existence of global con-
servation in some fields. We show there that the correlations
ng(x, y) of a set of global conserved fields, M, can be ex-
pressed as combinations of the correlations corresponding to
the nonconserved case, ng (x, y):

Caf (. ) = Cog(x,y) — Z /d21/d22
aBemM A A

X COP(x, 2)(A NgpCoe (2, y), (39)

where

Agp = / dx/ dyCop(x.y) a,peM. (40)
A A

Therefore, global conservation do not introduce new complex-

ities at this level and we just focus in cases where all the fields

are globally nonconserved.

IV. NONEQUILIBRIUM CORRELATIONS NEAR
THE EQUILIBRIUM: TWO THEOREMS

The DSe are driven from an equilibrium state to a nonequi-
librium stationary state by changing the boundary conditions.
Let us assume that the system’s stationary state is near the
equilibrium. Therefore, a parameter 0 < € < 1 represents the
distance of the values of its boundaries to their corresponding
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equilibrium ones. Then, let us assume that the deterministic
stationary state, ¢*(x), can be analytically expanded:

Ga(X)* = Peqa + €l (X) + €D (x) + O().  (41)
Then, from Eq. (21) we find that 4> are solutions of
> 8ap(deg) VIR (x) = 0, (42)
B

D 8up(be) VIRT (x) = = V(g h Vi (x)), (43)
B B

where

98a
Zap() = >

AP (x) (44)
Y 0Ps ’

¢rq

with given boundary conditions. For instance, in a one-
dimensional system in a unit box [0,1], when ¢,(0) =
Peqa + € and o (1) = ¢eq o then A (1) = 0 and AV (0) =
1, K2 (0) = 0.

When € — 0, the correlations tend to their equilibrium
value Cop(x, y) — C(i%)(x, y) and therefore, Cop(x, y) — 0 in
such limit. Thus, we can assume the existence of an analytic €

expansion for the correlation’s excess, C:
Cup(x.y) = €CLJ(x,y) + €CH(x,y) + O(€Y).  (45)

We substitute Egs. (41) and (45) into (37) and we get a hi-
erarchy of closed equations that for C‘;g)(x, y) and C‘ﬁf (x,y)

are
Y 2usViCy) (D) + Y g,sViCH)(x,2)
B B
=a)Vd(x — 2), (46)

> gupViCy) (x.2)+ Y 8ypVICLH (x.2)
B B

= V.AD (0)8(x — 2) + a5 (1) Vid(x — 2)

=Y g EVICH (x,2) = Y UM () VICL) (x, 2)
B B

= 3 (BH) + Vg ) Vel . 2)

B
=D (B))) + Vagl ) () VoLl (x, 2), (47)
B
where
al) (x) = AD (x) — A (x) (48)
and
A 98y agozﬂ —
A(l) = Vxh(']) oy S 1 , 49
ay X}_/: ( Y ) Xﬁ: 3475 3¢,7 ( )/Sy ( )
X 0
@ (x) = 2 1) 1)
Ay () = [Z Vil (x) + Z} (Veh ) Ay (X)Wr,}
0L,
X Z(S_l )ﬁy Z _nSnav (50)
B n 8¢’3
B)(x) = Vigl (x). (51)

We have simplified the notation: gug = gup(¢ey) and
08ap/0Py = 08up($)/dP5|p=¢,,- In general, after any oper-
ation, a functional that depend on ¢ is considered to be
evaluated at ¢,.

At this point we find the first general result:

Therorem 1. All DSe systems with one field, M = 1, have
cH =o.

That is, the excess of correlations is, at most, of order €2.
That is due because A’ = 0 and the solution of Eq. (46) is
a harmonic function whose maximum or minimum should be
at the boundary that in our case is always zero: CV(x, z) = 0
Vxorz € dA and therefore CV(x, z) = 0V x, z. This property
was already observed in two specific one-dimensional models,
the symmetric simple exclusion process (SSEP) [9] and the
Kipnis, Marchioro, and Presutti model (KMP) [10]. In these
works, it is shown that C = €*F (x, z) for any €.

In order to go forward, we need to give specific boundary
conditions. Our natural choice is to place our system between
two parallel plates placed at x; = 0 and L where the values of
the fields are given:

$a(0,x1) = Peqas Pal(l, X1) = Pequ + Adba,  (52)

where A¢, are given constants. Therefore,

€ (x,2)=0, xandforz € dA = {(0, w.)} U {(L, w.).
(53)

We also assume periodic boundary conditions in the
perpendicular d — 1 directions: Caﬂ (x1,x1 £nlaj) =
Cop(x1,x1),Vj=2,...,d, where x = (x;,x, ) and g, are the
unit vectors on the principal directions. n > 0 is a form factor.

These boundary conditions have the advantage to give us
a simple stationary state around the equilibrium (see Ap-
pendix B). In particular, Eifxly) = aély)i in Eq. (46), with afxly)
constant. We apply to the C’s; (x, z) functions the sinus Fourier
transform to the x;, z; coordinates because they incorpo-
rate the boundary conditions and a normal Fourier transform
to the perpendicular coordinates x,, z; in Eq. (46). (See
Ref. [18] for general background on Fourier transforms and
their applications. We also include in Appendix D some prop-
erties of the Fourier transform and Fourier series that are used
in the paper.) Then

_ 1 o > - nmx
) _ 2 : i2ny(xi—z1) ' !
Caﬂ (x,2) = (L)1 el ZZSIH< L
X sin <m7£11 )Cg};(n myny), (54)

nyeZd-! n=1 m=1

where L' = nL and C’aﬂ functions are solution of the equa-
tions:

4 N
(nz " Fni) S s O, min )

B
2 4 2 A1)
Hm?+ 50l ) D gypChy (nominy)
1 5
= A(n, m)a}), (55)
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FIG. 1. The basic structure function 8(n, m; k, 6). It is shown only the (n, m) values where S is nonzero. The sublattices with equal parity,

i.e., both n and m even or odd, have § = 0.

where

nm

4 n+m
A(n,m)=—P[1—(—1) 1 5 (n#m)

n? —m
We observe that for a given set of values (n, m, n, ), we have
an ensemble of equations with the unknowns linearly related.
We can express them in matrix notation:
d(m)gCY +dm)CVg" = A(n, m)a, (57)

where d(n) = n* 4+ 4n’ /n* and we only show the arguments
that change to simplify the notation. To solve these equations,
we use the assumption that the matrix g can be diagonalized
or, in other words, there is an eigenvector basis that spans the
M-dimensional space. We know that under these conditions

g w(s) = A(s)w(s), Re(r(s)) <0 Vs, (58)
we multiply by w(s’)7 the left of equation (57) and by w(s)
its right and we can isolate the C") matrix components:

A, m)w(s)T aw(s)

NCDw(s) = Gy, = 59
wisy € w(s) dne) +dmmie) )

or, in Cartesian coordinates
¢V = pHIgp, (60)

where P is the matrix where its s column is the components
of w(s): Pe(s) = w(s) with e(s); = &, being the canonical
orthonormal basis. Finally, we can write C(!) in components:

Clyn.miny) =" GograpF (n,miny;0.0'),  (61)

oo’
where

Goo’;aﬂ = (Pil)aa(Pil)o’ﬂ Z Zag/)RmRv’a’ (62)

and

F(n,m;n ;0,0")
_ A(n, m)
(n? + 4n% /n?)A(0) + (m? + 4n? /n?)i(0")’

(63)

where Zlg,/) = a'1is given by Eq. (48). Observe that the prop-

erty al) = —a')) implies Goo0p = —Go'o:pa-

Please, observe that C‘O((};(n, m;n ) is a linear combination
of the basic structure function F (n,m;ny;o0,o0’). We show in
Fig. 1 the behavior of a related function that only depends on
the relation between eigenvalues:

S(n, m;k, 0,0) = M E(n,m;n ;0,0"),  (64)

where k% = 4”2¢/’72 and 930' = A(o)/A(0").
Let us stress the fact that we only need to study values with
0,5 < 1 because of the relation

. 1 .
S(m,n;k, ):—9§U,S(n,m;k,9w,). (65)

oo’

Finally, the correlations in real space given by Eq. (54) can
be written

GSS)(X, 7) = Z Gaa’;aﬂF(x’ 2,0, cr/),

oo’

(66)

where we call F' the basic correlation function and it is written
as

F(x5 Z;U,U,) ZF(X, z,0, a/)_F(Z5x;U/7U)

= A,(U/)_IS(X, 230507) (67)
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and

8

F(xzaa)——nz(l/)dl

ny €41

2n—1)2m

Z e' (- u)zsn((zn _LI)T[XI>ZSiH

2mirzy
L

n=1 m=1

1

2n— 1) —

The field’s spatial average fluctuations are interesting
observables associated with the two-body correlations. For
instance, at equilibrium, these magnitudes are related to other
thermodynamic properties of the system as the Einstein re-
lation between the system’s overall energy fluctuations and
its specific heat. For a system composed of M fields, we
can define the fluctuations between the fields « and 8 at the

stationary state as
Agp = ((ea — €;)(€p — €5))sss (69)

where ¢,, is the spatially averaged field ¢,:

1
ey = m/AdX%(X) (70)

and ¢, is its average value at the stationary state. Fluctuations
can be written as the sum of correlations:

1
Bun= 3 fA dx /A 4z Cap(x, ). an

This expression for the DSe is written as the sum of two
contributions:

ASE+ AL (72)

where the local equilibrium contr1but1on is

Agp =

leq _
% = AR

and the remaining, the nonequilibrium part, is

Z%q |A|2/dx/dZCaﬁ(X 2). (74)

neq

de( 5™ up(@*(x)) (73)

When we e-expand A ;' through the correlation expansion,
we get our second general result:

Theorem 2. Al = O(&?) for all DSe with parallel plates
as boundary condltlons

In other words, the fluctuations for DSe systems with paral-
lel plates as boundary conditions are, near to the equilibrium,

J

2m)* [(2n — 1)? +4n? /n*I0(0) + [2m)* + 4n? /n*IA(a")

(68)

(

at most of the order €2. The field’s global averaged values are
very well described by the local equilibrium approximation
whenever the stationary state is at the linear regime (order
€). The nonequilibrium corrections appear at order € despite
their correlations that deviate from local equilibrium already
at order €, and they are long range.

The proof of this theorem is straightforward. We compute
explicitly A3' near to the equilibrium at first order in € and
in the case of parallel plates (see Sec. III above). We just
substitute expression (61) into (54):

Ag;q(l) Z(L/)d 1 ZZ_[I - (_1) ]
n=1 m=1
x [1— (—1)'"]c<”(n m;0). (75)

We observe that the sums over n and m in Eq. (75) run over
odd values due to the factors in front of C, Moreover, (:‘;1)
includes the factor A(n, m) given by Eq. (56) that is differ-
ent from zero whenever n and m have different parities and
therefore the overall result is zero.

V. THE BEHAVIOR OF THE BASIC
CORRELATION FUNCTION

We observe that the correlations at the first order in the €
expansion are given by Eq. (68), which is a linear combina-
tion of F functions (basic correlation function). Therefore, F
contains the structural part of the nonequilibrium correlations
in real space, and it is interesting to get some insight into it.

Let us begin the study of F with the one-dimensional case
(d = 1). We see that we can get some idea of its behavior
by doing numerically the sums in Egs. (66)-(68) for given
values of the ratio 0,, = A(0)/A(c’). However, the sums
converge very poorly due to the sinus functions. Therefore,
we had to transform it to another form with a better numeri-
cal convergence behavior. After some algebra (see details in
Appendix E), we transform Eq. (67) into

) 11
S(x, 2,0p0) = Mo )F (x, z,0,0') = — [Z arctan Ay, (m; X, 7) — ZarctanA(,(,(m %)+ —sgn(x - z)i| (76)
T m=1

1462,

where

cosh (%900/(2m — l)) sinh (%9

JU’Z)

Aye(m;x,z7) = 4cos <—)‘c> - T
2 ) cosh (0,4 (2m — 1)) — cosh (w0,4:7) + 2 cos (%x)

with 930, =Mo)/A(o"), x=2x/L—1, and Z =2z/L — 1,
and sign(x) = x/|x| when x # 0 and sign(0) =

(77)

(

We show in Fig. 2 the behavior of the S(x, z; 0, o’) versus
(x=2x/L—1,z=2z/L—1) for 6,, = 0.5. We obtain the
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X

FIG. 2. The S(x,z;0) vs (x =2x/L — 1,7 =2z/L — 1) for6 =
0.5. The red line shows the function S(x, x;6). The black line is a
reference (%, x, 0).

figure by computing S numerically with Eq. (76). There are
several points to remark. First, we see how S(x, z;6) is zero
for values (x, z) located at the boundaries. Moreover, let us
observe a defined discontinuity along the line X = Z where two
antisymmetric halves meet, forming a well-defined gap. There
are some apparent rounding effects near the points (X, Z) =
(£1, £1) but these are just due to numerical computation
difficulties. S(x, x;0) is shown separately in Fig. 2 by a red
line located at the middle of the gap.

J

S(x,2;050) = Mo )F (x,z;0,07)

We can analytically compute the magnitude of the gap
along the line (X, X) for a given 6 from Eq. (76) and we find
AS = lin}) [S(xo +€,x0 —€;0) —S(xog — €, x9 + €;0)]
€e—
1
1467

It seems remarkable that the size of the gap is independent of
Xo. Similarly, we also find the limiting value at X = +1:

(78)

[arctan 6! — arctan 0].

(79)

11
S(L,L;0) = —S(0,0;0) = ———
( ) 000 =T+

All these exact results are, of course, consistent with the
numerical behavior obtained in Fig. 2.

In the d = 1 case, we got the qualitative behavior of S by
computing numerically part of the infinite sum (76) and/or
extracting some analytical results from it. There we were
lucky because we could obtain a fast converging expression
that made possible its overall description. However, we have
been unable to find a similar expression to Eq. (76) when
d > 1. We circumvent this difficulty by studying analytically
the limit L — oo, where we can use the Riemann summation
formula to substitute the sums by integrals. As we will see
below, we pay the price of describing the correlations only in
part of the domain, that is of arbitrary but not infinite size.

Let us write from Eq. (67):

. 1. 1
S(x,z;0) =8(x,z,0) — 9—25<z,x; 5), (80)

where

81

and F is given by Eq. (68). We can do the summation over m similarly as we did for the d = 1 case (see Appendix E). We

get

2 1 1

- 2 ad
S(x,z;0) = ;WW Z exp [iL—jfnl(xL —zl)] Zsin |:(2n — l)n%]

LEZ

2n—1

<1
X Qn—1y +4n3_/772 {COS |:(2n — l)nzi|

with

a(n,ny;0) = [0*2n — 1)* +4(1 + 6%)n /n*1"/%

n=1

_ sinh [ n30)5 (1 - )] } (82)

sinh [a(n, n.;60)%]

(83)

We can do explicitly the first sum by using some of the Fourier sums that we derived in Appendix D and we obtain

oo

2n— 1
Zsin[(Zn—l)nﬂ} - 2cos|:(2n—1)nz—]:|
Z L]@n—1p2+42 /y L

-1 1 1
= %(cosh (In;hr)) |:®(1 - Z(Xl +z1)) cosh (VZ;W |:1 -2 ZZI i|> B ®<Z(XI - 1)

X cosh (M[Zm _ 3:|> + Sign(x1 _ Z1)COS]’1 <|nJ_|7T |:1 _ 2|)Cl - Z1|]>:|
” L n L

(84)
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FIG. 3. Left: S vs (x, z) for 8 = 0.5 using the expression (90). Right: Figure 2 expanded around (X,Z) = (—1, —1). The red curve is

[x, x, F (x, x)]. The black line is a reference (%, z, 0).

In order to go beyond these expressions, we need to convert
those remaining sums into integrals by means of the Riemann
summation formula:

N 00
lim © 3 f(f) :/_ dgf(q), N>L° o>0.
' (85)

The formula can be applied under some conditions on f
(see, for instance, Ref. [19]). Therefore, we substitute n; =
Lng, /27 and n = Lg/2m in Eq. (82), we keep x and 7 fixed,
and we do the limit L — oo. The result is

i 21 ‘
S(x,z:0) = d ig1-(x1—z1)
&z =G T1e /Rd_l aLe

w | Zelartoata) ¢ T gonx, — 7))e o=l
4 4
[o.¢]
_/dq
0

&(q.q1:0) = \02¢> + (1 + 02)g3. (87)

Let us remark that by keeping fixed x and z and doing L — oo
we are describing effectively the S function in an arbitrary
domain from the boundary x; or z; = 0. The other boundary
condition at x; or z; = L is now infinitely far away. Therefore,
S only incorporates the boundary condition § = 0 when x; or
1 = 0.

It can be shown that S(x,z;6) =2S(x,z;0) by using
Eq. (F10) in Appendix F. This property only applies in the
L — oo limit as the even-odd modes differences in Eq. (68)
disappear.

We can compute the integrals explicitly, but their tech-
nicalities depend on the dimension. Let us start with d = 1
to check this limiting case with the overall description we
already found numerically. For d = 1, the corresponding ex-
pression (86) is equivalent to g; = 0 and the integral over g

4q Sin(xlq) 8—115(4»41.;9) (86)
7 +aqi ’

where

disappears. The unique integral that remains to do is
00 .
/ dq M[meq = arctan <x_1> (88)
0 q 0z
(see GR.3.941.1 in Ref. [20]) and therefore

o 1
Sx,z;0) = ——
80 =30 e
. 4 X
x | 1 4 sign(x; — z;) — — arctan | —
b3 921
(39)
and
S(x,z;0) = 1
SR TS PR
X | sign(x; —z1) + —arctan | — ] |.
b3 29)(1Z1
(90)

From Eq. (90), we derive that S behaves as a power law for
large values of x;:

20 7
1+62nx,’

S(xy,21:0) = x| — 00, o1
that is typical for systems at nonequilibrium stationary states.
One can check that S has all the properties we discussed above
for the d = 1 case numerically solved. Moreover, we compare
in Fig. 3 the S obtained from Eq. (90) and the S from Eq. (76)
computed for values around (¥,z) = (—1, —1). We observe
that our computation captures with precision the nontrivial
behavior near that boundary. This limiting approach contains
the most relevant part of the description of the nonequilibrium
correlations for DSe models, and therefore, it permits us to get
analytical results.

Having certified that our limiting theory is describing cor-
rectly the system near the boundary, we can show with some
more confidence the results for d = 2 where no numeric data
are, at this moment, available. S is given by Eq. (67) by using
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FIG. 4. Several behaviors of S for 6§ = 0.5 from Eq. (93). Top left: S vs (z1, x, — z2) for x; = 1. We see the singularity at z; = 1. S vs
(z1, x1) for x; — z, = 1 (top right), x, — zo = 0.1 (bottom left), and x, — z, = 0 (bottom right), respectively.

Egs. (86) and (87) restricted to d = 2:

S(x,z;0) = i; > da, ¢ 2—2)
v Cnypt1ter) P

b4 T, _ —
X |:Ze—|q2|(x1+11) + ZSlgn(xl —21)e lg2lx1—z1]

_ /oo dq Mem/equehqg].
0

7 +aq;
The first two integrals over g, can be easily done by using
GR.3.893.2 from Ref. [20]. The last integral is explicitly done
in Appendix F [see Eq. (F20)]. The final result is

92)

1
Se.zi6) = —— 7
y (146%)(zf — x7) + (1 — 6%)(x2 — 22)?

Di(x,z)Ds(x, z;6)

93)

with
Di(x,2) = [(x1 — 21)* + (x2 — 22)°]
x [(x1 4+ 21)* + (22 — 22)*1,
D>(x,z;0) = [(1 + Oz)xf + 62
< (1462 4+ —2))]"% 94

Observe that S has the limiting behaviors

1 21
S(x,Z;e):mx—l, X1 —> X
1—92 X121
S e
_ 1 X121 .
G N
95)

Please observe that the decay for large distances in the x
axis is xl’2 while in the y axis is |x; — z2| = even though the
boundaries have been sent to infinity. Moreover, there is a
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singularity at x; = z; when x, = z. We show in Fig. 4 some
overall examples of the S behavior.

We see that we obtain a rich complex behavior for the S
functions that are the basis for the C' correlations. Let us now
study the M = 2 case.

VI. THE CASE OF TWO-LOCALLY CONSERVED
FIELDS (M = 2)

We have seen that the correlation’s excess is a linear com-
bination of the basic correlation function F whose properties
can be derived independently from the DSe model we chose
to study. Therefore, most of their geometrical behavior is
already formally determined. However, we need to compute
G from Eq. (62) that depends on the model studied to get
the correlations’ expressions. This section gives a detailed
account of the correlations of a DSe with two fields (M = 2).
We will see that the correlations C f}) and C_g) are, except for
a model-dependent factor, universal. This fact permits us to
have a generic vision of part of the correlations in this case.

Let us assume that DSe is defined by a 2 x 2 given matrix
g. To obtain G, the main problem is to get the eigenvalues and
eigenvectors of the g/ matrix computed at the equilibrium.
The eigenvalues are

AM(1,2) = g + g» £ D',
D = (g1 — g»)* + 48181, (96)

and the corresponding P matrix [see Eq. (60)] is

P=( —821 —821 ) ©o7)
g — A1)

g —A(2)
Finally, our boundary conditions imply that dq, = dq,1,
where the matrix a is of the form

0 ap
a= <_a12 ! ) (98)

With all these items at hand, we get G from Eq. (62):

Goorap = a12821[A(0") = MNP (P )op, o #0,
=0,0 =o. (99)

Therefore, from Eq. (66), the nonequilibrium correlations C ;lﬁ)
are

~(1) _ansnn .

Clln ) = 25 Dne 56, (100)
=(1) . angi .
Gy (x,2) = _nk(2)2Dll(x’ 7;0), (101)
~(1) _ a12 .
C,(x,2) = —WDU(X, 2;0), (102)

and
T

Di(x,z;0) = -

7 [SCx, 2:0) + S(z, x;0)],

Din(x, 339) = ﬁ[[gu — A8, 2:6)

+ g — K(l)]S(Z,x;H)}, (103)
where 82 = A(1)/1(2).

Let us remark that the expressions (100)—(102) are generic
for the M = 2 case. We see that the spatial structure of C_'ﬁ)

and Céé) is the same independently on the model studied. Let
us see how the correlation excess behaves ford = 1 and d =
2.

A.d=1
In this case, F is given by Eq. (76). Therefore,

1 1
Dy(x,z;0) = —[I(x,z;G) —I<x, Z —)

1—064 %
1
+I(Z7-x7 9) _I<Za-xa §)i|7 (104)
Dt 58) = 50 @—2+1(zx 2
38) = — | wsgn(x — —
P8 T a ey | T YT
1
—1<X,Z,§)+1(Z,X,9)—I(X,Z,9)i|
811 — 822
— 1] ,0 I(z,x,0
+2(1_94)[(x,z )+1(z,x,0)
I 1 _y ] (105)
Z"x99 x!Z79 9
and
o0
1(x,72,0) = Z arctan Ao (m; x, 7). (106)

m=1

In Fig. 5, we show Dj;(x, z) for 8 = 1/2 and 1. We see
that the shapes are very similar in both cases. Moreover, we
see that the discontinuity that appeared in F at the x = z line
disappears in D1; by symmetry. We also see that Dy (x, z) > 0
whenever X + Z > 1 and negative otherwise. The maximum
and the minimum of the C 1(1) correlation are at (x, z) = (L, L)
and (0,0) respectively and their values are

2
Dy (L, L) = —D1;(0,0) = W[arctan@’1 — arctan 6].

(107)
They range from 1/2 for 6 = 1 to w when 6 = 0.

We can get analytic expressions for D;; by using the S’s
functions given by Eq. (90) that we obtained in the limit L —

00. Therefore,
0 2 2
|:arctan <M) — £:| (108)

Di(x.z) = ——
N2 = 1= d—6z) 2
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FIG. 5. Dy, vs (%, Z) numerically computed from Eq. (104) for d = 1. Top left and right: 8 = 0.5 and 1 respectively. The red curve is
[%, X, D11 (%, X)]. The gray plane is the zero reference (X, Z, 0). The bottom figure is the ratio R;; = D;;(6 = 0.5)/D;;(6 = 1) to show that they

are not related by a constant factor.

It is interesting to extract some limits from (108):

2 z

Dii(x,z) = T 160

26

2
Diyi(x,z) = FT [arctan <

We see how the correlations are long range when we fix one
of the coordinates and the other tends to infinity. However,
when we follow a path in the plane (x, z) such that x = rcos ¢
and z = rsin ¢ the correlations are constant for a given angle
¢ and any r. Observe that in this case the mutual distance
|x — z| = r| cos ¢ — sin ¢| is proportional to r for a fix ¢. This
singular behavior of the correlations is typical in nonequilib-
rium systems (see for instance Refs. [15,21]). Moreover, we
show the viability of using this theoretical framework to de-
scribe the complex behavior of those systems at the fluctuating
level.

The study of the C{}(x, z) case needs the election of a
concrete g. Just as an example we have chosen the matrix

=(7 )

(110)

(1 —62%)sin(2p)

1 .
+ 0(;) X — 00, z, given

T

) — —:| X =rcose, z=rsing.

> (109)

with k € [2,9/4] to guarantee negative eigenvalues. k may
be expressed in function of the eigenvalues ratio 6 =
(A(D)/A2)]2, [M2)] > [AD)]:

(142002 +6%)
(1462 7

(111)

where 6 € [0, 1], A(2) = —1/(1 + 62).

We plot in Fig. 6 Dy, for d = 1. We see now the discon-
tinuity along X = Z inherited from the S’s behavior. We also
find the limiting values D>(L, L) = —3Dy (L, L)/2 and the
gap of the discontinuity: AD, = [A(2)|7 /(1 + ¢?).
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FIG. 6. Numerical computation of Dj, = —Cj,mA(2)?/a;; vs
(%, z) for dimension d =1 and 6 = 0.5. The matrix g is given by
Eq. (110). The red curve is [, X, D»(X, X)]. The gray plane is the
reference (%, zZ, 0).

We get the analytic description of C_’g) by using the L — o0
version of S given by Eq. (90):

1 T )
(14 62)2(1 — 62) =00l

DY) (x,z:9) =

+sign(x — z)] + 2(1 + 26%) arctan <§>

z
0
—2(2 + 6%) arctan (—x>, ]
z

where we have used (111). Its has the asymptotic behavior:

(112)

4
Dip(x, z) =~ m%, X — 00, z given (113)
B.d=2

The nonequilibrium correlations are obtained by using
Eq. (93) into Egs. (66)—(68). For D we get

Xz 1
Di(x,z) Dy(x, z;0)D(z, x;0)
[ (146022 (x2 — 22)°
Dy(x,7;0) + Dy(z, x;60)

D\)(x,z;0) =

+ (X2 — 22)*[Da(x, 7;0) + Da(z, x;G)]],

(114)

where D, and D, are given by Egs. (94). The asymptotic
behaviors for D, are

0(1+0)/1+ 62 x}
2 X121
ST+ TRl e
1 1
TRy MTHTR T
(115)

We see three power-law behaviors depending on which di-
rection we take in the space (xi, z1, [x2 — z2|). If we go to
infinity along the transverse direction to x;, the spatial decay
is type |x, — z2|73. However, if we move to infinity along the
x| direction, the correlations decay as xl’z. In both cases, we
are assuming that the rest of the coordinates remain fixed.
Finally, if both coordinates x; = z; =y are driven to infin-
ity, then for any value of x, — z, the correlations decay as
y~!. As it happened for the one-dimensional case, all these
three asymptotic behaviors show the complexity of correla-
tions in these nonequilibrium systems. Let us note that these
correlations are the first order of a perturbative expansion
around the equilibrium and, thus, it is in some sense the
“simplest” nonequilibrium case. We show in Fig. 7 some rep-
resentations of Dy (x, z;60) for & = 0.5. The top figure shows
three-dimensional contours for fixed values of D;;. We see
how the correlations have a singular point at x; = z; = 0.
There, depending on the path we used, we get different lim-
its values for D;;. For instance, when 6 = 1, x, = 25, x1 =
Rcos @, and z; = Rsin ¢, we find that D;; diverges as R
when R — 0. However, when ¢ = R, Dy, is finite in such
limit.

Finally, in order to study C‘S) we should fix the matrix g at
equilibrium. Again we choose the values given in Eq. (110)
and we get

Dio(x, 738) = =753 [(1 +207)S(x, 2;0)
+(2+6%)S(z, x;0)]. (116)
The limiting behaviors of C'} are
Diyx. ) 2+60+20%  z
X,7) > — —, X] —> 00
T N S IR TR A
3X121 1 | |
~ | — 20| > o0
00+ —np 07
3001
>~ =z1 =Y, — 00
a1 +92)2y X1 21 Y,y
& I | —0
X |1 -2
A+ 022 T2

N 1 1
204602z —xy

, =220 =0, x; = z1.

(117)

We observe a singularity when x; — z; maintaining x, = 2.
Observe that the limit x, — z, with x; = z; is a constant. We
show in Figs. 8 and 9 the global behavior of Dy, for 6 = 0.5.
We see the variety of decaying behavior depending on the
direction in which we do the limit. There is negative correla-
tion whenever x; < z; and a nontrivial equipotential structure
for positive correlations. Moreover, the stronger correlation
values are always near the origin.

VII. A PARTICLE MODEL EXAMPLE

The continuum model we study in this section is based
on an interactive particle system. The particles interact by
a short-range potential, for instance, hard core. Besides,
they suffer random changes in their velocities’ direction
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1 | Xo = 2o
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e \ 1
0 1 X1
Z1

FIG. 7. Dyi(x,z;6 = 0.5) from Eq. (114). Top: Three-dimensional contour plot. Each surface correspond to a fix value of Dj;:
—-0.5,-0.4,-0.3, —0.2, —0.1, —0.08, —0.06, —0.04, and —0.02 from inside to outside. Bottom: Behavior for fix value of x; = 1 (left)
or fix value of |x, — z5| = 1 (right). The dashed lines show the asymptotic behavior along the directions (see text).

during their evolution. In this way, there is no momentum  from the Boltzmann equation. The system at the mesoscopic
conservation. In Ref. [16], we derived for dimension d = 2 scale is characterized by only two conserved local fields: the
the macroscopic diffusion equations for this system starting density, ¢;(x,t) (number of particles per unit volume), and

-05 [ 0.03 OS5

o E 003 HoO5
K -04 K004 EJO6 4 g 004 06
03 [006 Ko7 3 006 07
H-02 E008 o8 2 008 08
E-01 o1 [os 1 Eo1 Eose
EHO mHOo2 E1 Ho2 g1
E o001 Eo3 mos3
o002 o4

Eo4
X2 =2

FIG. 8. Three-dimensional contour plot of Dy, (x, z; g) = for & = 0.5 from Eq. (116). Each surface correspond to a fix value of Dy, (see
legend).
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FIG. 9. Dy,(x, z; g) for 8 = 0.5 from Eq. (116). Behavior for fixed value of x; = 1 (top left) and fixed value of |x, — z,| = 1, 0.1 (top right
and bottom respectively). The dashed lines show the asymptotic behavior along the directions (see text).

the energy, ¢, (x, t) (average kinetic energy per unit volume).
The reference equilibrium state for this model is the ideal gas.
The entropy per unit volume is given by the Sakkur-Tetrode
expression which for dimension d = 2 is

s(@) = ¢ [m (271_;;52) + 1]
i

where we have considered 7 = 1, kg = 1, and m = 1. There-
fore, the mesoscopic reference equilibrium potential (119) is

(118)

Veal9] = / dxdn(X)[Zln o100y 8200
A P1.eq ®2.eq
Preqd2(X)  Pieq ]
=2 119
b1y | 1(6) (119)

where (@1 eq, $2,eq) is the macroscopic equilibrium state.

In the BGK approximation [22] (where the usual interac-
tion hardcore kernel is approximated by the local Maxwellian
minus the one-particle distribution), we obtained for dimen-
sion d = 2 the diffusion equations (3):

0 —1
8 =<2w¢§/¢% —2<1+w>¢2/¢1> (120)

where w € [0, 1]. In Ref. [16] two parameters appear: v that is
related with the collision part in the BGK approximation and

o that controls the frequency of the randomization mechanism
for the particle velocities. In order to simplify computation we
have assumed w = 2w o /(v 4+ 2ra) and o = 1/27. Observe
that the eigenvalues of g’ (that we need for later computa-
tions) are A(1,2) = —(1 + w F /1 + @) /d1.

The matrix L can be obtain by using Eq. (10) once we know
S from (118):

(-2 U o
§= ( 1/ —¢1/¢§> L=
A # 243/ )
= (2¢%/¢1 202 + )3 /8?)° (121

At this point, we have all the ingredients to write down the
closed equations for the static two-body correlations once we
detail the boundary conditions and we find the corresponding
deterministic stationary state [¢] (x), ¢ (x)]rea.

Let us assume that our system is in a strip of width unity
where we impose temperatures Ty, 77 at x; = 0, L respec-
tively. That permits only a flow of energy in the x direction.
We also assume that there is not a net flow of particles through
the system and the average value of the density is a given con-
stant. The stationary state is a solution of the equations (21)
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with constant currents:

Tl s xl =0, JPl¢5xl=J8i=1,2.  (122)
Both conditions imply
* (p; X1
o7 (x) Ton)’ x)=T 2
O P L—, (123)
: In(Ty/Ty) — %

with AT =Ty — Tyanda = L' fOL dx ¢ (x) that are our sys-
tem’s parameters. Let us note here that ¢ (x) is the particle
density and ¢; (x) is the energy density. A bidimensional ideal
gas at equilibrium has the equation of state ¢; cq = ¢1.eqTeq
where ¢, ¢ is the pressure. Then, the system’s stationary state
has the local equilibrium property, that is, the local pressure
is constant all over the system because there is no net flow of
particles.

We know from Eq. (36) that correlations are decomposed

items there: ESAZ) , gf;;, by expanding the stationary state (123)

for AT ~ 0 to obtain

Ln
@ =2 b

C_‘;g was extensively studied in Sec. V. However, we need
their explicit expressions to study the next expansion order:
C‘;? One can check that Eq. (61) implies

4n
T 2T1
x [1 = (=1)""™1Dyi (n, myn),

EDn,ming) = ———(1 — @)1 = 8u)

in the sum of two terms: the local equilibrium contribution, A(1) 87 2
X - . ,m; =——01- 1—68um 127
Cbg(x,y), and the correlation’s excess, C,p(x, y), that is solu- Cip (r,min) 712( @) m) (127)
tion of Eq. (37). We easily compute C"F: x (1 = (=)D (n, m;n,),
Cop (6, ) = =(S™Nap(@* (S —y),  (124) D, miny ) = 20TV (0, myny),
where where
sy =—(? % ). 125 H )= —1
(¢) <¢2 2¢§/¢1 ( ) D]](l’l, m,nl) D(l’l, m;nL)’
To compute C, we need to do an expansion around the A nm n? +4n?
per . . Dp(n,m;n;) = , (128)
equilibrium. For this model, we use AT /L as the € parameter D(n,m;n,) n®>—m?
in the expansions we defined in Sec. IV. We get all necessary and
|
Dn,m;n,) = a)(n2 — m2)2 +(1+ a))z(n2 + 4ni)(m2 + 4nzl). (129)

After making the sinus Fourier transform of Eq. (47), we get a set of four linear equations with unknowns CA’;? The solution

is

L? 1

AR
CiYn,miny) =

22T w D(n, m;ny )(n* + m? + 8n%)

2
[71(1 + @) (m® + 4n% )(n* + 4t YRa(n, myny)

+ (o + 4121+ w0 + 4nl) = w0’ — m)Ra(n miny)

+ (n* 4+ 4n2)[2(1 + w)*(m* + 4n%) + w(n? — m*)R,(m, n; nl)i|,

L? n? + 4n%

AR
¢ miny) =

72Ty D(n, m;n,)(n* + m* + 8n%)

1 2 2
- F(n —m )Ro(n,m;ny)
1

+ (1 + w)(m* 4+ 4n? )R (m, nyny) — (1 + 0)(n? + 4nd)Ry(n, m;m)},

m? + 4n3_

CPmymin )= ————2+
21 ¢ ) n? + 4n%

A2
COn, myny),

A2
COn,myny) =

+wm® —mH[(m* + 403 YR (m, nyn1) — (n* + 4n% YRy (n, m; nm],

2 1
72 D(n, myny )(n® + m? + 8n?%) |:

2
(1 4+ w)(m® + 4n% ) (n® + 4n’ YRa(n, m;n))

(130)
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where
4— 2 2 8 2
Rinminy) = 21— wym| (1 — 8,1 — (—1yrrm T T8
L D(n,m;n,)

m/2

D(n,m'sny)(m?> —m')?

16 !
+ ol + (=1 (m?* + 4n?) ; [1—(=1)"""]

m/2

D(n,m';n ) (m? — m'?)?

+ %(1 +w)[1+ (_1)n+m](n2 +4ni) Z [1— (_l)m’+1n]

m'#m

X ;[(1 +3w)(m? — m?) = 2(1 + w)(m'* + 4n? )]}
n2 — m? LA

47T, 47T, 2 2 4 8n?
Rl miny) = 2l (14 20)8m — b ao(1 — @?)(1 = 81— (— 1y Jam O
L D(n,m;ny)
64nT1 2 W2 + 4n?)
1 — 1 1 n+m 1 — 1 ' +n n
’ “ D ]nmg[ b ]( —n?)(m? — n?)
m? + 4n? n? + 4n? AT,
14 30)(1 — @)[1 + (=1
(D(n,n/;m)(m2—n’2) D(Vl/,m;l’u_)(nz—n/z)) o @+ 30)1 = o)l + (=D nm
’ ! 1 34T,
1 —(=1 n'+ny..2 - )
" ,;1[ o <D(”’ n'in )(m* —n) " D(n', m;ny ) (n? —n’2)> o el e )

1 1

(131)

X [1+ (=1)""nm Z[l — (=)' (n* + 4nf_)(
n'#n

+ :
D(n,n'sn )(m* —n)> ~ D(n',m;n.)(n* — n’2)2>

(132)

We are interested in using these solution for C' (2) to compute the fluctuations of the field’s spatial average (74) at this order:

Ay = 2L ZZ—U — (=D"[1 = (=)™ ]c<2>(n min, = 0).

(133)

Observe that to compute Aqg all we need is Caﬁ (n,m;n, ) for ny = 0 and n, m odd values. Therefore, some sums appearing in
Egs. (131) and (132) just disappear and others should be done on even values. That permits us to obtain explicitly expressions

for all of them:

EO(n. m:0) = 4Ln o (14 )1 + 20)n*8  — l—6(1 — w)A1(n, m)
W m2T20 D(n, m; 0)(n? + m?) a2 i
64Ln n’m

C2(n, m;0) = Anp(n, m),

74Ty D(n, m;0)(n? + m?)

and
2
Ap(n,m) = Z agll)(n m)B(n, m)—}-ot?”(m n)B;(m, n)]
1=0
2
An(n,m) =Y [a{)(n, m)B;(n, m) — a5 (m, n)B;(m, n)]
1=0
with

a\V(n, m) = m*n*2(1 + 3w + 50° + 50° + 30 )* + o1 + 20 + 30*)m?),
0‘11)(” m) = 2m2(a)(1 + w +w2)n m? + o*m* + (1 - wz)(l +w+ wz)n4),
a”)(n m)=w(l —w n’m
oY = o(l — w)(n? —m?),
(1) 2\ 4 4
a, =1 -w)1+ow+o)n”+ o+ w)m’,
al? = (1420 + 20* + 30> % + (1 + 3w)m?,
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FIG. 10. Second-order fluctuations for the hydrodynamic two-
field model computed using Eq. (133). Black dots: Arﬁq’(z)(a)) =
Al ()T? /7. Red dots: AT+ (w) = AP (0)T) /ii. The black
dashed line is the analytic asymptotic behavior for small val-
ues of w. Al (1) = 0.061685, Al* (1) = 0, and AT+ (0) =
—0.00210306.

where the sums
B 00 (Zk)2+21 1
Bl(nv m) - g D(I’l, 2k, 0) [(2k)2 — ]/}12)2(112 — (2k)2]
(138)

are explicitly done and given in Appendix D. With all these
ingredients, we can compute Az%q‘(z) given by (133). The
analytic expressions are long functions of w that we do not
explicitly write here. We have plotted their behavior in Fig. 10.
We see that Aﬁq’(z)(w) = A?Tq’(z)(w)le /7 behaves effectively
like a 1/w function. In fact, its behavior for small values of w
is ~0.06767 /w. This singularity for w = 0 is expected. When
o = 0, the microscopic model loses the velocity random-
ization mechanisms. Its mesoscopic description dramatically
changes because the momentum is locally conserved at such
a limit; therefore, there are two more conserved fields and
the model with two fields breaks down. On the other hand,
A (1) = 0.061685. This value differs by only by 0.006
from the extrapolation to one of the asymptotic expression
around @ = 0: A*® () ~ 0.06767/w. That is, the analytic
complex and long formula for AJ5*® (w) only accounts for a
tiny correction of simple asymptotic formula. Finally, we see
that AP (w) = AP (0)Ty /7t is about 103 times smaller
than Aﬁq’(z)(a)) and negative. It has a finite limit for v = 0
and a minimum near it. This fluctuation does not reflects the
change on the mesoscopic description when w — 0.

VIII. CONCLUSIONS

We have studied the two-body equal time correlation func-
tions for a diffusive sytem with a reference equilibrium state
(DSe) with M fields. We have derived the partial differential
equations they follow and studied explicitly their solutions
perturbatively around the equilibrium. We show the correla-

tion’s complex and rich behavior as already observed in some
particular nonequilibrium situations [15,21]: Generic power
laws that depend on the path we follow when doing the long-
distance limit. We show that the DSe correlations have two
levels. The first level is the basic correlation function that is
generic and it does not depend on the specific model, just on
the eigenvalues’s ratio of the matrix g defining the proportion-
ality of fluxes and forces. It contains the basic spatial structure
of the model. The second level is the linear combination of
such basic correlation function to build the correlations. That
combination strongly depends on the model’s details and on
the form of the stationary state. Therefore, it seems interesting
to define models that focus only on the basic correlation func-
tions in order to study the main generic properties of those
nonequilibrium systems.
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APPENDIX A: MESOSCOPIC PROBABILITY
DISTRIBUTION OF EQUILIBRIUM

Any system at equilibrium is completely determined by a
small set of macroscopic variables. At mesoscopic level, such
observables fluctuate around its equilibrium values. In order to
obtain the corresponding probability distribution we can fol-
low two equivalent strategies: the grand canonical ensemble
or the Einstein fluctuation theory [17]. In this Appendix, we
apply both paths to the case of a system with an equilibrium
state defined by the number of particles, N, the volume, €2,
and the energy, E.

1. Grand canonical ensemble
In the grand canonical ensemble, the equilibrium state
is determined by (7', u, 2) (temperature, chemical potential,
and volume respectively). We know that these set of variables
are related with (n., e.,) (particle density and energy per
particle respectively) by

as(n, e)
de

p= ;
eq
ds(n, e)

on

, (Al)
eq

Bu = ﬂeeq - S(neqv eeq) — Hegq
where s(n, e) is the entropy per particle and g = 1/T.

The probability of finding the system with a given energy
per particle, e = E /N, and density, n = N/, is given by

oo
P(n, e):E*lzeﬂuN/‘ def dpye—PHGmoy)
N=1 A RNd

H(xy, pn) N
x8<e—T>8<n—§). (A2)
This relation simplifies when 2 — oo,
P(n, e) >~ exp[—Q(f(neq; €eq) — f(n,€))]  (A3)
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with
f(n,e) =n[Bu — Be+s(n, e)] (A4)
that can be written
P(n,e) >~ exp[—QV,(n, )], (AS)
Veq(n, ) = n[s(neq, eeq) — S(n, €) — (€eq — e)as(:e’ )
eq
4 799y — gy 2 °) } (A6)
n on eq

Observe that Veq(71eq, €eq) = 0, Veq(n, €)/dnl.q = 0, and
0Veq(n, e)/0el.q = 0.

2. Einstein fluctuation theory

Boltzmann proposed that the entropy of a system at an
equilibrium state defined by the macroscopic variables (A, B)
is related with the number of compatible microstates, w(A, B):

S(A,B) =Inw(A, B), (A7)

where we have assumed kg = 1. When we relax the constraint
that fixed A, the system spontaneously evolves to a new equi-
librium state defined by only the observable B. Then

w(B) = Z w(A, B), (A8)
A

where the sum run over all the possible values of the observ-

able A. Therefore,
SB) — Z SAB)
A

We consider that S is a extensive variable proportional to a
volume and therefore the sum is dominated by the term of the
sum that maximizes S(A, B), that is,

dS(A, B)
0A

Observe that w(B) >~ w(A*, B) and the state A* is the one with
larger number of microstates compared with any other value:
w(A*, B) > w(A, B). That is, the number of microstates com-
patible with the equilibrium state B is overwhelmingly large
compared to the number of microstates associated to any state
(A, B), w(A, B) when A is a macroscopic deviation from A*.

Einstein, following Boltzmann’s line of reasoning, pro-
posed that the probability that a system at equilibrium in a
state B to be in a fluctuating macrostate A should be the ratio
between the number of microstates compatible with A and the
total number of microstates compatible with B:

(A9)

S(B) = S(A*, B), =0. (A10)

A=A*

puB) = Y4B sansarn
w(B)

We can apply this idea to our example. The equilibrium
state of a closed system U is defined by the macrovariables
(N, V, E) (number of particles, volume, and energy respec-
tively). Let us divide the system in two disjoint subsystems 1
and 2. Let us assume that we have a set of constraints that can
fix the equilibrium state at 1: (N, V|, E}). That fixes the equi-
librium state at 2: (N,, Vo, E,) = (N — N,V — V|, E — E}).

(Al1)

Therefore, the total entropy of U is just the sum of the en-
tropies of both subsystems. Therefore, the U’s entropy per
particle in this constrained system is

n n
s, e, e ) = a s, en) + (11— = )stn, e2),
n n
(A12)
where n=N/V, e=E/N, a =V/V, ni =N;/Vy, e; =
El/Nl,and

n—oan ne — anpe

’ ez_

(A13)

ny =

l—« n—on

We have assumed that the entropy is extensive: S(N,V, E) =
Ns(n,e) for N large enough. We see that the equilibrium
state of the constrained system is defined by five variables:
(n1, e1;n, e, a). Let us release the constraints over n; and ¢;
while keeping fixed n, e, and «. It can be checked that n] = n
and e} = e are the values that make maximum the entropy
(A12). We can apply now the Einstein theory of fluctuations.
The probability to observe the subsystem 1 with values (ny, e,
while U is at equilibrium state (n, e) is

P(ny,e;n, e,a) =exp[N(s(ny, er;n, e, a) — s(n, e))].
(A14)

It is straightforward to see that in the limit « — 0 we get the
same result we got using the grand canonical ensemble.

APPENDIX B: STRUCTURE OF THE DETERMINISTIC

STATIONARY FIELDS FOR DSe SYSTEMS

The deterministic stationary fields for DSe systems, ¢*, are
solutions of

v, (Z gaﬂ(qs*)m;) =0. (B1)
B
We look for the conditions to have ¢* being solutions of
Jo = 8up( @)V} (B2)
B

with j’s being constant vectors and of at least C? type. Of
course, all ¢* solutions of Eq. (B2) are solutions of Eq. (B1),
but that is not always true in the reverse case. In physics, j are
the stationary currents and they contain implicit information
of the form of the boundary conditions. We focus on asking
that the cross derivatives of ¢* be equal (3¢5 = 33,47 to
guarantee continuity and C? differentiability. In order to study
this property, we invert Eq. (B2),

Vidy = (& poo (B3)

and by doing the cross derivatives we get the differentiability
condition

Z Z ja,jja,i Z
o o y

" (3(8_1);30 (g g
09, 09,

We find several cases that accomplish Eq. (B4):

&y — (g“m) =0. (B4
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@) Ju,jjo,i =0 Vi# j,orequivalently j,; = god;x for
a given k direction. That is, all the currents should follow the
same vector direction. That is the case when, for instance, the
boundaries are two hyperplanes of d — 1 dimensions placed
one in front of the other and with homogeneous values for the
fields at the boundaries.

(b) Conditions on the system: (i) L is a constant matrix,
(i) L =5(¢)A where A is a constant matrix and § is the
entropy of the reference equilibrium state, and (iii)) M = 1.

We study in this paper systems with boundary conditions
as described in the (a) case. Let us take x € [0, L] as the axis
perpendicular to the boundary hyper planes. Equation (B2) is
then written

dg(x)
. (BS)

Jo =Y 2up(¢")
B

and we take the boundary conditions ¢}(0) = ¢eq and
¢u(L) = ¢oq + Ay, where A¢, are given constants. j, are
constants that are determined by the boundary conditions. We
now apply a perturbative expansion around the equilibrium
solution:

Pa@) = Geq + €1 (1) + hoa () + -+,
Ja = €jrat € jrat o, (BO)

where € is related to the distance to the equilibrium. The orig-

inal boundary conditions are translated to the A’s functions:

ho(0) = hy0(0) =0,  €hio(l) =

Ady, hyo(L)=0

(B7)
The € expansion of Eq. (B5) gives the set of equations

dh
]1 o = Zgaﬁ(d)eq) ! 'B(X)

dh
j2.oz = Z|:gatﬂ (¢eq)2—ﬂx(x)
B

agaﬂ

+
09,

hy y (x)

dhl ,3(x)i|
¢:¢eq

(B8)

that can be solved order by order. The solutions for /; , and
hy o (x) are

A, : Adp
ehia(¥) = ==X, €jia = ;gaﬁ(qseq)T, (B9)
X
ezhz,a(X) = <Z(g1)a,362j2,/3)x<1 — Z),
B
2. _ 1 agaa
Cha=7> Y ApsAg,,  (BIO)
L o Y a¢y ¢=¢cq

where A¢, are of order €.

APPENDIX C: CORRELATIONS FOR SYSTEMS WITH
SOME STRICTLY CONSERVED FIELDS

Let us assume that the system’s dynamics have a stochastic
evolution that locally conserves the fields as our diffusive
systems defined in the main text. Boundary conditions may or
not break such a conservation law. For instance, open bound-
ary conditions introduce fluctuations on the average field that
periodic boundary condition does not. Moreover, for systems
with M > 1 fields, some of them may be strictly conserved
while others are not. For example, think of a particle system
where we permit open energy exchanges with the boundaries.
Still, we fix the total number of particles, or the density field’s
average is constant during the system’s evolution. This differ-
ence affects the form of the correlation functions.

Let PS?B[q&] >~ exp[—R2Vp[¢]] be the stationary distribution
when 2 > 1 with a set of open-boundary conditions imposed
on the system for all the M fields (OB stands for open bound-
aries). That is, it is solution of the Fokker-Planck equation (23)
in a such limit. It can be checked that the restricted distribution

POl ~ eI T 8( f dx o (x) — |A|43a) (C1)
~ A
aeM

is also a stationary solution of (23) compatible with the bound-
ary conditions whenever

by = L/ dx¢r(x), aeM, (C2)
[AlJa

where ¢} (x) is the deterministic stationary solution for the

o field of the Langevin equation (SC stands for strictly con-

served). In this case, we should think that at the microscopic

level there is a strong constraint on the system that forces such

strict conservation laws.

Observe that in the limit 2 — oo both systems, without or
with constraints on some fields, have the same macroscopic
representation. In this Appendix, we look for the relations
between the two-body-correlations associated with the SC
and the OB systems as we have defined them. Higher order
correlations depend on other quasipotential’s €2 perturbative
terms that may be different for the OB and SC cases.

We know that the two-body correlation for the OB case is
related with the quasipotential’s second derivatives [8]:

52Volg]
5ba(0)805 () |
(C3)

Cop . y) = (V Dap(x,y), Vaplx,y) =

Let us compute the correlations for the SC case. We define the
functional generator:

Z|B] = /D¢€XP{—Q}"[¢,B]}

<] (/ dx¢a<x>—|A|q5a), (€4
aeM
where
Fio B1=Yilgl = ¥ [ dxBuogu. (€)

aeM
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Observe that M is the total number of fields and M C M is the
set of the strictly conserved fields. Then, the correlations are
just derivatives of the functional generator (C4):

Cap(x,y) = Jim Q[{ga () ()2 = ($a(D)ais (el

. ) ) 1
= lim ——1n
200 8B, (x) 8B4 () @

Z[Bl (C6)

B=0

where (-)o = [ DpPSC[$]. We use now the Laplace represen-
tation of the Dirac’s delta function to get

c+ico
Z[B] ~ (]_[f ‘ dsa)/Dq&exp{—Qg[fﬁ,B, sl}. (C7)

aeM
where
019,551 = Fig. 51+ Yo [ dx @ =), (€8)
~ A
aeM

We can get the dominant part of the integral (C4) when Q2 —
oo by expanding G around the value (¢o[B], so[B]) that make
it a minimum. That is,

Z[B] ~ exp {—Q Gl¢o[Bl, B, so[BII},

where (¢o[B], so[B]) are solution of the equations

Q— o0, (C9)

o9, Bsll - _ o SVolg]

8o (X) ﬁ:g}nol[BBl] 3a (x) ¢=eo[B]

= B(x(x) - SaEMSO*“’
8 9 B7
3G1¢. B. 5] 0o / dx o, (x)

dsq  |o=a0lB) A
s=s0[B]
=|Al¢p aeh. o

We see that for ¢o(x;B =0) = ¢*(x) and so[B = 0] = 0.
Therefore, we can find the solution of Eqs. (C10) by doing
a perturbative expansion around B = 0. We get to first order:

D00 (x) = ¢, (x) + Ao (x), (C11)
where
20u0 = Y [ dv €GB,
BeM A
By (x) = By(x) — 84cizsy’ (C12)

and s(()l) is the first-order expansion in B. sy is the solution of

/ dx Ag,(x) =0, aeM. (C13)
A

Substituting the solution of ¢y[B] into Eq. (C9), we get

li 1IZB— Volo* dxB .
Jim Lin []__0[¢]+2A x Bo (X))

aeM
1
- d dyC%(x,
+3 2 J o [ ooy

x By (x)Bg(y) + O(B%). (C14)

Finally, in the form of Eq. (C6) we get the correlations for the
strictly conservation case:

Cog(x.y) =Cof (x,y) — Z(A’l)y,s/ dz CQP(x, 21)

yseM A

x /A dz €Oy, 22), (C13)
where
Agp =/Adx/Adycgf§(x,y), o, BeM. (C16)
Please observe that
/Adxcgg(x,y) =0 if «and/orp e M, (C17)

as we expected.
For systems at equilibrium, we know that CS}? (x,y) =

Copd(x — y). Therefore,

1
Co5(x,y) = Capdlx —y) — —

|A| Caycﬂ?(Ail)y?’

yveM

(C18)

where

Ags =Cup. ., B M, (C19)

and they coincide in the thermodynamic limit.

APPENDIX D: FOURIER TRANSFORMS AND SUMS

.We use in this paper the sinus Fourier transform for the
x-axis coordinates where the functions, f(x), are zero in the
boundaries of the interval f(0) = f(L) = 0:

f) = sin ("Z—x>f(n), xel0,L]. (DI
n=1

To use this transform, we need the properties

2 L
—/ dx sin ("”—x> sin <m—”) — S (D2)
L L L :
/L . [ nmx mix
dx sin | — ) cos
0 L L

n

&~ =

1 n+m
= =) m)

nz—m

=0 (n=m). (D3)
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The normal Fourier transform is used for the x; € D = [0, L]¥~! coordinates where the functions are periodic:

glx) =y T gm), nezd (D4)
and we have the useful property
1 2
Ld—l /[;de_ elzTn-xL — 5n,0~ (DS)
We needed to derive in this work some Fourier sums:
o0 . . ~
2 2 sinh (a(% — %
Z mSH;( m);):z ( (27-r ))’ 0<Xf<7T,
ot 2m)* +a 4  sinh (Ea)
= 0’ 5C’ = 0,
where X = mod(x, ).
— (2m — D)sin (2m — D)x) m cosh (a(% — %))
Z > 5 =sign(mr —X)————=, O0<X<2nm
— @Cm—1)y+a 4 cosh(%a)
=0, x=0,

with ¥ = mod(x, 277) and sign(0) = 0.
Taking a — ia, we also get
oo

Z 2m sin(2mx) _

Qm)? —a*>

m=1

In particular, ifa =2n— 1,n € Z

Z (25;121 s—m((zz,;nj)lp = %COS @2n—-1%x), 0<x<m,

m=1

— (2m — Dsin(@m — x) _mcos(a(% — %))
2m —1)? — a2 = sign(r = x)ZW

, O0<x<2m,
cos

—~

m=1

=0,

=1
I
o

In particular, if a = 2n,n € Z,

o]

(2m — 1)sin (2m — 1)x)
Z 2m — 1) — (2n)?

= sign(mw —)‘c)% cos(2nx), 0<x <2m,

m=1

In order to show these relations, we use some known result from Ref. [20]; for instance, in the first case we use Eq. (1.445.1):
o0

. msin(mx) zsinh (a(mr — x))
Ix,a)= Z m?>+a2> 2 sinh(wa)

(Do)

m=1

We separate the sum into even and odd terms: I(x, a) = I.(x, a) + I,(x, a). But I,(x, a) = I(2x,a/2)/2 and then we get the
desired result: I,(x, a) = I(x,a) — [(2x,a/2)/2.

Another relation that we use in the text is
o0

sin(2n—Dx) 1 . 00 L 14e28
Z m = sm(x)/o dpe? sm(,Ba)1

—2e 2B cos(2x) + e48"

n=1

Finally, in Sec. VII, we need to solve sums of the form

= = D(n, 2k;0) [(2k)? — m2)2(n? — (2k)?]’ (
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where D(n, m;n ) is given by Eq. (129) and n and m are odd integers. These sums are done by breaking apart the denominators
and then we use some of the above relations. After some trivial algebra, we get

m # n:
2
By(n,m) = L[ i ao(a))2
16w | (n2 — m2)(n2a¢(w) + m?)"(n2a)(w) + m?)
1 ( 4/a;(w) coth (rny/a;()) B am*[n’a; (@) + m?] )
[n2a;(w) + m2]* \n3lai (@) + 1[aj(@) — ag(@)]  (m2 — n2)[n2ag(w) + m2]?
4/ag(w) coth (3 ny/ag(w)) } 08
n3[ag(w) + lag(w) — ay(@)][n2ag(w) +m2)> 1’
B(nm)—i[— 8 + nim’ — 8
PP 60 L [ag(@) + 1lan@) + 1108 — m2n)? (02 — m2)[n2ag(w) + m?][n2a; (@) + m?]
4ag(w)[mn/ag(w) coth (3rny/ag(w)) — 2] N 4a,(w)[mn/a) (@) coth (3mny/a;(@)) — 2]
n?[ag(w) + 1[ag(w) — ay(@)][n2ag(@) +m2)  n2[ay(@) + Hlag(@) — a1 (@)][n2ay (@) +m?]
8(n*{ag(w)[m* — ar(w)(m* — 2n%]) + m*a;(w)} + m®)
+ 2 212 2 2 (DY)
(m? — n?)"[n%a;(w) + m*]"[na;(w) + m?]
By, m) = L[ (72m? — 8)m? B 3
2T 16w | (2 — md)ntag(w) + mAln2a (@) + m?] [ag(@) + 1la(@) + 110m? — n2)?
N 4ag(w)*[rn/ag(®) coth (3 n/ag(®)) — 2] N 4a,(w)*[rn/ai (@) coth (3n/a;(@)) — 2]
[ap(®) + 1[ag(w) — ay(@)][n2ap(@) +m2)*  [a)(@) + 1la) (@) — ap()][n2ay (@) + m2]
B 8m?n*{ag(w)[a1(@)2m?*n® — 3n*) + m* — 2m*n?] + a)(w)(m* — 2m?n?) — m4}] (D10)
(m? — 2y’ [n2ag(w) + m2]’[n2a; (w) + m2]’ '
n = m:
Bo(n, n) = !
OV = AT wlag() + 1Plar (@) + 1Plao(@) — ar(@)]
[n(al(w) + 1)<nn(ao(w) + D{ao(w)lai1(®) — 3] = 3a1(w) — T}a1(®) — ap(w)]
+ 161/ ap(w)[a;(w) + 17% coth (%nn‘/ao(a))>> — l6m[ag(w) + 1]3‘/a1(a)) coth (%nn‘/al(a)))], (D11)
_ ! 34 ()2 1
Bi(n,n) = S wian@) + 1Plar@) T i) —ar@)] |:16n[a0(a)) + 117a;(w)’’“ coth (27111 al(a))>
+mla(w) + 1] (nn[ao(w) + 1[ai(w) — ag(w)][Sag(w)ai(w) + ag(w) + a;(w) — 3]
— 16ap(w)*’*[a;(w) + 1]* coth (%n’n\/ao(a))>>j|, (D12)
1
Bl = S wlao(@) + Flan(@) + 1P lao(@) — ar@)]
[ﬂ [a1(w) + 1] (nn[ao(w) + 1[a1 (@) — ao(w){ao(@)[9a1(w) + 5] + Sa;(w) + 1}
+ 16ag(w)**[a; (w) + 11% coth (%nn,/ao(w)» — 167 [ag(w) + 113a;1(w)*/? coth (%nn,/al(w))], (D13)
where

a1 (w) = é(l+w+w2i(l+a))\/l+w2). (D14)

Please note that these expressions only apply for n and m being odd integers.
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APPENDIX E: COMPUTATION OF THE BASIC CORRELATION FUNCTION F (x, z;0,0') FORd =1

The basic correlation function is defined by Egs. (67) and (68). For dimension one, they reduce to

F(x,z;0,0)=F(x,z;0,0") = F(z,x;0’,0) (E1)
with
. J— T > 2m 2n —1)2m 1
F ;0,0)) = ———— in{ —2n-—1 i . (B2
(x,7;0,0") nz)»(a/);SHl(L( n )x)mz_;sm( 7 Z)(Zn—l)z—(Zm)z 02 Gn— 17+ @m? (E2)
Now we separate the fractions:
1 1
(2n— 1) — 2m)? 02_,(2n — 1)> + (2m)?)
S 1 . + 1 (E3)
S 1+02, 2n— 12 2n—1)2—(2m)? " 62,2n— 1) + (2m)?
and we get
- 8 1 sin(2Q2n— Dx) 2m
F , 2,0, N=- L i - 2
. z0,07) nZA(o’)l—i—@gU,; 2n —1 ’;sm( L Z) "
: + : (E4)
X .
(2n—1* = 2m)*>  02_,(2n— 1) + (2m)?

At this point, we can use the formulas in Appendix D to do explicitly the sum over m’s. We find

Z(2n— 1)x) sinh (26,0:(2n — 1)(1 — ))
2n—1 sinh (%9(,(,/(2}1 - 1))

o0 .
Fez0.0) = — 2 1 Z sin (

T
—cos(Zan—1 )
Th(0) 1+ 62, & [ COS(L( n=Dz)+

]. (ES)
The first sum can be done by converting the sinus cosinus product into a sum of sinus. Then, we use the Gradsteyn’s formula
GR.1.442.1 [20] to get

i sin (Z(2n — 1)x)

L cos (%(2}1 - l)z) = %[sgn(x — )+ sen(d — (x + ). (E6)

n=1

The second sum in Eq. (E5) needs more work to get a simple version. First, we use Gradsteyn’s GR.3.743.1 that converts an
hyperbolic sinus ratio into an integral:

s 25 [ sa) 1 &
sinh(bB) 7 Jo sin(by) y* + B2

in our case we choose b= 1,a =1 —2z/L, and 8 = 6,,(2n — 1)7 /2. Therefore, we can write

; i sin (Z(2n — 1)x) sinh (260,020 — 1)(1 — %))

B 1 2n—1 sinh (3654 (2n — 1))

n=

® sin(yz) e sin (Z(2n— 1)x
= Oy f dy——"%" (Z ) . (E8)
0 sy n=1 y2 + (%900’(271 - ]))

We can convert the last sum into another integral (see Appendix D) and we get

2 00 14+e 28 ©  gin(yz) sin(26,,
[— __Cos(zx)f dp P te / gy SnODsInG6or0 By) E9)
T 2 o 1 +2e2Pcos(mx)+e 4 J ysin(y)

where X = 2x/L — 1 and 7 = 2z/L — 1. We substitute the last integral with the relation that we derive in Appendix F:

° sin(ay)sin(by) m . >
dy————— = —51gn(ab)Zx[2n +1—Jal < |b|<2n+1+|a|l,|a] <1, (E10)
0 n=0

Vsin(y) 2
where y[condition] = 1 whenever the condition holds and 0 otherwise. Therefore, we get

70,5 (2n+1+7)/2 1+ e 28

/4
1= cos(55) / dpe® . Ell
o8 2 * HX:(; 760, (2n+1-2)/2 IB ¢ 1+ 2e—28 COS(]T)_C) + e 4P ( )
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-R

FIG. 11. Contour C = (|J,(C, U D,)|JC’ used to evaluate inte-
gral (F4). P, are the simple poles at w(P,) = nx.

Finally, the last integral can be done explicitly:

—28
/ dp b l1+e
1 +2e2Pcos(mx) + e 4

! ¢ [2 (” ) e’ } (E12)
= ———  arctan COS{ — X )——————
2cos (%x) 27 )1 —e28

and, after some straight-ahead algebra, we get Eq. (76).

APPENDIX F: MATH RELATIONS

We show in this Appendix some formulas we have derived
and used along the paper.

1. The integral

o0
/doz
0

(o]
T .
= Ssign(2) ) x[2n+1 -zl < b
n=0

<2m+1+[z]],

‘We show that

sin(ya) sin(zo)

16.2) asina

lz| <1, (F1)

with y[condition] = 1 whenever the condition holds and zero
otherwise.

We prepare the integral /(y, z) to be analyzed in the
complex plane:

I(v,2)=3[J@—JB)], a=ly—z, b=ly+zl
(F2)
where
00 eiaa _
J(a) = / do f(a;a),  flasa) = ————, a=0.
o asino
(F3)
Therefore, we study in the complex plane the integral
J(C) = / dwf(w;a). (F4)
c

We see that f(w, a) have an infinitely number of simple poles
located at w(P,) = nmw Vn € Z. Then we choose the contour

shown in Fig. 11. That implies

JO) =JC)+ ) JC)+ ) JD)=0.  (F5)

We get the following for each piece of the contour:

() C: w=Re?, ¢ec[0,n]. The term expliwa]
exp[—Rassin ¢] tends to zero when R — oo and therefore at
such limit J(C") = 0.

(i) C;: wen+e,n+1—¢€] in the limit € — 0 and
R — oo we have

o0

> (G =J(a) (F6)

n=—00

in the sense that J(a) is Cauchy’s principal part of the integral.
(iii) D,: w = nw + €e®, ¢ € [, 0]. We find when € — 0

J _ _(_l)n- ianm
(Do) =am, J(Dp)= . i(1 =),

Vn # 0.
(F7)

Therefore,

o0

J@a) = — Z J(D,) = —ma — ZZ(—I)”

n=—00 n=1

sin(rma)

(F8)
Finally, we use GR.1.441.3 to do the last sum and we get
J(a) =0,
= 2nk,

0<ax<,
2k—1<a<?2k+1 (k=1,2,...).
(F9)

From this result, it follows from simple algebra to show the
initial statement.

2. The integral relation

We find the symmetry
1 T —a(x+z)
Wx,z;a,0)+W z,x;a,a =Ee 9 x,z>0
(F10)
where
o .
Weeza )= [ dg 0D irTod (g
0 q> +a?
This relation includes the well-known result
Wx, 220, 1)+ W(z, %0, 1) = %
= W x0,1)= %. (F12)

We first prepare the integral W (x, z;a, 0) to be suitable to a
complex variable integration:

1 o0
W(x,z;a,0) = Ef flg:x,z;a,0),
—00

qeiqz
q2 + 612

flg:x,z;a,0) = oI H(IHO@

(F13)
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B1

4
» Py
C;
-R 0 R
o P,

le

FIG. 12. Contour C = U?:l C; used to evaluate integral (F14).
Py are the poles at wp, , = +ai and B, are the branch points at
wg, , = *ia/1 + 1/6. The branch lines are shown in red.

by using the integrant symmetry ¢ — —g. We do the integral
on the complex plane, w € C:

J(C) = / dwf(w;x, z;a, 0). (F14)
C

(i) Ci:w=gqg€[—R,R],

J(C) =/ dq f(q:x,z;a,0) (F15)

o0
after doing the limit R — oo.

(i) G, and Cg: w = Re'®, ¢ € [0, w/2]. We observe that
in this path exp[iwz] = exp[iRz cos ¢ — Rz sin ¢] that tends to
zero when R — oo (Jordan’s lemma) and therefore J(C,) =
J(Cs) = 0.

(iii) Cs3: w = wp, + qe™/%, g € [R, 0],

J(C) = — / dk flz, —x;a,1/6),  (F16)
0

where we have done the change of variables
—a T+ 1/ +/k?/6 +a2(1 + 1/6).

(v) Cy: w = wg, + €€, ¢ € [0, —m]. This path goes to
zero when € — 0 and therefore J(C4) = 0.

(v) Cs:w = wg, + qe™/2, g € [0, R], and similarly to the
C3 path we get

q:

J(Cs) = /oodkf(k;z,x;a, 1/6). (F17)
0

Then, we apply the residue theorem:

J(C) = J(C)) + J(C3) + J(Cs) = 2miRes(wp, = ia),
(F18)

where in our case Res(ia) = exp[—(x + z)a]/2. Finally,

1 1
W(x, z:a,0) = —J(C)) = e~ 0+ — [J(C3) + J(Cs)],
21 2 20

(F19)
We choose the closed integration contour C shown in Fig. 12 which is the result desired,
taking into account that there are two poles at wp,, = =%ia and .
two branch lines due to the square root: [wpg, ,, £00) where 3. The integral
wp,, = *ia/1+ 1/6. We get from each contour piece C;: We show that
|
0 o0 sin
/ dga cos(qa(x, — Z2))/ dq (X]—g)e‘z‘*/eqz””ez)q%
0 0 q -+ q;
:Ll}cf 24— 2 (1402 = 22) + (1 — 07)(xa — 12)2)}, (F20)
2D (x, 2) Ds(x, 2)
where
_ 2 2 2 2
Di(x,2) = [(x1 —21)" + (2 — 22)7 M1 + 21)" + (2 — 22)°],
Da(x,z:0) = [(1+ 673 +6%((1+67)5 + (2 — 22))] . (F21)

First we transform the square root in the exponential to a single variable by means of an elliptic change of variables (g, g2) —
(u,v): g =ucosv/8, g = usinv/+/1 + 62 whose Jacobian is J = u/(6+/1 + 62) and the domain of integration is u € [0, c0]
and v € [0, w]. The integration over u can be explicitly done using GR.3.893.1 [20]. The two remaining integrals over the

v-variable are of the form

cos v(a cosv + Bsinv)

/2
[
0

v (acosv + Bsinv)(b+ (acosv + Bsinv)?’

(F22)

We do the change of variables u = w/2 to convert such integral in one of the form GR.2.559.2 [20] and after we apply the limits

and sum the two integrals we obtain the expression (F20).
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