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The two-dimensional q-state clock model for q � 5 undergoes two Berezinskii-Kosterlitz-Thouless (BKT)
phase transitions as temperature decreases. Here we report an extensive worm-type simulation of the square-
lattice clock model for q = 5–9 in a pair of flow representations, from high- and low-temperature expansions,
respectively. By finite-size scaling analysis of susceptibilitylike quantities, we determine the critical points
with a precision improving over the existing results. Due to the dual flow representations, each point in the
critical region is observed to simultaneously exhibit a pair of anomalous dimensions, which are η1 = 1/4 and
η2 = 4/q2 at the two BKT transitions. Further, the approximate self-dual points βsd (L), defined by the stringent
condition that the susceptibilitylike quantities in both flow representations are identical, are found to be nearly
independent of system size L and behave as βsd � q/2π asymptotically at the large-q limit. The exponent η

at βsd is consistent with 1/q within statistical error as long as q � 5. Based on this, we further conjecture that
η(βsd ) = 1/q holds exactly and is universal for systems in the q-state clock universality class. Our work provides
a vivid demonstration of rich phenomena associated with the duality and self-duality of the clock model in two
dimensions.
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I. INTRODUCTION

The q-state clock model is a prototypical model in the
study of phase transitions due to its rich critical phenomena.
It can be seen as a discretized version of the XY model, where
the classical spin S = (cos θ, sin θ ) on each site is confined in
a two-dimensional (2D) plane and takes one of the q uniform
orientations specified by the angle θ = 2πσ/q with integer
σ ∈ {0, 1, . . . , q − 1}. Neighboring spins in the model are
coupled via the form −JSi · S j and the partition function is
written as

Z =
∑
{S}

∏
〈i j〉

eβJSi ·S j =
∑
{σ }

∏
〈i j〉

eβJ cos[(2π/q)(σi−σ j )], (1)

where the summation is over all possible spin configurations,
β is the inverse temperature, J is the coupling strength, and
〈i j〉 stands for neighboring pairs.

The q-state clock model possesses a discrete Zq symmetry
and recovers to the XY model with U(1) symmetry in the
q→∞ limit. It is worth mentioning that the q-state clock
model is also referred to as the planar Potts model or the
vector Potts model [1] due to its similarity to the standard
Potts model. In the standard Potts model, spins also take q
different values, but the neighboring spins are coupled as
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−JPδσi,σ j . Hence, the standard Potts model has Sq symme-
try instead of Zq symmetry. The clock model and the Potts
model are identical for q = 2 and q = 3 with J = 1

2 JP and
J = 2

3 JP, respectively. However, the two models can no longer
be mapped to each other due to their intrinsic symmetries for
q � 4. For example, the four-state clock model can be mapped
onto two decoupled Ising models, different from the four-state
Potts model, as shown in Fig. 1. For convenience, we will take
the coupling strength J = 1 in the following.

Over the past few decades, the q-state clock model has
been extensively studied [2–25], especially in two dimensions.
For 2 � q � 4, the 2D q-state clock model goes through a
second-order phase transition from a low-temperature (low-
T ) ordered phase to a high-temperature (high-T ) disordered
phase as temperature increases. For larger q, the phase dia-
gram is altered. In Ref. [3] it was argued that there is a lower
bound qc such that for q � qc, a quasi-long-range-ordered
(QLRO) phase emerges, sandwiched by the ordered phase
and the disordered phase, leading to two phase transition
points, which are denoted by βc1 and βc2 (βc1 < βc2). To
make the analysis tractable, the authors in Ref. [3] performed
a renormalization-group (RG) analysis on the Villain clock
model [2,26], which still has Zq symmetry and is assumed to
be in the same universality as the clock model. They obtained
that the lower bound is qc = 5 and the correlation function
decays algebraically in the QLRO phase

g(r) = 〈Sr · S0〉 ∼ 1

‖r‖η(β )
, (2)
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q = 2 q = 3 (a) (b)

FIG. 1. Unit vectors of the q-state clock model and the Potts
model. For q = 2 and 3, the possible directions taken by spins are
identical in both models. They become different for q � 4, and
(a) and (b) correspond to the four-state clock model and the four-state
Potts model, respectively.

where the β-dependent exponent η(β ) varies from η1 = 1/4
at βc1 to η2 = 4/q2 at βc2. Moreover, they pointed out that
both phase transitions are of Berezinskii-Kosterlitz-Thouless
(BKT) type [27–29].

Even though the theoretical analysis predicts that both
transitions belong to the BKT universality for q � 5, numer-
ical confirmation seems to be rather tortuous. The authors
of Ref. [15] refuted the theoretical prediction and claimed
the BKT transitions are numerically observed only for q �
8. Later this statement was further supported by Ref. [16],
in which the Fisher zero approach was used to investigate
the six-state clock model with the linear system size up to
L = 28 and found both phase transitions differ from the BKT
transition. However, Baek et al. [17] studied the same model
(q = 6) with a much larger system size L = 512 and claimed
the phase transitions are of BKT type. Furthermore, Baek
and Minnhagen [18] performed Monte Carlo simulations to
study the helicity modulus of the five-state clock model and
Villain clock model. For the five-state clock model, they ob-
served two phase transitions, consistent with the theoretical
result qc = 5. However, they found that the helicity modulus
remains finite for all temperatures and claimed the high-T
transition is not of BKT type. On the other hand, the high-T
transition of the five-state Villain model was confirmed to be
of the BKT type and the reason was ascribed to the residual
Z5 symmetry of the clock model [20]. Later Kumano et al. in
Ref. [21] suggested that the definition of the helicity modulus
for models with the discrete Zq symmetry should be modified.
Based on the appropriately defined helicity modulus, they
showed the existence of the two BKT transitions for q � 5.
This conclusion was further supported by various numerical
methods [10,11,14,19,22–24].

An important task is then to estimate the BKT phase
transition points. Ortiz et al. [25] invoked a bond-algebraic
approach to demonstrate that the high-T transition point βc1 ∼
O(1) and converges to the BKT transition point of the 2D
XY model as q → ∞; they also proved the low-T transition
point βc2 ∼ q2. However, high-precision estimates of βc1 and
βc2 are still challenging due to the multiplicative and additive
logarithmic corrections in the finite-size-scaling behaviors
near the critical points. Table I lists some previous numerical
results of the transition points for q = 5, 6 from the Monte
Carlo (MC) and tensor network (TN) methods. Estimated
results from different approaches are not entirely consistent
and further investigation seems desired.

Another numerical interest of the clock model is to explore
its duality property. For 2 � q � 4, the square-lattice model
is known to be self-dual, and its unique critical point βc is at

TABLE I. Estimated critical points βc1 and βc2 for q =
5, 6, 7, 8, 9. Here MC stands for the Monte Carlo method and TN
stands for the tensor network methods. Our estimates are consistent
with the previous MC results, with the precision being significantly
improved. Apart from some disagreements among themselves, sev-
eral existing TN results are nearly excluded by our estimates if the
quoted error margins are taken seriously into account.

q Method and source βc1 βc2

5 Borisenko et al. (2011, MC) [10] 1.0510(10) 1.1048(10)
Kumano et al. (2013, MC) [21] 1.059 1.101
Chatelain (2014, TN) [22] 1.06(2) 1.094(14)
Chen et al. (2018, TN) [30] 1.0504(1) 1.1075(1)
Surungan et al. (2019, MC) [23] 1.064(6) 1.098(6)
Li et al. (2020, TN) [14] 1.0503(2) 1.1039(2)
Hong and Kim (2020, TN) [24] 1.058(1) 1.101(6)
Li et al. (2020, TN) [12] 1.0519(6) 1.101(2)
MC present work 1.0556(9) 1.0975(6)

6 Tomita & Okabe (2002, MC) [9] 1.1101(7) 1.426(2)
Brito et al. (2010, MC) [5] 1.11(1) 1.47(2)
Kumano et al. (2013, MC) [21] 1.106(6) 1.429(8)
Chen et al. (2017, TN) [13] 1.1358(3) 1.5020(11)
Surungan et al. (2019, MC) [23] 1.114(6) 1.43(1)
Li et al. (2020, TN) [14] 1.0957(6) 1.4491(8)
Hong and Kim (2020, TN) [24] 1.106(2) 1.444(2)
Ueda et al. (2020, TN) [31] 1.101(4) 1.441(6)
Li et al. (2020, TN) [12] 1.0976(6) 1.437(4)
MC present work 1.1103(15) 1.4275(7)

7 Borisenko et al. (2012, MC) [19] 1.1113(13) 1.8775(75)
Chatterjee et al. (2018, MC) [32] 1.88(2)
Li et al. (2020, TN) [14] 1.1024(6) 1.8850(11)
Li et al. (2020, TN) [12] 1.1031(6) 1.866(7)
MC present work 1.851(1)

8 Tomita & Okabe (2002, MC) [9] 1.1191(9) 2.348(2)
Li et al. (2020, TN) [14] 1.1038(6) 2.3969(17)
Li et al. (2020, TN) [12] 1.1049(6) 2.372(8)
MC present work 2.349(2)

9 Li et al. (2020, TN) [12] 1.1049(6) 2.924(17)
MC present work 1.119(2) 2.920(2)

its self-dual point βsd, which can be analytically derived (see
Sec. II C). For q � 5, the model is no longer strictly self-dual,
but one can still obtain the self-dual point for q = 5 by directly
solving the self-dual point equation, which corresponds to
neither βc1 nor βc2. On the other hand, there is no exact self-
dual point for q > 5. Nevertheless, some attempts have been
made to obtain an approximate self-dual point. In Ref. [25]
the authors proposed a variant of the clock model, which is
exactly self-dual for all integers q and related to the q-state
clock model with 2 � q � 4. They argued that the self-dual
point βsd scales as q/2π in the large-q limit. Later on Chen
et al. [13] used the TN method to define an approximate self-
dual point via the normalized bond entanglement spectra in
the original and dual lattices. Their βsd values approximately
scale as q/2π + 1/4 as q → ∞.

The MC simulations of the q-state clock model to date
work mainly on the standard spin representation. There is
however another way to investigate the system by formulating
the model in terms of the closed-path (CP) configurations
defined on bonds. A typical example that demonstrates the
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TABLE II. Summary of the final estimates of the critical point
βc1 and βc2 and the self-dual point βsd with q = 5, 6, 7, 8, 9. Also
shown are the results for the anomalous dimension η(βsd ) at the self-
dual point, which are equal to 1/q within the error margin. For q � 6,
the values of βc1 are very close and differ only at the third decimal
place, having the same magnitude as the error margins, and thus we
do not determine βc1 for q = 7, 8.

q βc1 βc2 βsd η(βsd ) 1/q

5 1.0556(9) 1.0975(6) 1.076 318. . . 0.200(2) 0.2
6 1.1103(15) 1.4275(8) 1.254 10(5) 0.1665(3) 0.1667. . .

7 1.851(1) 1.417 11(6) 0.1426(7) 0.1429. . .

8 2.349(2) 1.573 06(9) 0.1250(2) 0.125
9 1.119(2) 2.920(2) 1.727 18(9) 0.1111(2) 0.1111. . .

advantages of this transformation is the Ising model on a
square lattice. In two dimensions there are two ways of
expressing the Ising model in terms of CP configurations,
obtained via the high-T expansion and low-T expansion, re-
spectively. The former expands the Boltzmann factor of each
bond to decouple spins, which can be generalized to higher
dimensions; The latter keeps track of the domain-wall bound-
aries on the dual lattice. The CP configurations in the two
expansions can be sampled by the worm algorithm [33–37],
which is at least as efficient as cluster algorithms for the spin
representation. Moreover, it is very convenient to measure
the two-point correlation function in the worm simulation.
Finally, the representations obtained from the high-T and low-
T expansions provide a natural way to study the duality of the
model. For the 2D Ising model, the two expansions are used
to derive the Kramers-Wannier duality [38]. Both expansions
can be applied to a broad class of lattice models [39]. In
Ref. [40] the high-T CP formulation was applied to the 2D
XY model, where the bond variables now take integer values
and obey the Kirchhoff conservation laws. Because of the
resemblance of the bond variables to flows, this representation
is also called the flow representation.

In this work we study the flow representations of the 2D
q-state clock model derived from the high-T and low-T ex-
pansions. Different from the flow representations of the 2D
XY model, the bond variables take values from {0, . . . , q − 1}
and satisfy the modified flow conservation law, which we call
the q-modular flow conservation (see Sec. II). We formulate
a worm algorithm to efficiently simulate the clock model
in both representations and perform extensive simulations
with 5 � q � 9 and linear system size up to L = 1024. In
our simulations, we measure the average value of the worm
returning time in the high-T and low-T flows, denoted by
χH and χL, respectively. It can be proved that χH is strictly
equal to the magnetic susceptibility in the spin representation,
whose critical behavior is already known. As for χL, based on
the duality between the two flow representations, we expect
it to exhibit a dual scaling behavior to χH . By performing
finite-size analysis of the data of both quantities, we get the
estimates of βc1 from χH and βc2 from χL. The estimates
of βc1 and βc2 are summarized in Table II. In Fig. 2(a) we
plot βc1 (red triangles) and βc2 (blue squares) versus q. As
Table II and Fig. 2 demonstrate, the low-T transition point βc2

2 3 4 5 6 7 8 9
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β

(a)
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q/2π + 0.31
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βc2

βsd

5 6 7 8 9
q
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η
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FIG. 2. (a) Plot of βc1, βc2, and βsd versus q. The blue dashed line
represents βc2(q) = 0.041q2 − 0.11q + 0.65 and the black dashed
line represents βsd (q) = q/2π + 0.31. (b) Anomalous dimension
η(βsd ) at the self-dual point as a function of q on a log-log scale.
The data points can be fitted accurately by the function 1/q.

scales as βc2(q) = a0 + a1q + a2q2, with a0 = 0.65(6), a1 =
−0.11(2), and a2 = 0.041(1). A consistent leading scaling
behavior was observed in Ref. [19]. For the high-T transition
point βc1, it quickly approaches the 2D XY model transition
point βBKT = 1.119 96(6) [41] as q increases.

The precision of our estimates is significantly greater than
previous MC results. Furthermore, our estimates nearly ex-
clude a number of existing TN results. To be more specific,
for two estimates β1 and β2 with error margins σ1 and σ2, we
consider them inconsistent if |β1 − β2| > 3σ1 + 3σ2. Accord-
ing to this criterion, estimates of βc1 and βc2 in Refs. [14,30]
for q = 5, βc1 in Refs. [12–14] and βc2 in Refs. [13,14,24]
for q = 6, βc2 in Ref. [14] for q = 7, 8, and βc1 in Ref. [12]
for q = 9 are unlikely. The deviations of these results are
probably because, due to the cutoff of bond dimension in the
TN calculation, systematic biases are unavoidably introduced
but difficult to estimate reliably, particularly near the critical
points where the correlation length is divergent.

To demonstrate that βc1 is of BKT type for q = 5, 6, we
measure the correlation length ξ , which is defined as

ξ =
∫ ‖r‖g(r)dr∫

g(r)dr
, (3)

where g(r) is the two-point correlation function. In the worm
algorithm, this quantity can be evaluated by averaging the dis-
tance between the two defects I and M, which are introduced
to study the two-point correlation function (see Sec. III). For
a BKT transition, ξ diverges according to the asymptotic
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FIG. 3. (a) Semilogarithmic plot of the correlation length ξ ver-
sus b/

√
t for the 2D XY , q = 5, 6 clock model, where t = (βc1 −

β )/βc1, illustrating the exponential growth of ξ . Different models
are distinguished by different colors, as defined in the legend. The
corresponding nonuniversal constant b = 1 (XY ), 0.94 (q = 5), and
0.994 (q = 6). (b) Semilogarithmic plot of the ratio ξ/L as a function
of b/

√
tL , where tL = t[ln(L/L0)]2 with the nonuniversal length scale

simply set by L0 = 1. The data points collapse onto a single curve, in-
dicating ξ/L is a universal function of the scaling field b/

√
tL . These

plots clearly support that the q = 5 and 6 clock models are in the
universality class of the XY model. In particular, the resemblance of
the three systems is clearly illustrated by the approximately identical
values of b; actually, the b value for q = 6 is hardly different from
that for the 2D XY model, which is a rather surprising observation.

law ξ ∼ exp(b/
√

t ) [28,29], with t = (βc1 − β )/βc1 and b a
nonuniversal constant. In Fig. 3(a) we plot the correlation
length ξ versus b/

√
t on a semilogarithmic scale for the clock

model with q = 5, 6 and the 2D XY model. The approx-
imately linear behavior of the curves when ξ � L implies
that the correlation length diverges exponentially with b/

√
t .

This exponential growth, together with its resemblance to the
curve of the XY model, directly confirms that βc1 is a BKT
transition for q = 5, 6. Further, this exponential scaling be-
havior, which should in principle be valid at large scales only,
appears even when ξ is comparable to the microscopic scale
(lattice spacing). When ξ is comparable to the system size, the
curves enter a region of plateaus due to the finite-size cutoff.
We further plot the ratio ξ/L versus b/

√
tL = b/

√
t (ln L/L0)2

in Fig. 3(b), where L0 is some nonuniversal characteristic
length of the order of the lattice constant. The scaling field
tL = t (ln L/L0)2 [21,42] originates from the exponential di-
vergence of the correlation length near the BKT transition
ξ ∼ L ∼ exp(b/

√
t ). We adjust the nonuniversal constants b

and L0 such that the data of different models and system sizes
collapse and find that simply setting L0 = 1 is sufficient to
demonstrate the approximate data collapse. There are some
noticeable finite-size corrections for q = 5, which is probably
because βc1 and βc2 are too close for q = 5 such that the
scaling behavior of ξ is also affected by βc2. The correspond-
ing values of b are 0.94 (q = 5), 0.994 (q = 6), and 1 (XY ).
Surprisingly, these nonuniversal constants are very close to
each other and the b value of the six-state clock model is
nearly indistinguishable from that of the 2D XY model. These
strongly support the same universality of the five- and six-state
clock models and the XY model.

In the spin representation, the spin-spin correlation func-
tion is governed by the anomalous dimension η1 = 1/4 at
βc1 and η2 = 4/q2 at βc2. This is confirmed by the finite-size
scaling of χH at the two critical points. By studying the high-T

and low-T flows, we further observe the simultaneous exis-
tence of the pair of exponents (η1, η2) at each BKT transition
point. At βc1, we have χH (βc1, L) ∼ L2−η1 and χL(βc1, L) ∼
L2−η2 , and vice versa at βc2. Moreover, we find that χL(βc1, L)
is nearly identical to χH (βc2, L) for each system size L and any
given q. Similarly, we have χH (βc1, L) ≈ χL(βc2, L). These
numerical results vividly demonstrate the duality between the
two critical points and between the two flow representations.

Taking advantage of the two dual flow representations, we
define an approximate self-dual point for q > 5 via the strin-
gent condition χH (βsd, L) = χL(βsd, L), in which we require
both the scaling behaviors and amplitudes of χH and χL to
be the same. The self-dual point βsd(L) for finite systems is
found to be nearly independent of system size L. To estimate
βsd in the thermodynamic limit, we perform the least-squares
fit to the data of χdiff (β, L) = χH (β, L) − χL(β, L) and get
estimates of βsd ≡ limL→∞ βsd(L) for q = 6–9. The results
are summarized in Table II, which can be fit by the expression
βsd(q) = q/2π + 0.31(1), as shown in Fig. 2. At our esti-
mated βsd, we extract the exponent η(βsd ) and find that η(βsd )
is in excellent agreement with 1/q, as shown in Fig. 2(b),
which can be understood from the perspective of the Villain
clock model (see Sec. II D). Based on this, we conjecture that
η(βsd ) = 1/q holds exactly at our defined self-dual point.

The remainder of this paper is organized as follows. Sec-
tion II introduces the flow representation, studies the duality
properties of the clock model, and summarizes the RG analy-
sis of the Villain clock model. Section III describes the worm
algorithm and sampled quantities. In Sec. IV the MC data are
analyzed and the results are presented. A brief summary is
given in Sec. V.

II. FLOW REPRESENTATIONS, DUALITY,
AND RG ANALYSIS

In this section we elaborate on the derivations of the high-T
and low-T flow representations for the convenience of general
readers. This technique can be applied to a broad class of
models, such as the Potts model. On the basis of these two
expansions, we study the duality and self-duality properties
of the q-state clock model. Finally, we summarize the RG
analysis of the Villain clock model, which should be in the
same universality class as the original clock model.

A. High-temperature expansion

Let G= (V, E ) denote a graph with |V | vertices and |E |
edges. For each edge 〈i j〉 ∈ E , because the Boltzmann factor
f (σi − σ j ) = exp{β cos[ 2π

q (σi − σ j )]} is a periodic function
of variable σi − σ j with period q, we can expand it into dis-
crete Fourier series as

f (σi − σ j ) =
q−1∑

Ni j=0

F (Ni j )e
2π i(σi−σ j )Ni j/q, (4)

F (Ni j ) = 1

q

q−1∑
σi−σ j=0

f (σi − σ j )e
−2π i(σi−σ j )Ni j/q, (5)

where Ni j ∈ {0, . . . , q − 1} is the bond variable defined on
the edge 〈i j〉 and F (Ni j ) is derived from the inverse discrete
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FIG. 4. Illustration of two types of flow configurations in the
high-T expansion for q = 3: (a) closed configuration with (∇ ·
N) mod q = 0 and (b) open configuration with defects I and M
(gray circles) violating the q-modular flow conservation. The direc-
tion of horizontal (vertical) edges of G is specified by the positive
direction of the x axis (y axis).

Fourier transform (5). Plugging the expansion (4) into Eq. (1),
we rewrite the partition function Z as

Z =
∑
{σ }

∏
〈i j〉

f (σi − σ j )

=
∑
{σ }

∏
〈i j〉

⎡
⎣ q−1∑

Ni j=0

e2π i(σi−σ j )Ni j/qF (Ni j )

⎤
⎦

=
∑
{N}

∑
{σ }

[∏
〈i j〉

F (Ni j )
∏
〈i j〉

e2π i(σi−σ j )Ni j/q

]

=
∑
{N}

[∏
〈i j〉

F (Ni j )
∏

i

q−1∑
σi=0

e2π i(∇·N)iσi/q

]

= q|V | ∑
{N}:∇·N=0

∏
〈i j〉

F (Ni j ). (6)

Here
∑

{N} sums over all configurations of bond variables
{N} and (∇ · N)i = ∑

j:〈i j〉∈E sgn(i→ j)Ni j represents the di-
vergence of {N} at site i. We specify a positive direction
for each edge and sgn(i → j) is +1 if the direction i → j
aligns with the positive direction and −1 otherwise. The sign
function is introduced because Ni j gives opposite contribu-
tions to (∇ · N)i and (∇ · N) j . In the last equality, we use the
following identity to integrate out the spin variables {σ }:

q−1∑
σi=0

e2π i(∇·N)iσi/q =
{

q for (∇ · N)i mod q = 0

0 otherwise.
(7)

Therefore, only flows satisfying the q-modular flow conser-
vation, i.e., (∇ · N)i mod q = 0 for all i ∈ V , have nonzero
statistical weights. Graphically, this condition requires flows
to form closed loops, and we use ∇ · N = 0 as shorthand for
the condition. Equation (6) is called the high-T expansion of
the clock model. Note that the final expression is indepen-
dent of the choice of positive direction because every choice
ensures that Ni j contributes oppositely to its two end points.
With the above definition, sgn(i → j)Ni j can be regarded as a
directed flow defined on E , hence the name of flow represen-
tation. Figure 4(a) shows a closed flow configuration of the
q = 3 clock model in the high-T expansion. The value of the

bond variable Ni j is specified by the color of the edge and the
positive directions of the flows are specified by the arrows.

B. Low-temperature expansion

In addition to the high-T expansion, which is applicable to
any spatial dimensions, there is another flow representation of
the model in two dimensions via the low-T expansion, which
utilizes the dual lattice G∗ = (V ∗, E∗). For a given planar
lattice G, its dual lattice G∗ can be formed as follows: (i)
On the center of each face of G, place a vertex that serves
as the dual vertex; (ii) for any two vertices of G∗, add an edge
between them if the corresponding two faces of G have a com-
mon edge. As a result, there is a one-to-one correspondence
between the edges of G and G∗.

Similar to the high-T expansion, we specify a positive
direction for each edge in E∗ and introduce a new set of
bond variables defined on E∗ as N∗

i j = (σr − σl ) mod q, with
σr and σl denoting the clock spins on the right and left sides
of the positive direction of 〈i j〉 in E∗. By definition, N∗

i j also
takes integer values in the range [0, q − 1]. Analogously, the
divergence of {N∗} at site i ∈ V ∗ is defined as (∇ · N∗)i =∑

j:〈i j〉∈E∗ sgn(i → j)N∗
i j , which automatically satisfies the q-

modular flow conservation (∇ · N∗) mod q = 0. The partition
function therefore can be rewritten as

Z =
∑
{σ }

∏
〈i j〉∈E

exp

[
β cos

(
2π

q
(σi − σ j )

)]

= q
∑

{N∗}:∇·N∗=0

( ∏
〈i j〉∈E∗

F ∗(N∗
i j )

)
, (8)

where F ∗(N∗
i j ) = exp[β cos( 2π

q N∗
i j )] is a periodic function

with period q. The factor q originates from the q-to-one
correspondence between spin configurations and flow config-
uration (global Zq symmetry). Figure 5 illustrates a closed
flow configuration of the q = 3 clock model in the low-T
expansion, where the low-T flows are constructed from a
spin configuration and form closed loops in the dual lattice.
The edges of the original lattice are represented by dashed
lines and spins with different values are distinguished by their
colors. The solid lines consist of the edges of the dual lattice,
where the values of the flows are specified by the colors of the
edges.

C. Duality of the 2D q-state clock model

The flow representations derived from the high-T and low-
T expansions provide a convenient way to study the duality
property of the clock model. To begin with, we first define the
ratios R(β, N ) ≡ F (β, N )/F (β, 0) for the high-T expansion,
which characterizes the relative weight of bond with value N .
For any given N > 0, the ratio R(β, N ) is a monotonically
increasing function of β and satisfies 0 < R(β, N ) < 1. In
the high-T limit, i.e., β → 0, we have R(β, N ) � 1, which
means that N = 0 has a much larger statistical weight than
that of other possible values of N , and configurations with
dilute loops dominate in this case. As temperature decreases,
the weights of nonzero bond values begin to increase and the
loop gases become denser. Likewise, for the low-T expansion,
we define the ratio R∗(β, N ) ≡ F ∗(β, N )/F ∗(β, 0), which
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x

y

N∗ = 0

N∗ = 1

N∗ = 2

σ = 0

σ = 1

σ = 2

FIG. 5. Illustration of a closed flow configuration in the low-T
expansion for q = 3 with periodic boundary conditions. The closed
circles and dashed gray lines constitute the original lattice G. The
dual vertices are at the faces of G, with dual edges connecting them.
The direction of the horizontal (vertical) edges of G∗ is specified by
the positive direction of the x axis (y axis). The value of the flow
variable on each edge is determined by the difference between its
right and left spins.

also takes value ranging from 0 to 1 but is a monotonically
decreasing function of β. In the low-T limit, i.e., β → ∞, we
have R∗(β, N ) � 1; therefore, most of the bonds in the low-T
expansion now have value 0, forming dilute loop gases. As
temperature increases, the ratio R∗(β, N ) becomes larger and
the loop-density increases.

From the above analysis, we can see that, as temperature
decreases, the low-T flows undergo an opposite process as the
high-T flows. Thus, one may expect that there exists a corre-
spondence between the high-T expansion at β and the low-T
expansion at β∗ from the perspective of the loop distribution,
which implies the dual equation set

R(β, N ) = R∗(β∗, N ) (N = 1, . . . , q − 1), (9)

where R is defined for the high-T flows on the original lattice
G while R∗ is defined for the low-T flows on the dual lattice
G∗. The q − 1 equations in (9) are not independent due to the
relations R(β, N ) = R(β, q − N ) and R∗(β∗, N ) = R(β∗, q −
N ); hence there are at most �q/2� independent equations,
with �q/2� the integer part of q/2. Furthermore, for self-dual
lattices, i.e., the original lattice and the dual lattice have the
same geometry, if there exists a function β∗(β ) such that the
set of equations (9) are satisfied, we say the model is self-dual
in the sense that the theory at β is related to itself at β∗.

For self-dual models, one can further set β∗ = β = βsd,
which gives the equation set for the self-dual temper-
ature βsd,

R(βsd, N ) = R∗(βsd, N ) (N = 1, . . . , q − 1). (10)

If the self-dual model only has one phase transition point βc,
then βsd = βc. Otherwise, one can find more than one point
at which the free energy exhibits singularity. For the case of
two phase transition points βc1 and βc2, one may expect that
R(βc1, N ) = R∗(βc2, N ) and R(βc2, N ) = R∗(βc1, N ).

Now let us consider the cases of q = 2, 3, 4 for a 2D square
lattice, which correspond to the Ising model, three-state Potts
model, and two copies of the Ising model, respectively. The
corresponding duality conditions (9) are

tanh(β ) = e−2β∗
, N = 1; (11)

e(3/2)β − 1

e(3/2)β + 2
= e−(3/2)β∗

, N = 1, 2; (12)

tanh(β/2) = e−β∗
, N = 1, 3,

tanh2(β/2) = e−2β∗
, N = 2

(13)

for q = 2, 3, 4, respectively. In each case, given a β, there
is a unique β∗ satisfying the equation set. Therefore, the
2D q-state clock on a square lattice model is self-dual for
q = 2, 3, 4. In particular, the self-dual point is calculated by
setting β∗ = β = βsd, which gives

βsd =
⎧⎨
⎩

1
2 ln(

√
2 + 1), q = 2

2
3 ln(

√
3 + 1), q = 3

ln(
√

2 + 1), q = 4.

(14)

Since there is only one phase transition point, the self-
dual point is also its critical point. Note that βsd(q = 4) =
2βsd(q = 2), which comes from the fact that the q = 4 clock
model is equivalent to two decoupled Ising models (q = 2),
i.e., Zq=4(β ) = Z2

q=2(β/2).
For q = 5, the dual equations are overdetermined in gen-

eral, meaning there is no consistent solution of β∗ as a
function of β for arbitrary β. Nevertheless, if we try to get
the self-dual point by solving the set of equations (10) for βsd,
we get a single independent equation for q = 5:

e5βsd/4

cosh(
√

5βsd/4)
=

√
5 + 1, (15)

which has the numerical solution 1.076 318 0 . . .. At this par-
ticular point, the thermodynamic properties of the low-T flows
and high-T flows are the same, but βsd does not correspond to
any of the critical points [13] since the system now has two
critical temperatures. For q � 6, there is neither a solution for
the dual temperature β∗(β ) nor a solution for the self-dual
point βsd. Nevertheless, given the similar physical pictures of
high-T and low-T flows, we expect that there is still a duality
between the low-T and high-T flows from the viewpoint of
universality class, as we explore in Sec. IV.

D. RG analysis of the Villain clock model

In this section we briefly summarize the analytical results
derived from the Villain clock model for q � 5, which sheds
light on the original model since it has been demonstrated
[2,9,23,43,44] that the Villain clock model and original clock
model belong to the same universality class. The Villain
model is obtained by replacing the Boltzmann factor f (σi −
σ j ) of the original clock model with a periodic Gaussian
function

fV (σi − σ j ) =
∞∑

m=−∞
e−(1/2)β[(2π/q)(σi−σ j )−2πm]2

. (16)
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The model has the nice property that it is self-dual on the
square lattice for all integers q, in contrast to the original clock
model. The duality relation is written as β∗ = q2/4π2β and
the self-dual point is given by βsd = q/2π .

The renormalization-group flow equations of the Villain
model are written as [3]

dx

d ln b
= q2

4
y2

q − x2y2,

dy

d ln b
= (2 − x)y,

dyq

d ln b
=

(
2 − q2

4x

)
yq,

(17)

where b is the rescaling factor and the parameters x, y, and yq

are initially defined by

x = πβ,

y = 2π exp(−π2β/2),

yq = 2π exp(−q2/8β ).

(18)

The parameter x corresponds to the effective inverse tem-
perature of the system under renormalization. The parameter
y characterizes the effect of vortices on spin configurations.
When y is a relevant operator, i.e., xR < 2, where the super-
script R stands for renormalized, the abundance of vortices
destroys the order of spins, driving the system to the infinite-
temperature fixed point for the high-T disordered phase. In
contrast, the parameter yq characterizes the effect of dis-
cretization of clock spins on spin-wave excitations. When yq is
a relevant operator, i.e., xR > q2/8, the temperature is too low
to sufficiently excite the discretized spin-wave excitation so
that the clock spins tend to point in one of the q directions and
the renormalization flows are driven to the zero-temperature
fixed point. The QLRO phase emerges when both yR and yR

q

are irrelevant, i.e., yR = yR
q = 0, which corresponds to a line

of fixed points with 2 � xR � q2/8. The two-point correlation
function in this phase diverges as

g(r) ∼ 1

‖r‖1/2xR = 1

‖r‖η
(‖r‖ → ∞), (19)

from which we know the anomalous dimension η = 1/2xR.
The boundaries of the middle phase correspond to the two
critical points for q � 5, which allows us to compute η at these
two special points

xR = 2, η = 1/4 for β = βc1,

xR = q2/8, η = 4/q2 for β = βc2. (20)

Moreover, at the self-dual point βsd = q/2π , one may find
x = q/2 and y = yq = 2π exp(−πq/4) by Eq. (18). Accord-
ing to Eqs. (17), under the process of the renormalization, the
parameters y and yq remain identical, leaving x invariant with
xR = q/2, which gives η(βsd ) = 1/q.

III. ALGORITHM AND SAMPLED QUANTITIES

For self-completeness and convenience of readers, we de-
scribe the worm algorithm for the clock model in detail and
define the quantities sampled during the simulation.

A. Worm algorithm

The worm algorithm works on an extended configuration
space composed of the original partition function space (the
Z space) and the two-point correlation function space (the
G space). The Z space contains the set of closed flow con-
figurations [see Fig. 4(a)]. In contrast, the G space consists
of open flow configurations, which have two defects I and
M violating the q-modular flow conservation, as illustrated
in Fig. 4(b). For the high-T expansion, the G space describes
the two-point correlation in the original spin representation.
Taking any two defects I,M ∈ V , we define the quantity
GH (I,M) = 〈SI · SM〉Z , where Z is the partition function.
Then, by performing similar manipulations used in deriving
Eq. (6), GH (I,M) can be expressed in terms of the high-T
flows:

GH (I,M) = 〈SI · SM〉Z

=
∑
{σ }

cos

(
2π

q
(σM − σI )

)

× exp

[
β

∑
〈i j〉

cos

(
2π

q
(σi − σ j )

)]

= q|V | ∑
{N}:∇·N=SIM

( ∏
〈i j〉∈E

F (Ni j )

)
. (21)

The constraint ∇ · N = SIM is shorthand for (∇ ·
N)i mod q = SIM(i) for i ∈ V and SIM is a function of
sites:

SIM(i) =
⎧⎨
⎩

1 for i = I
q − 1 for i = M
0 otherwise.

(22)

Different from the previous divergence-free condition,
Eq. (22) requires that the flows originate at I with divergence
1 and end at M with divergence q − 1. The partition function
of the G space is then the summation with I,M (I �= M)
varied,

G =
∑
I �=M

GH (I,M) = q|V | ∑
{N}∈S

( ∏
〈i j〉∈E

F (Ni j )

)
, (23)

where S is the set of open configurations that have one defect
with divergence 1 and one defect with divergence q − 1. As
we can see, the G space is tailored to study the two-point
correlation and susceptibility since the latter is the summation
of the former over all possible coordinates of (I,M). In prin-
ciple, the function SIM can be modified to take other values,
which can be used to study other forms of the two-point corre-
lation function. Here we restrict ourselves to Eq. (22) because
it provides a convenient way to sample the susceptibility χH ,
as explained below.

Since the weight functions F (Ni j ) in Eqs. (6) and (23) are
identical, the Z space and G space can be combined to form a
larger configuration space, whose partition is written as

Zext = CZ + G. (24)

Here C is the parameter of the algorithm which controls the
switching probability between Z space and G space. We set
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C = Ld (d = 2) throughout our work and get

Zext = LdZ + G =
∑

I,M∈V

GH (I,M)

=
〈(∑

i∈V

Si

)2〉
Z = χH LdZ, (25)

where χH is the magnetic susceptibility in the original spin
representation and we have used Z = 〈S2

I〉Z = G(I, I ).
From Eq. (25) we know that χH can be expressed as the ratio
between Zext and LdZ of the high-T flows, i.e., the steps
between the two consecutive events of hitting the Z space in
the case of C = Ld .

Because the low-T expansion has a form similar to the
high-T expansion, we can construct analogous quantities out
of the low-T flows, which should exhibit dual scaling behav-
iors. For defect I,M ∈ V ∗, we define GL(I,M) as

GL(I,M) = q
∑

{N∗}:∇·N∗=SIM

( ∏
〈i j〉∈E∗

F ∗(N∗
i j )

)
, (26)

where the function SIM(i) is the same as Eq. (22) but with
i, I, and M now vertices of the dual lattice G∗. The corre-
sponding susceptibilitylike quantity χL from the low-T flows
is defined by

χL = 1

Ld

∑
I,M∈V ∗

GL(I,M)

Z . (27)

Moreover, since the square lattice with periodic boundary
conditions is a self-dual lattice, we can simulate the low-T
flows using the same algorithm by only replacing F (N ) with
F ∗(N ) without further modification to the underlying lattice.

We now describe the worm algorithm for the high-T flows
in detail. The same procedure applies to the low-T flows. The
algorithm samples configurations in the extended space Zext.
A state in Zext can be identified by its bond configuration
together with the positions of I and M. Therefore, to sample
configurations in Zext, one can move defect I or M locally
and update the bond configuration accordingly to keep it a
valid open configuration. The Metropolis criterion is used to
decide whether this move is accepted or not. More specifi-
cally, the basic procedure of algorithm is as follows.

(1) If I = M, choose a new site I ′ ∈ V randomly with
probability 1/Ld and set I = M = I ′. If I �= M, start from
step 2.

(2) Starting from a configuration μ, randomly pick a defect
with equal probability, say, I.

(3) Randomly choose a nearest neighbor I ′ of the chosen
defect I. We propose the update NII ′ → N ′

II ′ := [NII ′ −
sgn(I → I ′)] mod q (replace − with + for the move of defect
M) to get a new configuration ν and accept it with probability
Pacc

μ→ν .
(4) If the proposal is accepted, assign I ′ to be the new

defect I := I ′.
The acceptance probability Pacc

μ→ν is calculated according to
the Metropolis-Hastings scheme

Pacc
μ→ν = min

{
1,

Aμ→νWν

Aν→μWμ

}
, (28)

where Aμ→ν (Aν→μ) is the proposal probability with which
we propose the update from configuration μ to ν (ν to μ) and
Wμ (Wν) is the statistical weight of μ (ν). According to the
sectors μ and ν belong to, the ratio Aμ→ν/Aν→μ can take
three possible values

Aμ→ν

Aν→μ

=
⎧⎨
⎩

1, μ, ν ∈ G
Ld , μ ∈ G, ν ∈ Z
1/Ld , μ ∈ Z, ν ∈ G.

(29)

Thus, Pacc
μ→ν generally has different expressions for each case.

Fortunately, with the choice of the relative weight C = Ld ,
Pacc

μ→ν reduces to one formula for the three cases, independent
of the sectors μ and ν belong to. To be more specific, we
have Pacc = min{1, F (N ′

II ′ )/F (NII ′ )} for the update NII ′ →
N ′
II ′ ; a similar expression can be derived for moving defect

M. To simulate the low-T flows, we only need to replace
F (N ) with F ∗(N∗) and proceed analogously.

B. Sampled quantities

In this work we use the worm algorithm to simulate the
q-state clock model on the square lattice (L × L) with periodic
boundary conditions in its two flow representations. Since
our aims are to determine the critical points and demonstrate
the duality of the model, it suffices to measure the following
quantities in the partition function space Z or in the extended
space Zext.

(i) First is the worm-returning time TH in the high-T flows
and TL in the low-T flows. We define a worm cycle to be
the Markov chain between the two consecutive events of the
worm configuration hitting the Z space, i.e., defects I and M
coincide. Then for each worm cycle, we define the returning
time as the number of update steps consisting of the cycle.
Thus, this quantity is only measured when configuration μ is
in the Z space.

(ii) Second is the Euclidean distance of the two defects
LIM in the high-T flows, which is sampled in the extended
space Zext after each MC sweep.

The corresponding ensemble average is then taken as (a)
the susceptibility χH = 〈TH 〉 in the high-T flows and the sus-
ceptibility χL = 〈TL〉 in the low-T flows, (b) the difference
between the two susceptibilities χdiff = 〈TH 〉 − 〈TL〉 at the
same temperature, and (c) the correlation length ξ = 〈LIM〉,
which is defined as ξ = ∫ ‖r‖g(r)dr/

∫
g(r)dr.

IV. RESULTS

In this section we provide numerical results that give the
estimates of the critical points βc1 and βc2 and explore the
duality in the q-state clock model for q � 5. We perform
least-squares fits of our Monte Carlo data to the expected
Ansatz. As a precaution against correction-to-scaling terms
that we miss including in the fitting Ansatz, we impose a
lower cutoff L � Lm on the data points admitted in the fits.
We systematically study the effect on the residuals (denoted
by χ2) by increasing Lm. In general, the preferred fit for any
given Ansatz corresponds to the smallest Lm for which the
goodness of the fit is reasonable and for which subsequent
increases in Lm do not cause the χ2 value to drop by vastly
more than one unit per degree of freedom D. In practice, by
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FIG. 6. Scaled susceptibilities (a) χH (β, L)/L7/4(ln L + C1)1/8

and (b) χL (β, L)/L7/4(ln L + C1)1/8 versus the inverse temperature
β for q = 5. The constant C1 is set to (a) 3.6 and (b) 4.0. The vertical
red dashed line presents the central value of our estimate and the
shadow shows the error bar.

“reasonable” we mean that χ2/D ≈ 1. The systematic error
is obtained by comparing estimates from various reasonable
fitting Ansätze.

A. Estimation of βc1 and βc2

We use observables χH and χL to estimate βc1 and βc2, re-
spectively. As we explained in Sec. III, the ensemble average
of the worm returning time in the high-T flows χH corre-
sponds to the magnetic susceptibility of the system, which has
the following scaling form at the high-T transition point βc1,

χH (βc1) ∼
∫

r<ξ

g(r)d2r ∼ ξ 2−η(ln ξ )−1/8, (30)

where ξ is the correlation length and η = 1/4. It is also noted
that, in Eq. (30), there is an extra logarithmic dependence of
χH (βc1), which originates from the multiplicative logarithmic
correction to the correlation function g(r) at βc1 [3] similar to
the XY model [29,40,45]. As for finite systems, ξ is cut off by
the linear system size. Using the linear system size L, we then
have χH (βc1, L) ∼ L7/4(ln L + C1)−1/8, where C1 introduces
a characteristic length scale for the multiplicative logarith-
mic correction. In Fig. 6(a) we plot the scaled susceptibility
χ̃H (β, L) = χH (β, L)/L7/4(ln L + C1)1/8 versus the inverse
temperature β using our MC data for q = 5. As it is shown,

FIG. 7. Scaled susceptibility χL (β, L)/L7/4(ln L + C1)1/8 versus
the inverse temperature β for (a) q = 6, (b) q = 7, (c) q = 8, and
(d) q = 9. The constants C1 are set to 4.9, 4.9, 5.0, and 5.3, respec-
tively. The vertical red line represents the central value of βc2 and the
shadow shows the error bar.

there is an excellent intersection for different system sizes at
βc1, which confirms the scaling form (30) of χH .

For observable χL, on the other hand, it neither corresponds
to the magnetic susceptibility of original spins nor has known
analytical results about their critical behaviors. Nevertheless,
based on our previous duality argument in Sec. II C, we ex-
pect χL at the low-T transition point βc2 to have the same
scaling behavior as that of χH at the high-T transition point
βc1. This expectation is supported by Fig. 6(b), as an excel-
lent intersection point is present for the scaled susceptibility
χ̃L(β, L) = χL(β, L)/L7/4(ln L + C1)1/8 with various system
sizes.

We then estimate βc1 and βc2 systematically. Instead of
using χH to determine βc2, here we choose χL to estimate βc2

because it suffers weaker finite-size corrections around βc2,
as illustrated in Figs. 6(b) and 7. We perform the least-squares
fits to χH (β, L) and χL(β, L) via the finite-size-scaling Ansatz

χ (β, L) = L7/4(ln L + C1)1/8

×
[

a0 +
3∑

k=1

akε
k (ln L + C2)2k + d1Ly1

+ d2Ly2 + n0ε + n1ε
2(ln L + C2)2

]
. (31)

Here ε stands for βc1 − β when χ represents χH and for βc2 −
β when χ represents χL. The term ak on the right-hand side
of Eq. (31) comes from the Taylor expansion of the scaled
susceptibility with respect to the scaling field ε(ln L/L0)2 =
ε(ln L + C2)2 around the critical point. The terms d1 and d2

account for the additive finite-size corrections with y2 < y1 <

0. The n0 term describes the asymmetry dependence of the
scaling function. The n1 term originates from the nonlinearity
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TABLE III. Fitting results of βc1 and βc2 for q = 5 from χH and χL with the Ansatz (31). The column of βc corresponds to βc1 when O is
taken as χH and corresponds to βc2 when O is taken as χL .

O Lm βc C1 C2 a0 a1 a2 a3 n0 n1 d1 d2 χ 2/D

χH 24 1.0557(5) 3(1) 0.1(2) 0.84(1) −0.171(9) −0.005(8) −0.038(9) −0.6(1) −0(3) 0.3(1) −0.6(8) 21.8/19
χH 32 1.0556(9) 3(2) 0.1(3) 0.84(3) −0.17(1) −0.008(9) −0.04(1) −0.7(2) 0(4) 0.3(3) −0(2) 20.7/15
χH 24 1.0553(2) 3.6(3) 0.832(5) −0.173(2) −0.009(5) −0.040(5) −0.68(2) 0.24(2) 22.5/22
χH 32 1.0554(2) 3.5(4) 0.835(6) −0.173(2) −0.009(6) −0.040(5) −0.70(3) 0.25(3) 20.9/18
χH 48 1.0555(3) 3.3(6) 0.838(9) −0.173(2) −0.005(7) −0.043(6) −0.73(5) 0.27(6) 18.3/14
χL 32 1.0975(3) 3.4(5) 0.0(2) 0.836(8) 0.157(7) −0.029(8) 0.016(6) 0.7(1) 0.4(1) 0.24(3) 27.0/18
χL 48 1.0976(5) 4(1) −0.3(3) 0.83(1) 0.17(1) −0.04(1) 0.017(9) 1.0(2) 0.4(2) 0.22(8) 20.5/14
χL 32 1.0975(3) 3.5(5) 0.836(7) 0.1587(10) −0.030(8) 0.016(6) 0.74(3) 0.4(1) 0.23(3) 27.1/19
χL 48 1.0973(4) 3.1(8) 0.84(1) 0.157(1) −0.034(9) 0.014(6) 0.80(5) 0.5(2) 0.27(7) 21.5/15

of the RG invariant function b1ε + b2ε
2 + · · · as the scaling

field [45].
For convenience, we simply set y1 = −1 and y2 = −2.

Table III reports the fitting results of q = 5, where parameters
set to 0 are denoted by no entry. In the case of χH , we
first leave all parameters free, which gives the estimate βc1 =
1.0556(9), and we find that C2, n1, and d2 are consistent with
0. Then we set C2 = n1 = d2 = 0 and get βc1 = 1.0554(4).
By comparing estimates from various Ansätze, we finally ob-
tain βc1 = 1.0556(9). Similarly, in the fit of χL, we first leave
C2 and d2 free and find that both of them are consistent with
zero. We then perform another fit with C2 = d2 = 0. Both fits
give the stable estimate βc2 = 1.0975(6), which agrees with
the recent MC result [23]. A similar analysis is applied to
determine the critical points βc1 and βc2 for other values of
q, and the details of the fitting are presented in the Appendix.
In Fig. 7 we plot the scaled susceptibility χ̃L versus β for
q = 6, 7, 8, 9 and indicate our estimates by the vertical red
lines.

The final results of βc1 and βc2 are summarized in Table II.
Our estimates of the critical points are consistent with the
previous MC results with the precision being significantly
improved, as shown in Table I. On the other hand, apart from
the inconsistency among the TN results, some of them are
nearly excluded by our estimates if the quoted error margins
are taken seriously into account. In Fig. 2 we plot our esti-
mates of βc1 and βc2 as a function of q. As Fig. 2 shows,
one may find βc1 ∼ O(1), which quickly converges to the
2D XY model transition point βBKT = 1.119 96(6) [40] as
q increases, and βc2 ∼ O(q2), consistent with the statement
in Ref. [25]. Further, the least-squares fit of βc2 with the
formula βc2(q) = a0 + a1q + a2q2 gives a0 = 0.65(6), a1 =
−0.11(2), and a2 = 0.041(1). Comparing with the conjec-
tured formula βc2 = q2/A + Bq + C + De−π2q2/A based on
the Villain clock model from Ref. [19], we find that both of
them give the same leading behavior, i.e., the estimate a2 =
0.041(1) agrees with the inverse of A = 25.89(115), both of
which are consistent with 1/8π .

B. Duality between βc1 and βc2

In general, models in the same universality class are gov-
erned by the same fixed point and share the same asymptotic
phenomena, such as the critical exponents and amplitude ra-
tios. Hence, as illustrated in Sec. IV A, the high-T flows at

βc1 and low-T flows at βc2 belong to the same universality
class. Moreover, it is interesting to note that, for q = 5, the
nonuniversal parameters a0 and C1 of χH and χL in Table III
are numerically consistent with each other, which suggests
the more stringent duality relation χH (βc1, L) = χL(βc2, L).
For larger q, this relation seems to hold approximately. From
Table VII in the Appendix, it is also noted that the values of
a0 and C1 for χH (βc1, L) and χL(βc2, L) are nearly indepen-
dent of q, even though the critical point βc2(q) has a clear
dependence on q, which implies that these models are not only
governed by the same fixed point but also close to each other
in the critical surface in the RG analysis. To further demon-
strate the duality between βc1 and βc2, we analyze the data of
χL(βc1) and χH (βc2). In Sec. IV A we make use of the duality
between {N} at βc1 and {N∗} at βc2 to infer the scaling of
χL(βc2, L). If the duality between βc1 and βc2 is preserved for
q > 5, there should also exist a connection between {N} at βc2

and {N∗} at βc1. As shown in Fig. 8, irrespective of the value
of q, χH (βc2, L) and χL(βc1, L) are nearly identical even for
a linear system size as small as L = 8, vividly illustrating the
duality relation between the two critical points and between
the two flow representations. We numerically determine the
exponents ηL(βc1) for the low-T flows and ηH (βc2) for the

FIG. 8. Scaled susceptibilities χL (βc1, L)/L2 and χH (βc2, L)/L2

versus L on a log-log scale. The dashed line represents χ (L)/L2 =
a0L−η with η = 4/q2 for q = 5, 6, 9. For each q, the data points
of χH (βc2, L) and χL (βc1, L) are very close to each other, which
indicates that they not only share the same scaling behavior but also
have the same amplitude.
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FIG. 9. Linear plot of χH and χL versus β for q = 5. The red dots
and blue dots correspond to χH and χL , respectively, with system size
L = 128, 256, 512, 1024 (from bottom to top). The black vertical
dashed line shows the exact self-dual point βsd = 1.076 318 . . ..

high-T flows by fitting the MC data with the Ansatz

χ (L)/L2 = L−η(a0 + d1Ly1 ), (32)

where χ (L) stands for χL(βc1, L) or χH (βc2, L). The d1

term accounts for additive corrections. The final results
are ηL(βc1) = 0.169(3), 0.116(2), 0.0523(7) and ηH (βc2) =
0.168(2), 0.116(1), 0.051(2) for q = 5, 6, 9. There is a minor
deviation between the estimates and the expected value of
4/q2, which is probably caused by logarithmic corrections.

C. Self-dual point βsd for q > 5

In Secs. IV A and IV B we found that there is still a du-
ality interconnecting the critical points βc1 and βc2 for q � 5
despite the fact that the model is no longer strictly self-dual.
Now we would like to extend the definition of the self-dual
point βsd and find an approximate one for q > 5. Here we
define it to be the point at which χH (β, L) and χL(β, L)
are identical, i.e., χdiff (βsd, L) ≡ χH (βsd, L) − χL(βsd, L) =
0. The self-dual point in the thermodynamic limit is then
obtained by βsd = limL→∞ βsd(L). Notice that we in principle
only require χH and χL to have the same scaling behavior
at βsd(L) for q > 5. Our definition is more stringent by de-
manding that their amplitudes should also be equal at the
self-dual point. This stringent definition recovers the exact
self-dual point for q = 5: As shown in Fig. 9, the intersections
of χH (β, L) and χL(β, L) for q = 5 are almost independent
of the system size and consistent with the exact self-dual
point βsd = 1.076 318 . . .. For q = 6–9, we plot χdiff (β, L)
for several system sizes in Fig. 10. For all values of q, χdiff

has excellent intersections even for small system sizes, which
suggests the fitting Ansatz

χdiff = a0 + a1(β − βsd )Lyd , (33)

where a0 is a constant and should be consistent with 0. The
fitting results are summarized in Table IV. In the fits of χdiff ,
we first leave a0 and a1 free and find that all the estimates of
a0 are consistent with 0. Then we set a0 = 0 and get consis-
tent estimates of βsd. Note that no finite-size corrections are
included in Eq. (33), implying that no shifting of approximate

FIG. 10. Plots of χdiff versus the inverse temperature β for
(a) q = 6, (b) q = 7, (c) q = 8, and (d) q = 9. The vertical red line
represents the central value of βsd and the shadow shows the error
bar.

self-dual points βsd(L) is observed for different linear system
sizes L.

We notice that the value of yd is greater than the lat-
tice dimension d = 2. This unusual result is actually due
to the fact that the Ansatz proposed above does not truly
describe the scaling behavior of χdiff . To derive the cor-
rect Ansatz, let us write χH (β, L) = L2−ηH (β )aH (β ) and
χL(β, L) = L2−ηL (β )aL(β ) in the QLRO phase and expand
them with respect to β at βsd to first order

χ (β, L) = L2−η[a − ε(a′ − aη′ ln L)] + O(ε2), (34)

where ε = βsd − β and (χ, a, η) stands for (χH , aH , ηH ) or
(χL, aL, ηL ). All functions are evaluated at βsd. According
to our definition of βsd, we have aH (βsd ) = aL(βsd ) and
ηH (βsd ) = ηL(βsd ) ≡ η(βsd ). Therefore, χdiff (β, L) can be
written as

χdiff (β, L) = a0 + εL2−η(βsd )(a1 ln L + a2) + O(ε2), (35)

TABLE IV. Fitting results of the self-dual point βsd from χdiff =
χH − χL for q = 6, 7, 8, 9 with the Ansatz (33).

q Lm βsd yd a0 a1 χ 2/D

6 16 1.254 10(1) 2.15(1) 0.015(6) −0.65(3) 16.7/17
6 24 1.254 11(2) 2.12(2) 0.02(2) −0.71(5) 10.7/13
7 24 1.417 11(3) 2.09(3) −0.00(2) −0.48(6) 13.4/16
7 32 1.417 10(4) 2.02(5) −0.02(4) −0.6(1) 7.3/12
8 12 1.573 06(4) 2.13(3) −0.001(5) −0.31(3) 16.6/22
8 16 1.573 03(5) 2.12(4) −0.01(1) −0.32(4) 10.2/17
9 24 1.727 17(4) 2.14(2) −0.02(2) −0.25(2) 26.1/22
9 32 1.727 20(5) 2.14(2) 0.01(4) −0.25(2) 18.5/18
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TABLE V. Fitting results of the self-dual point βsd from χdiff =
χH − χL for q = 6, 7, 8, 9 with the Ansatz (35).

q Lm βsd η(βsd ) a1 χ 2/D

6 16 1.254 078(9) 0.15(2) −0.53(3) 20.1/18
6 24 1.254 087(10) 0.14(2) −0.52(4) 11.7/14
7 16 1.417 10(2) 0.20(2) −0.38(3) 24.7/19
7 24 1.417 11(2) 0.17(3) −0.35(4) 12.4/15
8 16 1.573 08(3) 0.19(4) −0.28(3) 10.7/18
8 24 1.573 06(4) 0.19(7) −0.28(6) 5.5/13
9 24 1.727 21(3) 0.11(2) −0.17(1) 27.2/22
9 32 1.727 19(3) 0.11(2) −0.17(2) 18.5/18

where a0 should be consistent with 0. From Eq. (35) we
find that the leading scaling term of χdiff (β, L) is actually
L2−η(βsd ) ln L, which results in yd ≈ 2.1 for the Ansatz (33).
We refit the data with Eq. (35) and only keep the leading
scaling term by setting a0 = a2 = 0. The results are shown
in Table V. The estimates of βsd are consistent with the one
obtained via Eq. (33). The final estimates of βsd are presented
in the third column of Table II and indicated with vertical red
lines in Fig. 10. We plot our estimated βsd as a function of q in
Fig. 2. The linear fit of the data for q > 5 suggests βsd scales
as 0.31(1) + q/2π for the large-q limit.

At our estimated self-dual point βsd, we then obtain
the high-accuracy estimate of η(βsd ) by applying finite-size
analysis to χH (βsd, L) [or χL(βsd, L)]. We perform the least-
squares fits to the Monte Carlo data via the Ansatz

χH (βsd, L) = L2−η(βsd )(a0 + d1Ly1 ) + c0. (36)

Our results are summarized in Table VI with the final esti-
mates given in Table II, and we find that the estimated values
of η(βsd ) agree with 1/q, as demonstrated in Fig. 2(b), which
is consistent with the RG analysis of the q-state Villain clock
model in Sec. II D.

V. CONCLUSION

In this work we applied the worm algorithm to simulate
the q-state clock model with 5 � q � 9 in its two flow rep-
resentations obtained from the high-T and low-T expansions.
By finite-size analysis of the susceptibilitylike quantities χH

FIG. 11. Linear plot of the scaled magnetic susceptibility
χH (βc1, L)L−7/4(ln L + C1)−1/8 versus the inverse temperature β for
(a) q = 6 and (b) q = 9. The constant C1 is set to the corresponding
estimated value for each case. The vertical red line represents the
central value of βc1 and the shadow shows the error bar.

and χL, we determined the BKT transition points βc1 and βc2,
which significantly improve the precision of the previous MC
estimates. Near βc1, the exponential divergence of ξ and the
scaling behavior of the magnetic susceptibility χH confirm
that the clock model with q � 5 at βc1 is in the universality
class of the 2D XY model. Interestingly, we found that even
some nonuniversal parameters are consistent with each other,
which implies that the clock models with various q values are
adjacent on the critical surface and flow into the same fixed
point under the process of renormalization-group flows.

Besides the high-precision estimates of the critical points,
the flow representation also provided a framework to study the
duality of the model both analytically and numerically. The
rich phenomena associated with the duality and self-duality
properties of the clock model were vividly illustrated by the
following.

(i) At each BKT transition point, the pair of anomalous
dimensions η1 = 1/4 and η2 = 4/q2 can be simultaneously
observed in the finite-size scaling of susceptibilitylike quan-
tities for the two flow representations, respectively. More
precisely, one has χH (βc1, L) ∼ L2−η1 and χL(βc1, L) ∼ L2−η2

for the high-T transition point βc1 and χH (βc2, L) ∼ L2−η2

and χL(βc2, L) ∼ L2−η1 for the low-T transition point βc2.
(ii) For q = 5–9, we numerically observe the stringent

relation χH (βc2, L) = χL(βc1, L) for each system size L.

TABLE VI. Fitting results of η(βsd ) from χH for q = 5, 6, 7, 8, 9 with the Ansatz (36). We finally obtain η(βsd ) =
0.200(2), 0.1665(3), 0.1426(7), 0.1250(2), 0.1111(2) for q = 5, 6, 7, 8, 9, respectively.

q Lm η(βsd ) a0 d1 c0 y1 χ 2/D

5 8 0.200(1) 0.948(6) 0.29(5) −0.5(1) −0.8(1) 1.8/5
5 12 0.201(1) 0.954(7) 0.4(3) −0.9(6) −1.0(2) 1.0/4
6 6 0.1664(1) 0.9529(7) 0.6(4) −0.6(4) −1.5(1) 7.1/7
6 8 0.1665(2) 0.9534(9) 2(7) −2(8) −1.7(3) 6.4/6
7 12 0.1431(2) 0.9606(7) 0.4(3) −2.1(4) 3.1/3
7 16 0.1426(7) 0.958(4) 0.04(4) −1.0(7) 1.3/2
8 6 0.125 03(6) 0.9644(2) −0.4(1) 0.40(8) −2 3.8/7
8 8 0.125 01(8) 0.9643(3) −0.4(2) 0.4(2) −2 3.7/6
9 4 0.111 12(3) 0.9679(1) −0.38(3) 0.39(3) −2 4.6/9
9 6 0.111 14(4) 0.9680(2) −0.33(10) 0.35(8) −2 4.3/8
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TABLE VII. Fitting results of the critical points βc1 and βc2 from χH and χL with the Ansatz (31). The column of βc corresponds to βc1

when O is taken as χH and corresponds to βc2 when O is taken as χL .

O q Lm βc C1 C2 a0 a1 a2 a3 n0 d1 χ 2/D

χH 6 48 1.1092(3) 4.8(2) 1.3(2) 0.807(3) −0.067(3) −0.0071(8) −0.0013(3) −0.02(7) 26.3/22
χH 6 64 1.1093(4) 4.6(3) 1.4(3) 0.809(4) −0.066(3) −0.007(1) −0.0012(3) 0.0(1) 24.3/17
χH 6 32 1.1103(5) 3.5(5) 1.38(5) 0.824(7) −0.066(1) −0.0066(3) −0.0012(2) 0.08(3) 27.4/27
χH 6 48 1.1105(8) 3.3(8) 1.42(8) 0.83(1) −0.065(2) −0.0064(4) −0.0012(2) 0.09(6) 24.0/22
χH 9 32 1.1202(7) 3.4(5) 2.1(3) 0.823(8) −0.053(3) −0.0039(7) −0.0004(2) 0.24(10) 0.07(2) 24.2/24
χH 9 48 1.120(1) 3.7(9) 1.7(4) 0.82(1) −0.056(3) −0.005(1) −0.0005(3) 0.1(1) 0.07(3) 20.5/19
χH 9 48 1.1188(3) 4.6(2) 1.31(4) 0.807(3) −0.0605(7) −0.0062(4) −0.0008(2) 22.1/21
χH 9 64 1.1189(4) 4.5(3) 1.34(5) 0.808(4) −0.0600(9) −0.0063(4) −0.0009(2) 17.2/16
χL 6 48 1.4276(4) 4.9(3) 1.40(4) 0.802(3) 0.0475(6) −0.0025(1) 23.2/24
χL 6 64 1.4278(5) 5.0(4) 1.39(5) 0.801(5) 0.0475(7) −0.0025(1) 19.2/19
χL 7 48 1.8511(6) 4.9(2) 1.59(3) 0.796(3) 0.0289(3) −0.001 03(4) 24.8/18
χL 7 64 1.8509(8) 4.7(3) 1.55(5) 0.797(4) 0.0292(4) −0.001 05(5) 18.6/14
χL 8 32 2.3498(7) 5.0(2) 1.61(3) 0.791(2) 0.0206(2) −0.000 48(2) 43.2/33
χL 8 48 2.348(1) 4.5(3) 1.69(4) 0.797(4) 0.0203(2) −0.000 48(2) 34.0/27
χL 9 24 2.9196(7) 5.2(1) 1.59(4) 0.785(2) 0.0159(2) −0.000 10(9) 24.0/18
χL 9 32 2.9196(10) 5.3(2) 1.60(5) 0.785(3) 0.0158(3) −0.000 08(9) 23.2/15

(iii) The stringent condition χdiff (βsd, L) = 0 can be used
to define the approximate self-dual point βsd(L) for q >

5, which is found to be nearly L independent and βsd =
limL→∞ βsd(L) follows βsd � q/2π in the large-q limit.

(iv) At the approximate self-dual point βsd, we found that
the anomalous dimension η(βsd ) agrees with 1/q, which is
the same as that of the Villain clock model at its exact self-
dual point. On this basis, we conjectured that η(βsd ) = 1/q
holds exactly at our defined self-dual point and is universal
for systems in the q-state clock universality class.

Actually, for each point in the QLRO phase β ∈ [βc1, βc2],
a pair of anomalous dimensions (η and η∗) can be observed
for the high-T and low-T flows, respectively. Further, a dual
temperature β∗(β ) also exists such that the pair of exponents
(η and η∗) also occurs, but for the low-T and high-T flows,
respectively. These findings enrich our understanding of the
critical phenomena and duality of the clock model.
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APPENDIX: FITTING DETAILS OF βc1 AND βc2

In this Appendix we describe the fitting details for esti-
mating the higher transition point βc1 for q = 6, 9 from χH

and the lower transition point βc2 for q = 6, 7, 8, 9 from χL.
For βc1, we first plot the scaled magnetic susceptibility χ̃H =
χH (β, L)L−7/4(ln L + C1)−1/8 versus β for q = 6, 9.

As Fig. 11 shows, both of them have excellent intersec-
tions, which implies that χH suffers from weak finite-size
corrections. For q = 6, we perform the least-squares fit of the
MC data via the Ansatz (31). Similar to q = 5, we first leave
βc, C1, C2, etc., free and find that the effect of the parameters
n0, n1, d1, and d2 is negligible, i.e., their amplitudes are consis-
tent with 0. We then only include a single additive correction
term by setting n1 = d1 = d2 = 0 and leaving n0 free, which
gives the estimate βc1 = 1.1093(4). Consistent estimates are
also obtained by setting n0 = n1 = d2 = 0 and leaving d1 free,
and we find that the value of d1 is nearly consistent with 0.
By comparing estimates from various Ansätze, we conclude
that βc1 = 1.1103(15). Similar analysis has been applied to
q = 9, and we get the final estimate βc1 = 1.119(2). These
results are reported in Table VII. In Table VII we find that
the nonuniversal parameters C1, C2, and a0 for q = 6 and 9
are numerically consistent, and the high-T transition point βc1

quickly approaches the 2D XY model’s BKT point βBKT =
1.119 96(6) [41] as q increases.

We then determine the values of βc2 for q = 6, 7, 8, 9.
Analogous to the case of estimating βc1 for q = 6 and
9, we find that χL suffers from weak finite-size correc-
tions compared to q = 5. The fitting results of βc2 are
summarized in Table VII. After considering the systematic
errors from using different Ansätze, we get the final esti-
mates βc2 = 1.4275(8), 1.851(1), 2.349(2), 2.920(2) for q =
6, 7, 8, 9, respectively. The same phenomenon that nonuniver-
sal parameters C1, C2, and a0 are consistent for different values
of q is also observed for χL. Moreover, it is surprising that
these nonuniversal parameters of χL numerically agree with
those of χH , which further demonstrates the duality between
the two critical points.
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