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Microscopic theory of the Curzon-Ahlborn heat engine based on a Brownian particle
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The Curzon-Ahlborn (CA) efficiency, as the efficiency at the maximum power (EMP) of the endoreversible
Carnot engine, has significant impact on finite-time thermodynamics. However, the CA engine is based on many
assumptions. In the past few decades, although a lot of efforts have been made, a microscopic theory of the CA
engine is still lacking. By adopting the method of the stochastic differential equation of energy, we formulate
a microscopic theory of the CA engine realized with a highly underdamped Brownian particle in a class of
nonharmonic potentials. This theory gives microscopic interpretation of all assumptions made by Curzon and
Ahlborn. In other words, we find a microscopic counterpart of the CA engine in stochastic thermodynamics.
Also, based on this theory, we derive the explicit expression of the protocol associated with the maximum
power for any given efficiency, and we obtain analytical results of the power and the efficiency statistics for the
Brownian CA engine. Our research brings new perspectives to experimental studies of finite-time microscopic
heat engines featured with fluctuations.
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I. INTRODUCTION

For practical heat engines, not only the efficiency but
also the power characterizes the performance. Optimizing
the power and the efficiency of heat-engine cycles is one of
the goals in the study of finite-time thermodynamics [1,2].
Compared to the Carnot efficiency achieved in infinite time
[3] (but see Ref. [4]), the efficiency at the maximum power
(EMP) attracts a lot of attention in the studies of finite-time
heat engines. The early studies [5–12] of the endoreversible
Carnot engine concluded that the EMP is the well-known
Curzon-Ahlborn (CA) efficiency

ηCA = 1 −
√

TC

TH
, (1)

where TC and TH denote the temperatures of the cold and the
hot heat baths. Like the Carnot efficiency, the CA efficiency
depends only on the temperatures of the two heat reservoirs,
independent of any other characteristics of the heat engine.
The CA efficiency aroused a lot of attention and led to many
following-up researches (see, for example, Refs. [9,13–15]).
It has become a paradigmatic result in the study of thermo-
dynamic optimization in the framework of finite-time and
stochastic thermodynamics. In addition, the CA efficiency is
relevant to many practical thermal machines [16].

The CA efficiency as the EMP has also been derived in
some different setups [17]. For example, in Ref. [18] it is
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shown that CA efficiency is a result which can be obtained
in the well-founded linear irreversible thermodynamics. In
Ref. [16], the CA efficiency, as the EMP, is derived in the sym-
metric low-dissipation regime, where the irreversible entropy
production is assumed inversely proportional to the period
of a cycle. Such a 1/τ -scaling, as the first-order finite-time
correction to the quasi-static driving [19], has been recently
verified in the experiment of finite-time isothermal compres-
sion of dry air [20,21]. These studies confirm the validity of
the CA efficiency as the EMP in many heat engine models.
Meanwhile, in some other models, the EMP deviates from the
CA efficiency [14,16,18,19,22–43].

The original derivation of the CA efficiency [5–8] is based
on a lot of assumptions, such as the endoreversible assump-
tion and the assumption of constant temperature difference.
But how reliable are those assumptions made by Curzon and
Ahlborn remains unclear due to the lack of a microscopic
theory of the CA engine. Also, due to this lack, the control
scheme of the work parameter which is essential to construct
the optimal cycle cannot be determined (except for the har-
monic potential [15]), neither can the work and heat statistics.
In the past few decades, a lot of efforts have been made to
seek a microscopic interpretation of the CA engine, but were
unsuccessful.

In this article, we realize a microscopic CA engine with a
highly underdamped Brownian particle [15,44–52] in a time-
dependent potential as the working substance. By adopting the
method of stochastic differential equation of energy [53,54],
we give microscopic interpretation of all assumptions made
by Curzon and Ahlborn, including the endoreversibility, New-
ton’s cooling law and the constant temperature difference.
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Thus, we find a microscopic counterpart of the CA engine
in stochastic thermodynamics. Furthermore, this microscopic
theory allows us to determine the control scheme of the work
parameter of the Brownian CA engine and study the fluctu-
ations of the power and the efficiency of the Brownian CA
engine. Our study demonstrates that when downsizing the
working substance to a single Brownian particle, results about
the average power and efficiency of the CA engine remain
valid, but the fluctuations become prominent.

This article is organized as follows. In Sec. II, we introduce
the stochastic differential equation of energy for a highly
underdamped Brownian particle. In Sec. III, we realize the CA
engine with a highly underdamped Brownian particle. All pre-
conditions assumed by Curzon and Ahlborn are derived from
microscopic dynamics. In Sec. IV, we derive the analytical
expression of the joint generating function of work and heat
in an isothermal process, and study the statistics of the power
and the efficiency of the Brownian CA engine. Summary and
discussions are given in Sec. V.

II. STOCHASTIC DIFFERENTIAL EQUATION OF ENERGY
FOR A HIGHLY UNDERDAMPED BROWNIAN PARTICLE

The working substance of the engine is modeled as a
Brownian particle [46,48,55–66] constrained in a controllable
potential U (x, t ) = k(t )x2n/(2n) with the control parameter
k(t ) and a positive integer n. In the isothermal expansion
(compression) process, the control parameter k(t ) is varied
when the engine is in contact with the heat bath at temperature
Tb. The motion of the particle with mass m is governed by the
complete Langevin equation

ẍ + γ ẋ + k(t )

m
x2n−1 = 1

m
ξ (t ), (2)

where the random force ξ (t ) represents a Gaussian white
noise satisfying 〈ξ (t )〉 = 0 and 〈ξ (t )ξ (t ′)〉 = 2mγ Tbδ(t − t ′)
with the friction coefficient γ . Throughout the text the Boltz-
mann constant is set to be kB = 1.

We consider the highly underdamped regime τp � γ −1

and slow external driving τp � k/k̇, where τp is the period
of the unperturbed motion of the particle, e.g., τp = 2π

√
m/k

for a harmonic oscillator (n = 1). Under these two conditions,
the variation of the stochastic energy of the particle within a
period is relatively small, which allows us to study the dy-
namics of the stochastic energy E = mẋ2/2 + U (x, t ). Based
on Ito’s lemma and Virial theorem, the equation of motion is
expressed as the stochastic differential equation of the energy
E [53,54],

dE = λ̇

λ
Edt − 	

(
E − fnTb

2

)
dt +

√
2	TbEdBt . (3)

where the work parameter is rewritten into λ(t ) = k(t )1/(n+1)

with the increment dBt of the Wiener process, the effective
friction coefficient 	 = 2nγ /(n + 1), and the effective de-
grees of freedom fn = 1 + 1/n. The kinetic energy and the
potential energy of the particle obey a generalized equiparti-
tion theorem. The increment of trajectory work for this system
is

dW = λ̇

λ
Edt . (4)

The trajectory heat is obtained from the first law of thermody-
namics as

dQ = −	

(
E − fnTb

2

)
dt +

√
2	TbEdBt . (5)

The Fokker-Planck equation associated with Eq. (3) can
be solved explicitly [54]. During the dynamical evolution pro-
cess, the system remains in a Maxwell-Boltzmann distribution
in the energy space and thus can be described by an effective
temperature θ (t ) as

P(E , t ) = e−E/θ (t )

	( fn/2)

E fn/2−1

θ (t ) fn/2
, (6)

where 	(x) = ∫ ∞
0 e−yyx−1dy is the Euler gamma function.

Notice that Eq. (6) leads to the endoreversibility, which is
usually assumed in previous studies relevant to the CA engine,
but is derived as a consequence of the equation of motion in
our setup. The ensemble average of the energy is 〈E (t )〉 =
fnθ (t )/2 with the effective temperature θ (t ) governed by

θ̇ (t ) = λ̇

λ
θ (t ) − 	[θ (t ) − Tb]. (7)

We emphasize that the left-hand side of Eq. (7) corresponds
to the time derivative of the average energy up to a factor
fn/2. The two terms on the right-hand side correspond to the
average work flux and heat flux, respectively. The average heat
flux satisfies Newton’s cooling law, which is also derived as a
consequence of the equation of motion. The effective friction
coefficient 	, as a cooling rate, is independent of the work pa-
rameter λ. We would like to point out that a similar equation of
motion for the effective temperature θ (t ) has been obtained
previously for the ideal gas as the working substance [13].
However, their derivation relies on several assumptions, for
example, the equation of state of ideal gas, the phenomenolog-
ical Newton’s cooling law and the endoreversible assumption.
On the contrary, the results presented here are all derived
from the microscopic dynamics, and are capable of describing
microscopic systems featured with fluctuations.

III. REALIZATION OF CURZON-AHLBORN ENGINE
BASED ON A BROWNIAN PARTICLE

With the model introduced above, we study the EMP of
such a microscopic Brownian engine and formulate a micro-
scopic theory of the CA engine. To construct a finite-time
Carnot cycle, two heat baths at temperatures TC and TH are
required in the isothermal compression and the isothermal
expansion processes. The (effective) friction coefficients γC

and γH (	C and 	H ) may be different in the two processes.
Based on Curzon and Ahlborn’s derivation [8], we summarize
the preconditions of the CA engine as follows

(i) Endoreversibility [67]. The state of the working sub-
stance of the engine can be described by an effective
temperature.

(ii) Newton’s cooling law (or linear heat transfer law). The
heat flux between the working substance and the heat bath is
proportional to the temperature difference.

(iii) Constant temperature difference. During the
isothermal expansion (compression) process, the effective
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temperature of the working substance remains at a constant
value θH (θC ) different from that of the heat bath TH (TC ).

(iv) Internal reversible cycle. All irreversibilities are asso-
ciated with the heat exchange between the working substance
and the heat baths while the adiabatic processes remain re-
versible [17].

(v) Constant heat capacity [68]and cooling rate [69]. Both
the heat capacity of the working substance and the cooling rate
are independent of the temperature and the work parameters.

According to Eqs. (6) and (7), our setup fulfills require-
ments (i) and (ii). When the precondition (v) is satisfied, the
optimal protocol of finite-time isothermal processes becomes
the exponential protocol [13,15,49,54]. Here the precondition
(v) is guaranteed in the highly underdamped regime. With
the exponential protocols, the optimal cycle corresponding
to the maximum power is exactly the CA cycle satisfying
preconditions (iii) and (iv). The heat engine operates like a
reversible Carnot engine between two virtual heat baths at
temperatures θC and θH , respectively.

We attempt to construct and optimize a finite-time Brow-
nian Carnot engine with the microscopic model. A Carnot
cycle consists of two isothermal processes and two adiabatic
processes. According to Refs. [13,15,49,54], we know that for
a given duration of time and the initial and the final values of
the work parameter, the optimal protocol λ(t ) of an isothermal
expansion (compression) process that maximizes the work
output (minimizes the work input) in the highly underdamped
regime is an exponential function of time. The adiabatic pro-
cesses are the instantaneous jumps at the beginning and the
end of the isothermal processes. The effective temperature
of the working substance is kept at a constant except for
sudden jump processes. The jump-exponential-jump form of
the optimal work protocol λ(t ) and the constant effective
temperature are general properties of the optimal control, and
are independent of specific settings of the control time and the
initial and final values of the work parameter, as long as we
maximize the work output. Based on the equation of motion
of the effective temperature [Eq. (7)] and the definition of
trajectory work and heat, we can optimize the average power
of the finite-time Brownian engine. In Fig. 1(a), we plot the
cycle diagram of the Brownian CA engine. To construct a
closed CA cycle, the values of work parameter at the end of
each process in Fig. 1(a) satisfy

λ2

λ1
= λ3

λ4
= r, (8)

with the compression ratio r. The four processes of the CA
cycle are illustrated as follows:

(I) Isothermal compression. The working substance is in
contact with the cold heat bath. Initiated from λ1 at t = 0,
the work parameter is varied exponentially with time λ(t ) =
λ1(λ2/λ1)t/τC , where τC is the duration of the process. From
the protocol, it can be found that the effective temperature
of the working substance remains at a constant during the
process:

θC = τC	C

τC	C − ln r
TC . (9)

FIG. 1. CA cycle based on a Brownian particle. (a) The cycle
diagram in the space of the work parameter λ and the effective
temperature θ . In the isothermal expansion (compression) process,
the working substance remains at a constant effective temperature
θH (θC ), which is different from the temperature TH (TC ) of the hot
(cold) heat bath. In the two adiabatic processes, the effective tem-
perature θ of the working substance is proportional to the work
parameter λ. (b) The control scheme of the work parameter λ(t )
and the evolution of the effective temperature θ (t ) in a finite-time
cycle. The work parameter λ is varied exponentially with time in an
isothermal process, and is quenched abruptly in an adiabatic process.

The heat released to the cold heat bath during the isothermal
compression process is

−〈QC〉 = fn

2
	C (θC − TC )τC

= fn

2
ln r

τC	C

τC	C − ln r
TC . (10)

(II) Adiabatic compression. The work parameter λ(t ) is
quenched instantaneously from λ2 to λ3 with the effective
temperature θ (t ) changing from θC to θH accordingly. When
the timescale of varying the work parameter is much shorter
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than that of the heat dissipation, Eq. (7) becomes θ̇ (t ) =
λ̇θ (t )/λ, which leads to θH/θC = λ3/λ2.

(III) Isothermal expansion. The working substance is in
contact with the hot heat bath. The work parameter is var-
ied exponentially with time λ(t ) = λ3(λ4/λ3)(t−τC )/τH , and the
working substance remains at a constant effective tempera-
ture,

θH = τH	H

τH	H + ln r
TH , (11)

where τH is the duration of the process. The heat absorbed
from the hot heat bath during the isothermal expansion pro-
cess is

〈QH 〉 = fn

2
	H (TH − θH )τH

= fn

2
ln r

τH	H

τH	H + ln r
TH . (12)

(IV) Adiabatic expansion. Finally, the work parameter is
quenched from λ4 to the initial value λ1 instantaneously with
the effective temperature changing from θH to θC accordingly,
satisfying θH/θC = λ4/λ1.

The control scheme of the work parameter λ and the evo-
lution of the effective temperature θ in a finite-time cycle are
illustrated in Fig. 1(b). For long operation time τi � ln r/	i,
the system is in the low-dissipation regime, and the finite-time
correction to the heat exchange is of the order τ−1

i , as can be
seen from Eqs. (10) and (12).

Combing Eqs. (9)–(12), it is straightforward to verify the
precondition (iv) that the entropy change of the working sub-
stance after a cycle is zero �S = 〈QH 〉/θH + 〈QC〉/θC = 0.

Therefore, the microscopic dynamics of the model, together
with the explicit control scheme λ(t ), constitutes a micro-
scopic theory of the CA engine based on a Brownian particle.

The net work of a full cycle is −〈W 〉 = 〈QH 〉 + 〈QC〉, and
the average power and the thermodynamic efficiency follow
as P := −〈W 〉/(τH + τC ) and η := −〈W 〉/〈QH 〉, which are
explicitly

P = fn ln r

2(τH + τC )

(
τH	H TH

τH	H + ln r
− τC	CTC

τC	C − ln r

)
, (13)

and

η = 1 − 1 + (τH	H )−1 ln r

1 − (τC	C )−1 ln r

TC

TH
. (14)

To achieve the maximum power, we first fix r and optimize
the power over τH and τC . The maximum power is obtained as

Pmax = fn	C	H (
√

TH − √
TC )

2

2(
√

	H + √
	C )2

, (15)

with the corresponding optimal duration of the two isothermal
processes

τmax
H = ln r(

√
	H TH + √

	CTC )

	H
√

	C (
√

TH − √
TC )

,

τmax
C = ln r(

√
	H TH + √

	CTC )

	C
√

	H (
√

TH − √
TC )

. (16)

It is straightforward to see that the EMP of the Brownian
engine in the highly underdamped regime is the CA efficiency

ηEMP = 1 −
√

TC

TH
= ηCA, (17)

as we expect. Due to fact that the cooling rates are constant,
both the maximum power and the EMP are independent of r.
Hence Pmax is also the global maximum power.

Our optimization with respect to the durations of the
isothermal processes τH and τC is mathematically equivalent
to the optimization of the effective temperatures θH and θC

as done in Ref. [8], since the effective temperatures and the
durations of the isothermal processes are related by Eqs. (9)
and (11) under fixed compression ratio r. Experimentally, the
control of effective temperatures is realized by tuning the
durations of the isothermal processes.

Based on Eqs. (14) and (15), we derive the trade-off rela-
tion between power and efficiency in Appendix A. Compared
to previous studies [26,70–74], our trade-off relation is tight
and is shown to be reachable with the explicit control scheme
of the work parameter λ(t ). It is worth mentioning that the
same trade-off relation was obtained in Ref. [75]. Also, the
same trade-off relation as well as the control scheme for the
harmonic potential was obtained in Ref. [15]. As a generaliza-
tion of Ref. [15], our results are valid for a Brownian particle
in a class of nonharmonic potentials.

IV. POWER AND EFFICIENCY STATISTICS OF THE
BROWNIAN CURZON-AHLBORN ENGINE

For a microscopic Brownian engine, average values are
insufficient to characterize the performance. Fluctuations are
nonnegligible [76]. To evaluate the performance of a finite-
time heat engine, we need to quantify the extracted work
and heat absorbed from the hot bath in one heat-engine
cycle. For the model introduced above, we can derive the
analytical results of the joint generating function of work
and heat I (u, s) := 〈euQ+sW 〉 by generalizing the techniques in
Ref. [77]. The final result is

I (u, s) =
[

1 + uψ̃ (τ )

1 + uψ̃0

] fn
2

e
fn (s−u)

2

∫ τ

0
λ̇(t )
λ(t ) ψ (t )dt , (18)

where τ is the time duration of the process, and the
temperature-like variable ψ (t ) satisfies

dψ

dt
= λ̇

λ
ψ − 	(ψ − Tb) + (s − u)

λ̇

λ
ψ2, (19)

with the initial condition ψ (0) = ψ̃0/(1 + uψ̃0). The initial
value ψ̃0 is either set as the initial temperature θ0 or obtained
from the previous process. A shifted temperature-like variable
is defined as ψ̃ (t ) := ψ (t )/[1 − uψ (t )], whose value ψ̃ (τ ) at
the end of this process is used as the initial value ψ̃0 of the
subsequent process. Detailed derivations to Eqs. (18) and (19)
are left in Appendix B.

Based on the microscopic theory, especially the joint gen-
erating function of work and heat I (u, s) and the control
scheme λ(t ) of the full cycle, we can further study the fluc-
tuations of the power and the efficiency [76–82] together with
the fluctuation theorems [83,84] of the finite-time Brownian
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FIG. 2. Distribution of the power (a) and the fluctuating effi-
ciency deviation (b) of a Brownian CA engine for three different
periods τt = 5, 20, 50. (a) The vertical dotted line indicates the
average power. (b) The vertical solid and dashed lines correspond
to efficiency η = 0 and η = ηC (Carnot efficiency) respectively. The
parameters are chosen as TC = 300, TH = 600, 	C = 1, 	H = 1.2.

Carnot engine. Specifically, we calculate the distribution p(P)
of the fluctuating power P := −W/(τC + τH ) and the distribu-
tion p(ζ ) of the fluctuating efficiency deviation ζ := −(W +
ηQH )/〈QH 〉 from the generating function Icycle(uH , uC, s) =
〈euH QH +uC QC+sW 〉 (derivations are left in Appendix B) of a
whole cycle. Please note that, instead of the stochastic effi-
ciency −W/QH , we use the fluctuating efficiency deviation
ζ to characterize the deviation from the thermodynamic effi-
ciency η. It is straightforward to see that 〈ζ 〉 = 0.

As a special case, we plot the distributions of the power
and the efficiency of the Brownian CA engine in Fig. 2, where
η = ηCA, τC = τmax

C , τH = τmax
H . Due to the fluctuation, the

power can be negative or much larger than the average power.
Similarly, the efficiency can be negative or larger than Carnot
efficiency. From the analytical results of the joint generating
function Icycle(uH , uC, s), the leading-order contributions to
the variance of the power and the fluctuating efficiency de-
viation are obtained as

Var(P) ≈ 4P
2
max

fnη
2
CA

[(1 − ηCA)2 + 1/δ](1 + δ)√
	C	H

1

τt
, (20)

Var(ζ ) ≈ 4(1 − ηCA)2

fn
√

	C	H

(1 + δ)2

δ

1

τt
, (21)

where δ = √
	H TH/(	CTC ). The strict expressions of Var(P)

and Var(ζ ) are given in Eqs. (B58) and (B59). For both the
power and the fluctuating efficiency deviation, their variances
decrease inversely with the duration of the cycle τt := τmax

C +
τmax

H .

V. SUMMARY AND DISCUSSIONS

We realize the Curzon-Ahlborn heat engine with a Brow-
nian particle in the highly underdamped regime. By adopting
the method of stochastic differential equation of energy, we
formulate a microscopic theory of the CA engine based on
this model. This theory gives microscopic interpretation of all
assumptions of the CA engine including the endoreversibility,
Newton’s cooling law and the constant temperature differ-
ence. Hence, we find a microscopic counterpart of the CA
engine in stochastic thermodynamics.

One well-known model of the microscopic heat engine is
the overdamped Brownian engine [14,85]. Nevertheless, in the
overdamped regime, one cannot reproduce the preconditions
of the CA engine. The effective temperature is only defined
for the potential energy when neglecting the kinetic energy.
In fact, the kinetic energy remains in equilibrium with the
heat bath. Thus, the whole system is not endoreversible. Be-
sides, the cooling rate in the overdamped regime depends on
the work parameter, and the work parameter-dependent cool-
ing rate leads to varying effective temperature in isothermal
processes of the optimal cycle. Therefore, the EMP of the
overdamped Brownian engine is not the CA efficiency.

From this microscopic theory, we construct the optimal
cycle of the maximum power of the Brownian engine, and
the optimal cycle is exactly the CA cycle. The control scheme
associated with the maximum power for any given efficiency
can also be obtained based on the microscopic theory. In
addition, we calculate the generating function of work and
heat, and obtain the analytical results of statistics of the power
and the efficiency together with the fluctuation theorems of
the Brownian CA engine. These quantitative results about the
Brownian CA engine bring important insights to the stud-
ies of finite-time thermodynamics beyond the low-dissipation
regime [16,26,71,72,74,86,87]. For example, results about the
average power and efficiency of the CA engine remain valid
when downsizing the working substance to a single Brownian
particle, but fluctuations become prominent. Our study will
shed new light on the experimental explorations about finite-
time Brownian engine, and may inspire future studies about
the design of nanomachines with higher power and efficiency.
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APPENDIX A: TRADE-OFF RELATION BETWEEN
POWER AND EFFICIENCY

The trade-off relation between power and efficiency,
namely the maximum power for a given efficiency, has
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recently attracted much attention in finite-time thermody-
namics. Various trade-off relations have been found under
different circumstances [26,70–74]. Nevertheless, these re-
lations either are obtained based on the low-dissipation
approximation, or are very loose constraints.

It is worth pointing out that in 1989, a tight trade-off
relation between power and efficiency was obtained for the
endoreversible Carnot cycle with the assumption of Newton’s
cooling law [75],

P
∗ ∝ η(ηC − η)

1 − η
. (A1)

However, due to the lack of microscopic theory in their study,
they were unable to determine the control scheme associated
with the maximum power for a given efficiency.

Here we derive the control scheme λ(t ) associated with the
above tight trade-off relation between power and efficiency for
the finite-time Brownian Carnot engine. With the expressions
of the power and the efficiency, we introduce the function

L = fn

2(τH + τC )

(
τH	H ln r

τH	H + ln r
TH − τC	C ln r

τC	C − ln r
TC

)

+ μ

(
1 − 1 + (τH	H )−1 ln r

1 − (τC	C )−1 ln r

TC

TH
− η

)
, (A2)

where μ is the Lagrange multiplier to include the given effi-
ciency as the constraint. The maximum power for the given
efficiency η is obtained from

∂L

∂τH
= 0, (A3)

∂L

∂τC
= 0, (A4)

∂L

∂μ
= 0. (A5)

The solution to the above equations are

τ ∗
H = ln r√

	H (ηC − η)

(
1 − η√

	C
+ 1 − ηC√

	H

)
, (A6)

τ ∗
C = ln r√

	C (ηC − η)

(
1 − η√

	C
+ 1 − ηC√

	H

)
, (A7)

μ∗ = fn	C	H TH [(2 − η)η − ηC]

2(1 − η)2(
√

	H + √
	C )2

. (A8)

Since we have adopted the exponential protocol, the con-
trol scheme λ(t ) of the whole cycle for the Brownian CA
engine is

λ(t ) =
{
λ1(λ2/λ1)t/τ ∗

C 0 < t < τ ∗
C

λ3(λ4/λ3)(t−τ ∗
C )/τ ∗

H τ ∗
C < t < τ ∗

H
. (A9)

Substituting τ ∗
H and τ ∗

C into the expression of the power, we
obtain the maximum power for a given efficiency η as

P
∗ = fnTH	C	H

2
(√

	C + √
	H

)2

η(ηC − η)

(1 − η)
, (A10)

which agrees with the trade-off relation obtained in Ref. [75].
Notice that the trade-off relation [Eq. (A10)] is independent
of the compression ratio r.

We emphasize that the dependence of the maximum power
on the efficiency is always in the factorized form, which is
universal and independent of the cooling rate 	H (	C ) in the
two isothermal processes. In comparison with Ref. [70], the
trade-off relation (A10) is tighter and this upper bound of
the power can be achieved with the explicit control scheme.

APPENDIX B: THE GENERATING FUNCTION AND THE
STATISTICS OF THE FINITE-TIME CARNOT CYCLE

Based on the method proposed in Ref. [77], we derive
the joint generating function of work and heat for both the
finite-time driving process (finite-time isothermal process).
The system is coupled to only one heat bath with the ex-
changed heat Q[X ], and the work parameter of the system
is tuned with the performed work W [X ]. In stochastic ther-
modynamics, both heat and work are defined on the trajectory
X = {x(t )|0 � t � τ }, where x(t ) denotes a phase-space point
of the system with the energy E (t ) [77,88]. The joint generat-
ing function of work and heat is defined as the path integral in
the trajectory space

I (u, s) := 〈euQ+sW 〉 (B1)

=
∫

D[X ]p[X ]euQ[X ]+sW [X ], (B2)

where p[X ] denotes the probability of a given trajectory X .
The method [77] to be applied requires that
(1) The system always obeys a Maxwell-Boltzmann dis-

tribution in the energy space described by an effective
temperature θ , whose evolution is governed by

θ̇ = �t (θ ). (B3)

Here, �t (θ ) contains the contribution of the work. When work
is performed on the system, the temperature of the system in-
creases. If no modulation is performed, �t (θ ) = −	(θ − Tb)
is Newton’s law of cooling with a constant cooling rate 	. Tb

is the temperature of the bath.
(2) The increment in work is proportional to the stochastic

energy of the system,

dW = αt Edt, (B4)

where αt is determined by the control protocol, and is chosen
as αt = λ̇/λ relating to the work parameter λ = λ(t ); E =
E (t ) is the stochastic energy of the system affected by both
the heat exchange and the work performed. As a result, �t (θ )
is explicitly

�t (θ ) = −	(θ − Tb) + αtθ. (B5)

(3) The structure (shape) of the partition function does not
depend on λ. Generally, the partition function Zλ(β ) should
depend on the work parameter λ. The inverse temperature is
β = 1/θ , where we set kB = 1 for convenience. For example,
for a quantum harmonic oscillator, the frequency determines
energy-level spacing which affects the Zλ(β ). But here, we
require Zλ(β ) to be in the same form of λ which means

Zλ(β ) = g(λ) × Z (β ), (B6)

where g(λ) is a function of the work parameter, and Z (β )
characterize the form of the energy density.
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All conditions are satisfied in the current microscopic
model. The probability distribution of the energy is

p(E |θ ) = E
fn
2 −1e−βE

Z (β )
. (B7)

The partition function is Z (β ) = ∫ ∞
0 E fn/2−1e−βE dE =

β− fn/2	( fn/2) [89], which is also the normalization factor in
the energy space. The average energy is determined by

〈E〉 = −∂ ln [Z (β )]

∂β
= fn

2
θ. (B8)

Namely, the heat capacity of the working substance is fn/2,
which remains a constant.

Along a given trajectory X = {E (t )|0 � t � τ }, the incre-
ment of work at time t is

dW = αt Edt, (B9)

and the increment of heat is obtained from the first law

dQ = dE − αt Edt . (B10)

1. Discretization to calculate the joint generating
function of work and heat

We discretize the dynamics with t j = jε, j =
0, 1, ..., N, N + 1 and ε = τ/(N + 1), the thermal
distribution of the system is p(Ej |θ j ) with the inverse
temperature β j = 1/θ j at t j . The work parameter λ(t )
remains a constant during each time slice t j < t < t j+1

and is quenched at the moment t j . As a result, the work
Wj = ln[λ(t+

j )/λ(t−
j )]Ej ≈ α jE jε is performed at each

moment t j with the neglected exchanged heat, while the
heat Qj = Ej+1 − Ej − α jE jε is generated during each
time slice. The evolution between every adjacent moment
t j and t j+1 can be described by the transition probability
R j

j+1 = R(Ej+1, t j+1; Ej, t j ) (also named as the propagator),
which maps a local equilibrium state to another local
equilibrium state∫

dEj p(Ej |θ j )R j
j+1 = p(Ej+1|θ j+1). (B11)

The temperature of the next step is

θ j+1 = θ j + � j (θ j )ε, (B12)

where we denote � j (·) = �t j (·) for simplicity.
We calculate the joint generating function I (u, s) as fol-

lows. We rewrite the joint generating function with the N + 1
discrete steps,

I (u, s) =
∫ N+1∏

j=0

dEj

N∏
j=0

(
R j

j+1

)
p(E0|ψ̃0)

N∏
j=0

euQj+sWj ,

(B13)
where the initial value ψ̃0 is a temperature-like quantity. We
use a different notation ψ to distinguish with the temperature
θ . The meaning of “tilde” will be clarified later [by Eq. (B23)].
If there is no previous process, ψ̃0 = θ0 is the local tempera-
ture of the system. Otherwise, the initial value ψ̃0 is obtained
from the previous process.

From the first law, we can rewrite

uQj + sWj = (s − u)α jE jε + u(Ej+1 − Ej ). (B14)

The result of the integral in the first step is∫
dE0R0

1 p(E0|ψ̃0)euQ0+sW0 = Z (1/ψ0)

Z (1/ψ̃0)

eE1(u−1/ϕ1 )

Z (1/ϕ1)
, (B15)

where ψ0 is

ψ0 = 1/[1/ψ̃0 − (s − u)εα0 + u], (B16)

and the intermediate variable ϕ1 is obtained as

ϕ1 = ψ0 − 	(ψ0 − Tb)ε + α0ψ0ε. (B17)

After doing the integral over Ej, 1 � j � N + 1, the result
is

I (u, s) = Z (1/ψ0)

Z (1/ψ̃0)
·

N∏
n=1

[
Z (1/ψn)

Z (1/ϕn)

]
· Z (1/ψ̃N+1)

Z (1/ϕN+1)
, (B18)

where the initial value ψ0 is given by Eq. (B16), and the value
at the final step is

ψ̃N+1 = (1/ϕN+1 − u)−1. (B19)

The reduction formulas are ϕn = ψn−1 + �n−1(ψn−1)ε
and ψn = [1/ϕn − (s − u)αnε]−1, which lead to (ψn −
ψn−1)/ε = �n−1(ψn−1) + (s − u)αnψ

2
n−1. Its continuum

limit is

dψ

dt
= �t (ψ ) + (s − u)αtψ

2. (B20)

The initial condition is obtained from Eq. (B16) as

ψ (0) = ψ̃0

1 + uψ̃0
. (B21)

At the end t = τ , Eq. (B19) leads to the final condition

ψ̃ (τ ) = ψ (τ )

1 − uψ (τ )
. (B22)

We can define a shifted temperature-like variable ψ̃ (t ) as

ψ̃ (t ) := ψ (t )

1 − uψ (t )
. (B23)

The corresponding differential equation is

dψ̃

dt
= (1 + uψ̃ )2�t

(
ψ̃

1 + uψ̃

)
+ (s − u)αt ψ̃

2, (B24)

and the initial value is ψ̃ (0) = ψ̃0.
In the continuum limit, the factors of the joint generating

function (B18) are explicitly

Z (1/ψ0)

Z (1/ψ̃0)
→ (1 + uψ̃0)−

fn
2 , (B25)

Z (1/ψ̃N+1)

Z (1/ϕN+1)
→ (1 + uψ̃ (τ ))

fn
2 , (B26)

N∏
n=1

Z (1/ψn)

Z (1/ϕn)
→ e(s−u) fn

2

∫ τ

0 αt ψ (t )dt . (B27)

We then obtain the final result (18) of the joint generating
function. Notice that the temperature-like variable ψ (t ) is
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solved from the differential Eq. (B20) with the initial condi-
tion (B21) and the final condition (B22).

As follows, we discuss the joint generating function for the
sudden jump process and the exponential protocol process.
These two processes are used to form the finite-time Carnot
cycle.

2. Sudden jump process

In a sudden jump process, work is performed with the ne-
glected heat exchange. The work parameter is quenched from
λ− to λ+ with temperature-like quantity changed from ψ̃− to
ψ̃+. No exchanged heat is produced in such a sudden process,
and we can set u = 0. Therefore, ψ̃ becomes the same as ψ in
this process. The differential Eq. (B24) [or Eq. (19)] becomes

dψ̃

dt
= αt ψ̃ + sαt ψ̃

2. (B28)

The final value ψ̃+ is associated with ψ̃− as

ψ̃+

1 + ψ̃+s
= λ+

λ−
ψ̃−

1 + ψ̃−s
. (B29)

Notice that ψ̃+ serves as the initial value ψ̃0 of the next pro-
cess. If there is a previous process, then ψ̃− is substituted with
ψ̃ (τ ) of the previous process. The joint generating function of
the sudden jump process is

Ijump(u, s) =
[

1 +
(

1 − λ+

λ−

)
ψ̃−s

]− fn
2

, (B30)

which is in fact independent of u since no heat is exchanged
in this process.

3. Exponential protocol process

For a exponential protocol process αt = α = const,
Eq. (19) becomes a Ricatti equation (time-independent):

ψ̇ = −	(ψ − Tb) + αψ + (s − u)αψ2. (B31)

We solve the above differential equation with the initial con-
dition ψ (0) = ψ̃0/(1 + uψ̃0). The solution to Eq. (B31) is

ψ (t ) = 	 − α + √
D(s − u) tan

[ c1+t
2

√
D(s − u)

]
2α(s − u)

, (B32)

where c1 is determined by the initial condition ψ (0) as

tan

[
c1

2

√
D(s − u)

]
= 2α(s − u)ψ (0) − (	 − α)√

D(s − u)
, (B33)

with the function D(x) = 4α	Tbx − (	 − α)2.

We obtain the joint generating function as

Iexp(u, s)

=
{

exp [(	 − α)τ/2][1 + uψ̃ (τ )]/[1 + uψ̃0]

cos
[

t
2

√
D(s − u)

] − g(u, s) sin
[

t
2

√
D(s − u)

]} fn
2

,

(B34)

with g(u, s) = [2α(s − u)ψ (0) − (	 − α)]/
√

D(s − u). If
there is a previous process, we need to substitute ψ̃0 as the
final value ψ̃ (τ ) of the previous process.

4. Joint generating function of a finite-time Carnot cycle

Now we calculate the joint generating function of the
finite-time Carnot cycle. The heat is absorbed from the hot
bath and released to the cold, namely, QH > 0 and QC < 0.
The joint generating function I (uH , uC, s) of work and heat
for a whole finite-time cycle is expressed in the path integral
form

I (uH , uC, s) =
∫

D[X ]p[X ]euH QH [X ]+uC QC [X ]+sW [X ]. (B35)

Notice that the system is in contact with only one heat bath at a
time. We start from A point (Fig. 1 in main text) and calculate
the joint generating function of a whole cycle.

a. Process I: Isothermal compression

We define the compression ratio as r = λ2/λ1. In this
process, the work parameter is varied exponentially with the
time λ(t ) = λ1rt/τC . The quantity α of this process is ex-
plicitly αC = ln r/τC . The initial temperature of the working
substance is (which is also the initial condition) ψ̃0 = θC =
	CTC/(	C − αC ). If we consider the heat engine runs for
many cycles, ψ̃0 takes the final value of ψ̃ (τt ) of the previous
cycle. According to Eq. (B34), the joint generating function
of this process is

II(uH , uC, s) =
{

e(	C−αC )τC/2[1 + uCψ̃ (τ−
C )]/[1 + uCψ̃0]

cos (�CτC ) − gI(uC, s) sin (�CτC )

} fn
2

,

(B36)

where gI(uC, s) = [αC (s − uC )ψ (0) − (	C − αC )/2]/�C

with the initial value ψ (0) = ψ̃0/(1 + uCψ̃0), τ−
C represents

the moment of the end of process I, and the frequency
�C is

√
αC	CTC (s − uC ) − (	C − αC )2/4. Notice that the

expression II does not contain uH . But if there exist a previous
cycle, ψ̃0 also relies on uH . We always write I (uH , uC, s) for
all the processes in a finite-time heat engine cycle.

b. Process II: Adiabatic compression

At the end of process I, the temperature-like quantity is
ψ̃ (τC ), which is plugged as the initial value for the process
II as a sudden quench of the work parameter λ from λ2 to
λ3 at the moment t = τC . Notice that the ratio of the work
parameter in this process satisfy λ3/λ2 = θH/θC . According
to Eq. (B29), the temperature-like quantity after the quench
ψ̃+

τC
is associated with ψ̃−

τC
= ψ̃ (τ−

C ) as

ψ̃+
τC

= ψ̃ (τ−
C )

1 − η − sηψ̃ (τ−
C )

, (B37)

where the efficiency of the finite-time Carnot cycle is η = 1 −
θC/θH . According to Eq. (B30), the joint generating function
of process II is

III(uH , uC, s) =
[

1 − sη

1 − η
ψ̃ (τ−

C )

]− fn
2

. (B38)

Notice that the value of the temperature-like quantity ψ̃ (τ−
C )

depends on uC and s.
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c. Process III: Isothermal expansion

The work parameter is varied exponentially with the time λ(t ) = λ3r−(t−τC )/τH . The quantity α of this process is explicitly
αH = − ln r/τH . The initial condition of this process is ψ̃ (τ+

C ) = ψ̃+
τC

or ψ (τ+
C ) = ψ̃+

τC
/(1 + uH ψ̃+

τC
).

The adiabatic process is completed suddenly at the moment t = τC , and we use τ+
C to indicate the beginning of process III.

Equation (B34) gives the joint generating function of this process

IIII(uH , uC, s) =
{

e(	H −αH )τH /2[1 + uH ψ̃ (τC + τ−
H )]/[1 + uH ψ̃+

τC
]

cos (�HτH ) − gIII(uH , s) sin (�HτH )

} fn
2

, (B39)

where gIII(uH , s) = [αH (s − uH )ψ (τ+
C ) − (	H − αH )/2]/�H , τC + τ−

H represents the moment of the end of process III, and the
frequency �H is

√
αH	H TH (s − uH ) − (	H − αH )2/4.

d. Process IV : Adiabatic expansion

This process is a sudden quench with the work parameter λ changing from λ4 to λ1 at the moment t = τC + τH . The ratio of
the work parameter satisfies λ1/λ4 = θC/θH . According to Eq. (B29), the temperature-like quantity after the quench ψ̃+

τC+τH
is

associated with ψ̃−
τC+τH

= ψ̃ (τC + τ−
H ) as

ψ̃+
τC+τH

= (1 − η)ψ̃ (τC + τ−
H )

1 + sηψ̃ (τC + τ−
H )

. (B40)

According to Eq. (B30), the joint generating function of process IV is

IIV(uH , uC, s) = [
1 + sηψ̃ (τC + τ−

H )
]− fn

2 . (B41)

e. Joint generating function of a whole cycle

The joint generating function Icycle(uH , uC, s) = II × III × IIII × IIV of a whole cycle is

Icycle =

⎧⎪⎨
⎪⎩

e(	CτC+	H τH )/2
[
1 − sη

1−η
ψ̃ (τ−

C )
]−1[

1 + sηψ̃ (τC + τ−
H )

]−1 1+uC ψ̃ (τ−
C )

1+uC ψ̃0

1+uH ψ̃ (τC+τ−
H )

1+uH ψ̃+
τC

[cos (�CτC ) − gI(uC, s) sin (�CτC )][cos (�HτH ) − gIII(uH , s) sin (�HτH )]

⎫⎪⎬
⎪⎭

fn
2

. (B42)

The evolution of ψ (t ) is governed by

ψ̇ =
{−	C (ψ − TC ) + αCψ + (s − uC )αCψ2, 0 < t < τC,

−	H (ψ − TH ) + αHψ + (s − uH )αHψ2, τC < t < τH .
(B43)

The initial and the connecting conditions are ψ (0) = ψ̃0/(1 + uCψ̃0) and ψ (τ+
C ) = ψ̃+

τC
/(1 + uH ψ̃+

τC
), where ψ̃+

τC
is associated

with ψ̃ (τ−
C ) through process II. As follows, we give the generating functions for the work and the fluctuating efficiency deviation,

respectively.

f. Generating function for the work

By setting uC = 0 and uH = 0, the generating function for work is IW
cycle(s) = Icycle(0, 0, s), explicitly as

IW
cycle(s) =

{
e(	CτC+	H τH )/2

[
1 − sη

1−η
ψ (τ−

C )
]−1

[1 + sηψ (τC + τ−
H )]−1

[cos (�W
C τC ) − gW

I sin (�W
C τC )][cos (�W

H τH ) − gW
III sin (�W

H τH )]

} fn
2

, (B44)

with �W
C =

√
αC	CTCs − (	C − αC )2/4, �W

H =
√

αH	H TH s − (	H − αH )2/4, gW
I = [αCsψ (0) − (	C − αC )/2]/�W

C and gW
III =

[αH sψ (τ+
C ) − (	H − αH )/2]/�W

H . Notice that Eq. (B23) indicates ψ̃ (t ) = ψ (t ) in this situation.

g. Generating function for the fluctuating efficiency deviation

By setting uC = 0 and uH = sη, the generating function for the fluctuating efficiency deviation is Iζ
cycle(s) = Icycle(sη, 0, s),

explicitly as

Iζ
cycle(s) =

{
e(	CτC+	H τH )/2[

cos
(
�

ζ
CτC

) − gζ
I sin

(
�

ζ
CτC

)][
cos

(
�

ζ
HτH

) − gζ
III sin

(
�

ζ
HτH

)]
} fn

2

, (B45)

with �
ζ
C =

√
αC	CTCs − (	C − αC )2/4, �

ζ
H =

√
αH	H TH s(1 − η) − (	H − αH )2/4, gζ

I = [αCsψ (0) − (	C − αC )/2]/�ζ
C and

gζ
III = [αH s(1 − η)ψ (τ+

C ) − (	H − αH )/2]/�ζ
H . The condition uC = 0 gives ψ̃ (t ) = ψ (t ) during process I (0 < t < τC).
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5. Self-consistent check of the joint generating function
from the fluctuation theorem

The fluctuation theorem for heat engines [83] provides
a microscopic understanding of Carnot’s theorem. For the
model presented here which never reaches thermal equilib-
rium with the heat bath, the fluctuation theorem takes a
different form. In the following, we derive the fluctuation
theorem for our finite-time Brownian Carnot engine.

Suppose the engine operates between a hot bath at tem-
perature TH and a cold bath at temperature TC . Moreover, the
the working substance of the engine obeys the same Maxwell-
Boltzmann distribution at an effective temperature θC at both
the beginning and the end of the cycle [point A in Fig. 1(a)].
The ratio of the probability of a trajectory X to that of its time
reversal X̃ under the time reversed protocol is [84]

p[X ]

p̃[X̃ ]
= exp(�ssys + �sbath ). (B46)

The entropy change of the system is �ssys = − ln π̃i(x̃i ) +
ln πi(xi ), where πi(xi ) and π̃i(x̃i ) are the initial equilibrium
distributions of the forward and reverse processes at temper-
ature θC . The work parameter returns to its initial value at
the end of the cycle, and thus π̃i(x̃i )/πi(xi ) = exp[−(E f −
Ei )/θC] with the initial (final) stochastic energy Ei( f ) on the
trajectory X . The entropy change of the heat bath is �sbath =
−QH/TH − QC/TC . According to the first law of thermody-
namics along a single trajectory, the stochastic energy change
comprises the trajectory work and heat,

E f − Ei = W + QH + QC . (B47)

Accordingly, we can rewrite Eq. (B46) into

p[X ]eQH ( 1
TH

− 1
θC

)+QC ( 1
TC

− 1
θC

)− W
θC = p̃[X̃ ]. (B48)

By taking ensemble average, we obtain the following fluctua-
tion theorem 〈

eQH ( 1
TH

− 1
θC

)+QC ( 1
TC

− 1
θC

)− W
θC

〉
= 1. (B49)

With Jensen’s inequality exp〈x〉 � 〈exp(x)〉, Carnot’s theorem
can be derived as a corollary of both fluctuation theorems

η = − 〈W 〉
〈QH 〉 � 1 − TC

TH
= ηC, (B50)

where we have used the conservation of the energy for a
periodic steady closed cycle 〈W 〉 + 〈QH 〉 + 〈QC〉 = 〈E f 〉 −
〈Ei〉 = 0.

The fluctuation theorem (B49) can be rewritten as
Icycle(1/TH − 1/θC, 1/TC − 1/θC,−1/θC ) = 1, which can be
used to verify our results of the joint generating func-
tion Icycle(uH , uC, s). By choosing uH = 1/TH − 1/θC, uC =
1/TC − 1/θC, s = −1/θC , the auxiliary quantity ψ (t ) in the
cycle is solved from Eq. (B43) as

ψ (t ) =
{

TC 0 < t < τC,

TH τC < t < τC + τH ,
(B51)

and the shifted temperature-like variable is ψ̃ (t ) ≡ θC

throughout the whole cycle. �C and �H are explicitly �C =
i(	C + αC )/2 and �H = i(	H + αH )/2. Therefore, the joint
generating function of each process becomes

II = e− fn
2 αCτC , (B52)

III = (1 − η)
fn
2 , (B53)

IIII = e− fn
2 αH τH , (B54)

IIV = (1 − η)−
fn
2 . (B55)

Thus, we verify the fluctuation theorem Icycle(1/TH −
1/θC, 1/TC − 1/θC,−1/θC ) = 1 for heat engines.

6. Calculating the variances of power and fluctuating efficiency deviation

The derivatives of the generating function give the moments of work distribution. The average work is

〈W 〉 = ∂

∂s
〈esW 〉|s=0 = fn

2
(θH − θC ) ln r. (B56)

The variance of the work output in a cycle 〈�W 2〉 = 〈W 2〉 − 〈W 〉2 can also be calculated from the generating function

〈�W 2〉 =
[

∂2

∂s2

〈
esW

〉 − (
∂

∂s
〈esW 〉

)2]
|s=0. (B57)

The variance of the power is explicitly obtained as

Var(P)

P
2 =〈�W 2〉

〈W 〉2

= 4

fn

[
1

κCτC
(
1 − η

η
)2 + 1

κHτH

1

η2

]
+ 4

fn

[
1 − e−κH τH

κ2
Hτ 2

H

(
κ2

Hτ 2
H

(ln r)2
− 1

η2

)
− 1 − e−κCτC

κ2
Cτ 2

C

(
1 − η

η
)2

]

+ 4

fn

(1 − e−κCτC )(1 − e−κH τH )

κCτCκHτH

(
κHτH

ln r
− 1

η

)
1 − η

η
, (B58)
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where κC = 	C − ln r/τC and κH = 	H − ln r/τH . The variance of the fluctuating efficiency deviation is given by

Var(ζ ):= 〈(W + ηQH )2〉
〈QH 〉2

= 4(1 − η)2

fn

[
1

κCτC
+ 1

κHτH

]
− 4(1 − η)2

fn

[
1 − e−κCτC

κ2
Cτ 2

C

+ 1 − e−κH τH

κ2
Hτ 2

H

+ − (1 − e−κCτC )(1 − e−κHτH )

κCτCκHτH

]
. (B59)

To achieve the maximum power, we should choose τC = τmax
C and τH = τmax

H according to Eq. (16) to realize the Brownian CA
engine. As a result, the efficiency η should be replaced by ηCA.
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