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Integrated random pulse process with positive and negative periodicity
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A study of nonstationary processes that are integrals of stationary random sequences of delta pulses is
presented. An integrated renewal process can be represented as the sum of a deterministic linear function of
time and a Wiener process of the corresponding intensity. This intensity is determined by the mean value and
variance of the waiting times of the pulse process and is greater for super-Poisson processes than for sub-Poisson
ones. Linear growth over time of all cumulants is proved. An integrated random process with fixed time intervals
can be replaced by the sum of a deterministic linear function and a random process with bounded variance. The
analytical results are in good agreement with the numerical ones.
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I. INTRODUCTION

The effect of random pulse processes on the dynamic prop-
erties of natural, social, and economic systems is of unflagging
interest [1–6]. There are two widely used models of pulse
processes: renewal pulse processes (RPP) and pulse processes
with fixed time intervals (PPFTI). All these processes are
characterized by the probability density functions (PDFs) of
the times of the appearance of each pulse. If the process
is stationary, waiting times (WTs) between two neighboring
pulses are identically distributed. In many cases, not only the
pulse sequence itself is of interest, but also its integral. Such
integrated pulse process is also called the counting process
[3,4,7].

When the variance of waiting times is larger than for a
Poisson process with the same mean value, the pulse process
has super-Poisson statistics [8,9]. Otherwise, the process is
sub-Poisson (or quasiperiodic).

The most well-known example of the integrating of the
pulse process is registration of the interacting particles
[10–12] or photons of the squeezed states of light [13] with
the help of a counter or detector. These particles are emit-
ted randomly or quasiperiodically; they are disturbed by the
environment, through which they propagated, and interact
with each other. All this determines the statistics of the pulse
process of particle registration. Counter properties also affect
this statistics, for example, a dead time after the registration
of each particle.

Another important area of application of these processes is
microbiology. The integrated pulse process characterizes the
number of particles arrived into a living cell. These particles
can be viruses, bacteria, allergens, or, conversely, drug parti-
cles and biomarkers [14,15]. The model can also be applied
to describe the adhesion of specific viral proteins and their
complexes that cause high contagiousness of the current coro-
navirus infection on surfaces [16].
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The renewal pulse process is characterized by independent
identically distributed WTs. The PDF of WTs is the only
basic characteristic needed to define the process. The renewal
process describes a sequence of recurrent events, whose effect
is to reset to zero the system’s memory [1,2,5,17–20]. A
renewal process has asymptotic properties analogous to the
strong law of large numbers and the central limit theorem.
In addition to the registration of particles, RPP can be used
to simulate collisions of billiard particles with the boundary
[21–24], moments of resetting in a search process [25–28],
earthquakes [29], signals in a neural network [30], the dy-
namics of animal population [31–36], networks of queues
[37], and even crucial events in music [38]. In epidemiology,
they describe the statistics of the appearance of new infection
cases, including highly infectious diseases such as COVID-19
[35,39].

The pulse process with fixed time intervals is a sequence of
pulses appearing in periodic moments with random deviation.
Thus, the pulse process is characterized by the probability
distribution of deviations [17,19]. PPFTI can model the ran-
dom process connected with a strongly periodic process, for
example, seasonal events regulated by the astronomic year
[40,41], scheduled traffic [42], or outbreaks in populations
connected with sunspots [43]. They also describe the regis-
tration of particles emitted periodically and disturbed by the
environment.

The integrated pulse processes are interesting from a theo-
retical point of view since these pulse processes can be used
as a noise source in stochastic differential equations (SDEs)
[17,19,32]. The Fokker-Planck formalism for SDE analy-
sis with Gaussian δ-correlated noise is well developed [44].
Meanwhile, pulse noise with nonzero correlation time is a
more realistic model of random processes in nature and so-
ciety [19,34,45,46].

In this paper, we study the possibility of representing ran-
dom pulse processes as the sum of a regular function and
a Gaussian δ-correlated noise. We determine the conditions
of application of the methods developed for Gaussian δ-
correlated noise to RPP and PPFTI. Such conditions may be
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defined using the periodicity parameter. It was introduced in
Ref. [24] for RPP, and here we generalize the concept of the
periodicity parameter to a wider class of random processes.

II. INTEGRATED PULSE PROCESS

Let us consider the point random process,

ξ (t ) = f0

∑
j

δ(t − t j ), (1)

consisting of δ-shape pulses with constant positive amplitude
f0. Here, t j , which is a random variable, represents the time
of the jth pulse appearance. This process is characterized by
the PDFs wm(t ) of the time t of the appearance of the mth
pulse. For a stationary process, wm(t ) is also the PDF that the
( j + m)-th pulse occurred at t , with t being a time interval
calculated starting from the occurrence of the jth pulse.

The waiting times between two neighboring pulses, ϑ j =
t j − t j−1, are random variables. The spectral density of the sta-
tionary stochastic process is equal to the Fourier transform of
autocorrelation function Rξξ (τ ) (Wiener-Khinchin theorem),

S(ω) =
∫ ∞

−∞
Rξξ (τ )e−iωτ dτ. (2)

Note that some authors [1,47] use a factor of two in this
expression.

We use a periodicity parameter in the following form:

ρ = 1 − 〈ϑ〉S(0)

f 2
0

. (3)

This parameter turns to one for strongly sub-Poisson pro-
cesses, equals zero for the Poisson process, and takes on
negative values for super-Poisson processes, which can there-
fore be assigned to a negative periodicity. Below we restrict
ourselves to consider the case of a unit amplitude f0 = 1 only.

Another important characteristic of the pulse process is
the correlation time, which is zero for a Poisson process and
becomes large for strongly sub- and super-Poisson processes
[19,31,35].

The equation for the number of pulses arrived at the time
t is

m(t ) =
∫ t

0
ξ (t ′)dt ′. (4)

We consider the simplest SDE (4) here; meanwhile, any
SDE can be represented in such a way that the derivative of
the main parameter is defined by deterministic term and noise.
Therefore, the properties of the integrated process determine
the solution.

The integral of the pulse process is the number of pulses.
Let Pm(t ) be the probability that there are exactly m pulses at
the time t . This probability can be represented as

Pm(t ) = P�m(t )P<m+1/�m(t ), (5)

where P�m(t ) is the probability that the number of pulses is
greater than or equal to m at the time t and P<m+1/�m(t ) is the
conditional probability that the number of pulses is less than

m + 1 if this number is greater than or equal to m:

P<m+1/�m(t ) = 1 − P�m+1/�m(t )

= 1 − P�m+1,�m(t )

P�m(t )
= 1 − P�m+1(t )

P�m(t )
. (6)

Substituting Eq. (6) into Eq. (5), we get

Pm(t ) = P�m(t ) − P�m+1(t ). (7)

Now calculate the probability of the first pulse appearance as
if at the initial time moment was a pulse, and we take into
account this zeroth pulse. The event that the number of pulses
is greater than m is equivalent to the event that the (m − 1)-th
pulse occurred before t . Thus, for the probability, it holds

P�m(t ) =
∫ t

0−
wm−1(t ′)dt ′. (8)

Substituting Eq. (8) into Eq. (7), we obtain

Pm(t ) =
∫ t

0−
wm−1(t ′)dt ′ −

∫ t

0−
wm(t ′)dt ′, (9)

which coincides with the Poisson distribution if wm(t ) is given
by the gamma distribution.

III. RENEWAL PULSE PROCESS

For the renewal pulse process, the waiting times between
two neighboring pulses are independent identically distributed
random variables. The PDF of the time t of appearance of the
mth pulse can be presented in the form

wm(t ) = w(t ) ⊗ · · · ⊗ w(t )︸ ︷︷ ︸
m times

, (10)

where w(t ) is the PDF of WTs.
Now consider the moment generating function (MGF),

M(s) = E[esm], μ′
n = ∂n

s M(s)|s→0, (11)

where μ′
n is the nth raw moment of the integrated process.

Below we assume s � 0. Substituting Eq. (9) into Eq. (11),
we get

M(s, t ) =
∑
m=1

esm
∫ t

0−
[wm−1(t ′) − wm(t ′)]dt ′

= es
∫ t

0−
w0(t ′)dt ′ + (es − 1)

∑
m=1

esm
∫ t

0−
wm(t ′)dt ′.

(12)

Using Eq. (10), the Laplace transform of MGF is written as

M̃(s, p) ≡ L[M(s, t )](p)

= es

p

[
1 + (es − 1)w̃(p)

∑
m=0

esmw̃m(p)

]
, (13)

where w̃(p) is the Laplace transform of the PDF of WTs,
w(t ). Here the power series converges to [1 − esw̃(p)]−1 in
D = {|w̃(p)| < e−s}. By the analytic continuation of the latter
function, the domain D can be extended to a larger subset
of the image of w̃(p), except for the singularity w̃(p) = e−s.
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Then we have

M̃(s, p) = 1 − w̃(p)

p [e−s − w̃(p)]
. (14)

At s = 0, we have the obvious result M̃(0, p) = p−1 and
M(0, t ) = 1. Further, consider s 	= 0. Point p = 0 is regular,

lim
p→0

M̃(s, p) = ∂pw̃(0)

1 − e−s
, (15)

where ∂n
pw̃(p) = L[(−t )nw(t )](p). Note that ∂0

pw̃(p) =
w̃(p), w̃(0) = 1, and ∂n

pw̃(0) = (−1)nμ′
nϑ (n ∈ N), where

μ′
nϑ is the nth raw moment of waiting times.

Assume that w̃(p) is a meromorphic function. Then the
singularities {pλ} of w̃(p) are the removable singularities of
M̃(s, p) since

lim
p→pλ

M̃(s, p) = 1

pλ

, pλ 	= 0. (16)

Now consider the solutions {pk (s)} of equation

w̃(p) = e−s. (17)

Without loss of generality, we number {pk (s)} in descending
order of the value of the real part. The function w̃(p) is
continuous along the non-negative real axis. Moreover, it is
strictly decreasing because

∂pw̃(p) = −
∫ ∞

0
e−pt t w(t )dt < 0, p ∈ R�0.

Then, for s � 0, at least one real root of Eq. (17), pk � 0,
exists. Show that p0 is a real number. Let pR and pC be the
first non-negative real element and the first complex element
with nonzero imaginary part and non-negative real part (if
such exists) of the sequence {pk}, respectively:

max
{pk}∩R

Re pk = pR � 0,

max
{pk}\R

Re pk = Re pC � 0, Im pC 	= 0.

Then, we have

Im
∫ ∞

0
e−pCtw(t )dt = 0,

e−s =
∫ ∞

0
e−pRtw(t )dt

=
∫ ∞

0
e− Re pCt cos (Im pCt )w(t )dt

<

∫ ∞

0
e− Re pCtw(t )dt .

Since w̃(p) is strictly decreasing, we have pR > Re pC and,
consequently, p0 = pR is a non-negative real number.

Now consider the behavior of expression e−s − w̃(p) in the
neighborhood of the first root p0 of Eq. (17). Expanding w̃(p)
into the Taylor series, we get

e−s − w̃(p) = −(p − p0)

× [
∂pw̃(p0) + 1

2∂2
pw̃(p0)(p − p0) + · · · ].

Since ∂pw̃(p0) < 0, we conclude that p0 is a simple root of
Eq. (17) and, consequently, a simple pole of M̃(s, p), the case
of p0(0) = 0 was considered above.

If pk is a simple pole, then

Res
p=pk

eptM̃(s, p) = epkt

pk

w̃(pk ) − 1

∂pw̃(pk )
. (18)

For higher-order poles, the expression for residue becomes
more complicated. Basically, it can be written using the gen-
eral Leibniz rule and Faà di Bruno’s formula, but for our
purposes, it is sufficient that it can be presented in the form

Res
p=pk

eptM̃(s, p) = epktP [k]
nk−1(t ), (19)

where nk is the order of the kth pole and P [k]
j (t ) is a

polynomial of degree j with the coefficients depending on
{p−l

k }nk
l=1, {∂ l

pw̃(pk )}2nk−1
l=0 . For instance, P [k]

0 (t ) = [w̃(pk ) −
1]/[pk ∂pw̃(pk )].

Applying the inverse Laplace transform, we obtain

M(s, t ) =
∑
k=0

epktP [k]
nk−1(t ). (20)

Consider the cumulant generating function (CGF) defined
as

K(s, t ) = lnM(s, t ), κn(t ) = ∂n
s K(s, t )|s→0. (21)

In the long-time limit, CGF can be sufficiently simplified,

lim
t→∞K(s, t )

= lim
t→∞ ln ep0t

[
w̃(p0) − 1

p0 ∂pw̃(p0)
+

∑
k=1

e−(p0−pk )tP [k]
nk−1(t )

]

= p0t, (22)

since the expression in square brackets tends to a constant
nonzero first term for at least a finite number of terms in the
sum due to the exponential factors with a negative real part of
the exponent, and the cumulants become linear:

κn = ∂n
s p0(s)|s→0 t . (23)

Using Eq. (17), we obtain

∂s p0(s) = − 1

es∂pw̃(p)

∣∣∣∣
p=p0(s)

,

∂2
s p0(s) = −∂s p0(s) − [∂s p0(s)]2

∂2
pw̃(p)

∂pw̃(p)

∣∣∣∣
p=p0(s)

,

and so on. Finally, we get

〈m〉 = κ1 = t

μ′
1ϑ

, (24)

σ 2
m = κ2 = σ 2

ϑ

μ′2
1ϑ

t

μ′
1ϑ

, (25)

κ3 =
(

3
σ 4

ϑ

μ′4
1ϑ

− κ3ϑ

μ′3
1ϑ

)
t

μ′
1ϑ

, (26)

κ4 =
(

15
σ 6

ϑ

μ′6
1ϑ

− 10
κ3ϑσ 2

ϑ

μ′5
1ϑ

+ κ4ϑ

μ′4
1ϑ

)
t

μ′
1ϑ

, (27)
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κ5 =
(

105
σ 8

ϑ

μ′8
1ϑ

− 105
κ3ϑσ 4

ϑ

μ′7
1ϑ

+ 15
κ4ϑσ 2

ϑ

μ′6
1ϑ

+ 10
κ2

3ϑ

μ′6
1ϑ

− κ5ϑ

μ′5
1ϑ

)
t

μ′
1ϑ

, (28)

κ6 =
(

945
σ 10

ϑ

μ′10
1ϑ

− 1260
κ3ϑσ 6

ϑ

μ′9
1ϑ

+ 210
κ4ϑσ 4

ϑ

μ′8
1ϑ

+ 280
κ2

3ϑσ 2
ϑ

μ′8
1ϑ

− 21
κ5ϑσ 2

ϑ

μ′7
1ϑ

− 35
κ3ϑκ4ϑ

μ′7
1ϑ

+ κ6ϑ

μ′6
1ϑ

)
t

μ′
1ϑ

, (29)

where μ′
1ϑ , σ 2

ϑ , and κnϑ are the mean value, variance, and cu-
mulants of the waiting times, respectively. Formulas (24) and
(25) coincide with the expressions obtained in Refs. [2,48].
For the skewness γ1 and kurtosis excess γ2, we obtain

γ1 =
(

3
σϑ

μ′
1ϑ

− γ1ϑ

)(
t

μ′
1ϑ

)− 1
2

, (30)

γ2 =
(

γ2ϑ − 10
γ1ϑσϑ

μ′
1ϑ

+ 15
σ 2

ϑ

μ′2
1ϑ

)(
t

μ′
1ϑ

)−1

. (31)

Here, γ1ϑ and γ2ϑ denote the skewness and kurtosis excess of
the waiting times, respectively.

Using Eqs. (30) and (31), we can estimate the time it takes
for the skewness and kurtosis excess to become small enough
to consider the pulse process as Gaussian noise and its integral
as a Wiener process,

t � τW = μ′
1ϑ max

([
3

σϑ

μ′
1ϑ

− γ1ϑ

]2

,

γ2ϑ − 10
γ1ϑσϑ

μ′
1ϑ

+ 15
σ 2

ϑ

μ′2
1ϑ

)
. (32)

The above consideration was based on the assumption
that the function w̃(p) has no branch points. The case of
multivalued functions requires more detailed analysis. Let us
consider that no branch point of w̃(p) coincides with the root
p0. Assume the branch cuts C of w̃(p) can be chosen in such
a way that they stay left from the Bromwich integral path. To
apply the residue theorem to calculate the Bromwich integral,
the contour must be closed in accordance with such branch
cuts, i.e., the contour should not cross the branch cuts (see
Fig. 1, for example). This leads to the appearance of additional
terms in Eq. (20). Let us estimate them in the long-time limit.
First, note that for large p, the function M̃(s, p) behaves
as p−1. Consequently, the contributions along the large arcs
vanish as their radius tends to infinity according to Jordan’s
lemma [49]. The integral around the branch point, pb.p. (if it
is not the zero of the denominator of Eq. (14) or, otherwise,
if M̃(s, p) ∼ (p − pb.p.)σ with Re σ > −1 in some neighbor-
hood of the branch point), can be shown to contribute nothing
as the radius of the small arc goes to zero. The integrals along
the branch cut give the contribution

 = epb.p.t

2π i

∫ ∞

0
e−ζ tφ(ζ )dζ ,

φ(ζ ) = M̃(s, e−iπζ + pb.p.) − M̃(s, eiπζ + pb.p.). (33)

Re p

Im p

C

FIG. 1. Sample contour for evaluating the Bromwich integral.

In general, |M̃(s, p)| is bounded along the branch cut;
however, there may be some exceptions corresponding to the
poles of M̃(s, p) that lie on the branch cut. If such poles are
simple, then the principal values of the integrals (33) are well
defined or we can change the branch cut in a certain way. Fur-
ther, if φ(ζ ) is of the form φ(ζ ) = ζ σ g(ζ ), where Re σ > −1,
g(0) 	= 0, and g(ζ ) is continuous in some neighborhood of
ζ = 0, the Watson’s lemma [50] conditions are satisfied and
we obtain

 = epb.p.t

2π i

[
g(0)�(σ + 1)

tσ+1
+ o(t−σ−1)

]
, t → ∞. (34)

Similar exponential estimations can be obtained for some
other kinds of branch cuts. Finally, we get that for Re pb.p. <

p0, formulas (24)–(29) remain valid in the long-time limit.

A. Probability per unit of time for pulse
appearance and PDF of WTs

Let the probability per unit of time for pulse appearance be
p(t ). Discrete time is written as tm = mt , where t is the
time step. The probability of pulse appearing at the mth step
is equal to p(tm)t . The probability that the waiting time is
equal to m steps can be presented in the form

Pm = p(tm+1)t
m∏

k=1

[1 − p(tk )t]

= p(tm+1)t exp

(
m∑

k=1

ln [1 − p(tk )t]

)
.

In the limit of small t , we change the sum to an integral
and obtain the PDF of WTs,

w(ϑ ) = p(ϑ ) exp

[
−

∫ ϑ

0
p(t )dt

]
. (35)

The inversion formula is easy obtained as

p(t ) = w(t )

[∫ ∞

t
w(ϑ )dϑ

]−1

. (36)

B. Examples of RPP with different distributions of WTs

Let us consider the point renewal process (1). The distri-
bution of waiting times can be shifted with shift parameter
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TABLE I. Characteristics of used distributions of waiting times for RPP.

Shifted gamma distribution Eq. (37) Shifted Weibull distribution Eq. (38)a Pareto distribution Eq. (39)b

〈ϑ〉 αn + ϑ0 α �1 + ϑ0
nϑ0
n−1

σ 2
ϑ α2n α2(�2 − �2

1 ) n
n−2 ( ϑ0

n−1 )2

κ3ϑ 2α3n α3(�3 − 3�2�1 + 2�3
1 ) 2n(n+1)

(n−2)(n−3) ( ϑ0
n−1 )3

κ4ϑ 6α4n α4(�4 − 4�3�1 − 3�2
2 + 12�2�

2
1 − 6�4

1 ) 6n(n3+n2−6n−2)
(n−2)2 (n−3)(n−4)

( ϑ0
n−1 )4

1 − ρ α2n
(αn+ϑ0 )2

α2 (�2−�2
1 )

(α�1+ϑ0 )2
1

n(n−2)

p(t ),×1t�ϑ0
(t−ϑ0 )n−1

�(n,
t−ϑ0

α )αn
exp (− t−ϑ0

α
) n(t−ϑ0 )n−1

αn
n
t

aUse notation � j ≡ �(1 + j/n).
bNote that the moments and the cumulant of order j are defined for n > j only.

ϑ0 and ϑ ∈ [ϑ0,∞). Below, n and α are the shape and
scale parameters, respectively. The processes are periodical at
n → ∞.

(i) Shifted gamma distribution [35,51,52]:

w(ϑ ) = (ϑ − ϑ0)n−1

�(n)αn
exp

(
−ϑ − ϑ0

α

)
1ϑ�ϑ0 . (37)

In the case of Poisson statistics (n = 1, ϑ0 = 0), we get δ

correlation.
(ii) Shifted Weibull distribution:

w(ϑ ) = n

α

(
ϑ − ϑ0

α

)n−1

× exp

(
−

[
ϑ − ϑ0

α

]n)
1ϑ�ϑ0 , n > 0. (38)

The Poisson statistics is realized for n = 1 and ϑ0 = 0.
(iii) Pareto distribution:

w(ϑ ) = nϑn
0

ϑn+1
1ϑ�ϑ0 , n > 2, (39)

where ϑ0 plays the role of the shift and scale parameters
simultaneously. The process is super-Poisson for 2 < n <

1 + √
2 and sub-Poisson for n > 1 + √

2. Some high-order
moments do not exist for this distribution. If n is not an integer,
the Laplace transform of Eq. (39) has a branch point at the
origin and therefore the root p0 of Eq. (17) is not an isolated
singularity at s → 0. This case requires separate consideration
(see the Appendix).

Some properties of these distributions are collected in
Table I.

IV. PULSE PROCESS WITH FIXED TIME INTERVALS

In the case of the pulse process with fixed time intervals,
the time of the (m + 1)-th pulse appearance is tm+1 = T m +
ν, where −T/2 < ν < T/2 is a random deviation, character-
ized by the PDF w(ν). The corresponding probabilities of the
pulse number can be written as

P�m(t ) = 1 − 1m>1

∫ T
2

t−(m−1)T
w(ν)dν, (40)

Pm(t ) =
∫ t∗

t−mT
w(ν)dν,

t∗ = t − (m − 1)T + δm1

(
T

2
− t

)
. (41)

Below, in this section, the square and curly brackets denote
the integer and fractional part of a real number, respectively.
The equation for the number of pulses arrived at the time t
[see Eq. (4)] is

m(t ) = 1t<T/2 +
[

t

T
+ 1

2

]
+ β(t ), (42)

where β(t ) ∼ Bern[P+1(t )] is a Bernoulli distributed random
variable. Here, P+1(t ) is the probability of the appearance of
one more pulse, which is a periodical function,

P+1(t ) = 1t�T/2

∫ T
{

t
T + 1

2

}
− T

2

− T
2

w(ν)dν. (43)

Note that the integrated process can be presented as a de-
terministic step increasing part and bounded random process.
Using Eq. (42), we get

〈m〉 = 1t<T/2 +
[

t

T
+ 1

2

]
+ P+1(t ). (44)

It is easy to see that for t � T/2, Eq. (44) can be presented as
the sum of a linear increasing and oscillating functions.

Other statistical properties of the process are determined by
the Bernoulli distribution with the periodic probability P+1(t ).
The variance is

σ 2
m = P+1(t ) − P2

+1(t ), (45)

which is a periodic function of time also. It is known [17] that
the correlation time is infinite and S(0) = 0 for PPFTI.

For the cumulants, we have

κ3 = 2P3
+1(t ) − 3P2

+1(t ) + P+1(t ), (46)

κ4 = −6P4
+1(t ) + 12P3

+1(t ) − 7P2
+1(t ) + P+1(t ). (47)

This process does not become Gaussian. Meanwhile, we
can see another kind of simplification for PPFTI as an oppor-
tunity to neglect by the random part of the process since it does
not increase with time. This part can be called zero-intensity
white noise.
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TABLE II. Characteristics of used distributions of deviations for PPFTI.

Uniform distribution Eq. (48) Localized distribution Eq. (50)

w(ϑ ) α−|ϑ−T |
α2 1|ϑ−T |�α

∑1
l=−1

1
2|l|+1 δ(ϑ − T + lα)

〈ϑ〉 T T

σ 2
ϑ

α2

6
α2

2

P+1(t ), ×1t�T/2 max
[
0, min

(
T
α

{
t
T + 1

2

} − T −α

2α
, 1

)]
1
2

∑1
l=0 1{ t

T + 1
2 }>

T +(−1)l α

2T

Examples of PPFTI with different distributions of deviations

(i) Uniform distribution:

w(ν) = 1

α
, α � T, |ν| <

α

2
. (48)

The maximum variance corresponds to α = T and the mean
value (44) can be written in a simple form,

〈m〉 = 1 +
(

t

T
− 1

2

)
1t�T/2. (49)

(ii) Localized distribution:

w(ν) = 1

2
δ
(
ν − α

2

)
+ 1

2
δ
(
ν + α

2

)
, α < T . (50)

This process can reach larger variances than the process with
the uniform PDF at the same T .

Meanwhile, all PPFTI are sub-Poisson. The corresponding
PDF of WTs and other properties of these distributions are
collected in Table II.

V. RESULTS AND DISCUSSION

In this section, we present the results obtained by numeri-
cal simulations for the integrated random pulse process. The
Mersenne twister [53] is used as a pseudorandom number

generator. The numerical results are averaged over 109 real-
izations. The period, or mean waiting time, is 〈ϑ〉 = 1.

The time dependence of the mean value (24) and variance
(25) for RPP with super-Poisson statistics (σ 2

ϑ = 2) and vari-
ous distributions of waiting times are presented in Figs. 2(a)
and 2(b). Here, we use the following sets of parameter values:
n = 0.5, ϑ0 = 0, and α = 2 for shifted gamma distribution;
n = 0.5, α = 0.315, and ϑ0 = 0.37 for shifted Weibull distri-
bution; n = 2.22 and ϑ0 = 0.55 for Pareto distribution. Here
and below, the lines and symbols represent the analytical and
numerical results, respectively. The mean value and variance
exhibit near-linear growth over time. The numerical and an-
alytical data are in good agreement. Since, here, n < 3 for
the Pareto distribution, one can see the difference in the time
dependence of the variance compared to the shifted gamma
and Weibull distributions in the presented time range, which
is fully consistent with Eq. (A3).

We have shown that the third (26) and fourth (27) cu-
mulants also increase linearly in time. Figure 3(a) illustrates
this dependence for the gamma distribution with n = 0.5 and
ϑ0 = 0. The skewness γ1 (30) and kurtosis excess γ2 (31) are
presented in Fig. 3(b). The number or realizations is increased
here to 2 × 1010 due to the large variance.

The time dependence of the mean value (24) and variance
(25) for RPP with sub-Poisson statistics (σ 2

ϑ = 0.032) and var-
ious distributions of waiting times are presented in Figs. 4(a)

1000800600400200

200

400

600

800

1000

0
0

t

m

Gamma(0.5, 0.5, 0)
Wei(0.315, 0.5, 0.37)
Pareto(2.22, 0.55)

σ
2

5

10

15

2

t

m

FIG. 2. Plot of mean value and variance of pulse number vs time for RPP with super-Poisson statistics with different distributions of
waiting times (〈ϑ〉 = 1, σ 2

ϑ = 2): shifted gamma distribution with n = 0.5, α = 2, and ϑ0 = 0 (blue squares); shifted Weibull distribution
with n = 0.5, α = 0.315, and ϑ0 = 0.37 (red circles); Pareto distribution with n = 2.22 and ϑ0 = 0.55 (green triangles). Analytical solution,
obtained from (a) Eq. (24) (solid black line) and (b) Eq. (25) (solid black line), Eq. (A3) (dashed black line).
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t

8

6

4

2

κ3

κ
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,4

κ4

t

.8

.5

.2

0.9

0.6

0.3

0.0

γ
1
,2

γ2

γ1

FIG. 3. Plot of higher cumulants and measures of shape of pulse number vs time for RPP with super-Poisson statistics and shifted gamma
distribution of waiting times with n = 0.5, α = 2, and ϑ0 = 0. (a) Cumulants: κ3 (black squares), κ4 (red circles). Analytical solutions, obtained
from Eq. (26) (solid black line) and Eq. (27) (solid red line). (b) Skewness γ1 (black squares) and kurtosis excess γ2 (red circles). Analytical
solutions, obtained from Eq. (30) (solid black line) and Eq. (31) (solid red line).

and 4(b). The following sets of parameter values are used:
n = 20, ϑ0 = 0.2, and α = 0.04 for shifted gamma distribu-
tion; n = 2, α = 0.384, and ϑ0 = 0.66 for shifted Weibull
distribution; n = 6.67 and ϑ0 = 0.85 for Pareto distribution.
We have also added results here for a shifted gamma distri-
bution with the same variance and different parameters n =
0.2, ϑ0 = 0.92, and α = 0.4. All these probability density
functions are collected in Fig. 5. We can see that they are
significantly different from each other. Interestingly, there is
a good agreement between the results for the Pareto statistics
and other distributions of WTs. Therefore, the sub-Poissonity
of the process is a sufficient condition to consider it as a white
noise.

The time dependence of the mean value (44) and variance
(45) for PPFTI with uniform (T = 1, α = 1) and localized
(T = 1, α = 1/

√
3) distributions of deviations are presented

in Figs. 6(a) and 6(b). The numerical results are in good
agreement with the analytical ones. The condition of S(0) = 0
is sufficient to consider this process as white noise for the
integrated process, while the correlation time is infinite.

The asymptotic properties of the counting process have
been well investigated for t → ∞; meanwhile, for practical
purposes, it is important to estimate the finite time after which
these properties can be used.

The two conventional conditions for presenting a random
process as a Gaussian δ-correlated noise source in SDE are

t

m

20 25 .2
Gamma(0.2, 2.5, 0.92)

84 2 66
6 67 8

σ
2

8

16

24

32

t

m

20 25 .2
Gamma(0.2, 2.5, 0.92)

84 2 66
6 67 8

FIG. 4. Plot of mean value and variance of pulse number vs time for RPP with sub-Poisson statistics and different distributions of waiting
times (〈ϑ〉 = 1, σ 2

ϑ = 0.032): shifted gamma distribution with n = 20, α = 0.04, and ϑ0 = 0.2 (blue squares); shifted gamma distribution with
n = 0.2, α = 0.4, and ϑ0 = 0.92 (magenta down triangles); shifted Weibull distribution with n = 2, α = 0.384, and ϑ0 = 0.66 (red circles);
Pareto distribution with n = 6.67 and ϑ0 = 0.85 (green up triangles). Analytical solution, obtained from (a) Eq. (24) and (b) Eq. (25) (solid
black lines).
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w

ϑ

FIG. 5. Probability density functions of waiting times for sub-
Poisson process (〈ϑ〉 = 1, σ 2

ϑ = 0.032): shifted gamma distribution
with n = 20, α = 0.04, and ϑ0 = 0.2 (blue); shifted gamma dis-
tribution with n = 0.2, α = 0.4, and ϑ0 = 0.92 (magenta); shifted
Weibull distribution with n = 2, α = 0.384, and ϑ0 = 0.66 (red);
Pareto distribution with n = 6.67 and ϑ0 = 0.85 (green).

that (i) its intensity is much less than the characteristic scale
of the process and (ii) the correlation time is much less than
the characteristic timescale of the process. We define new
conditions for such a replacement.

We can see that the key characteristic is S(0)/ f 2
0 , which is

greater than 〈ϑ〉−1 for super-Poisson processes and less for the
sub-Poisson. This parameter should be small enough for the
simplification. As a result, the correlation time does not deter-
mine the possibility of the simplification. This time is long
for strongly sub-Poisson processes and infinite for PPFTI,
but these processes arrive at a simplified model after several
periods. The characteristic time determined by Eq. (32) is
also greater for super-Poisson than for sub-Poisson processes.

t

m

1 11 12

11

12

σ
2

321

0.25

t

m

0.20

0.15

0.10

0.05

0.00

FIG. 6. Plot of mean value and variance of pulse number vs time for PPFTI with different distributions of deviations (T = 1, σ 2
ϑ = 1/6):

uniform distribution (48) with α = 1 (black squares); localized distribution (50) with α = 1/
√

3 (red circles). Analytical solutions, obtained
from (a) Eq. (44) and (b) Eq. (45) (solid black and red lines, respectively).

For example, in the case of the gamma distribution of WTs,
it is equal to σ 2

ϑ/μ′
1ϑ . We can also say that the greater the

periodicity ρ, the better the asymptotic simplifications work.
Therefore, the strongly super-Poisson processes are the most
complicated for calculations and special simplification meth-
ods are needed [24]. Meanwhile, for all other processes, we
can see good agreement of the numerical simulations with the
results obtained using asymptotically simplified models.

This point represents the main topic of our work since it
is now possible to give a quantitative definition of the pulse
process, the integral of which can be considered as the integral
of white noise. The results obtained here by using several spe-
cific PDFs of WTs can be generalized to other distributions.
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APPENDIX: CUMULANTS OF RPP WITH PARETO
DISTRIBUTION OF WTs WITH NONINTEGER n

The Laplace transform of Pareto PDF (39) can be written
as [55]

w̃(p) = n(pϑ0)n�(−n, pϑ0). (A1)

Equation (17) has one non-negative real root p0 and infinite
number of complex roots located symmetrically with respect
to the real axis. The real parts of all complex roots became
negative with s → 0, while the real root tends to zero (see
Fig. 7; increasing the size of the markers illustrates the shift of
the given root to the left with decrease in s). Also, the origin is
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Re p

Im p

C

s → 0

FIG. 7. Contour for evaluating the Bromwich integral for the
Pareto PDF of waiting times. Crosses denote the simple poles of
M̃(s, p); they shift to the left as s → 0.

the branch point of w̃(p) for noninteger n. Since the condition
Re pb.p. < p0 is violated for s = 0, the consideration presented
in Sec. III needs to be modified.

Consider the first two cumulants in the long-time limit.
Taking into account the obvious relation M(0, t ) = 1, we
have

〈m〉 = κ1 = ∂sM(s, t )|s→0,

σ 2
m = κ2 = ∂2

s M(s, t )|s→0 − ∂sM(s, t )|2s→0.

Using Eq. (14) and differentiating the Bromwich integral
by parameter s, we get

∂sM(s, t )|s→0 = 1

2π i

∫ c+i∞

c−i∞

ept

p

1

1 − w̃(p)
d p, c > 0,

∂2
s M(s, t )|s→0 = 1

2π i

∫ c+i∞

c−i∞

ept

p

{
2

[1 − w̃(p)]2

− 1

1 − w̃(p)

}
d p, c > 0.

In the long-time limit, the main contribution to the integral
gives the integral along the branch cut, namely, its part around
the origin (the residues at the complex poles contribute negli-
gibly due to the exponential factors with a negative real part
of the exponent). Here we use expansion for the incomplete
gamma function [55],

�(−n, z) = �(−n) −
∞∑

k=0

(−1)kzk−n

k!(k − n)
, n /∈ Z�0,

and Hankel’s loop integral,

1

�(α)
= 1

2π i

∫ 0+

−∞
ezz−αdz, | arg z| � π,

where the contour begins at −∞, circles the origin once in the
positive direction and returns to −∞. Expanding the integrand
in a power series, we have

∂sM(s, t )|s→0

= 1

2π i

∫ 0+

−∞

ept

p2

n − 1

nϑ0

×
{

1 + (n − 1)�(−n)(pϑ0)n−1+1

2

n − 1

n − 2
pϑ0 − · · ·

}
d p

= t

μ′
1ϑ

− (n − 1)ϑn−2
0 t2−n

n2(n − 2)
+ (n − 1)2

2n(n − 2)
+ O(t−1),

where μ′
1ϑ = nϑ0/(n − 1) according to Table I. Note that we

limited our consideration to n > 2 [see Eq. (39)], and there-
fore the second term decreases with time, but we left it here
along with the third term for the calculation of the variance
below. For the mean value in the long-time limit, we get the
same expression as Eq. (24):

〈m〉 = t

μ′
1ϑ

, n > 2. (A2)

Now calculate the variance. In the expression for the
second derivative, it suffices to leave the terms giving con-
tributions with positive powers of t . Then we obtain

∂2
s M(s, t )|s→0

= 1

2π i

∫ 0+

−∞

ept

μ′
1ϑ p2

{
2

μ′
1ϑ p

+ 4
(n − 1)2�(−n)(pϑ0)n−2

n

+ 2
(n − 1)2

n(n − 2)
− 1 + · · ·

}
d p

=
(

t

μ′
1ϑ

)2

+
{

2
(n − 1)2

n(n − 2)
− 1

+ 4
(n − 1)ϑn−2

0 t2−n

n2(3 − n)(2 − n)

}
t

μ′
1ϑ

+ O(1).

Finally, we get

σ 2
m = σ 2

ϑ

μ′2
1ϑ

t

μ′
1ϑ

− 2
σ 2

ϑ

μ′3
1ϑ

(n − 1)2

n(3 − n)
ϑn−2

0 t3−n. (A3)

Certainly, this expression only makes sense when it is
positive. For n � 3, the second term should be omitted and
we arrive at the expression (25). If 2 < n < 3, the second term
increases as t3−n, but the linear term will dominate anyway; it
just might take much longer to establish Eq. (25).

Corrections for higher cumulants can be obtained in the
same way.
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