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Optimal searcher distribution for parallel random target searches
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We consider a problem of finding a target located in a finite d-dimensional domain, using N independent
random walkers, when partial information about the target location is given as a probability distribution. When
N is large, the first-passage time sensitively depends on the initial searcher distribution, which invokes the
question of the optimal searcher distribution that minimizes the first-passage time. Here, we analytically derive
the equation for the optimal distribution and explore its limiting expressions. If the target volume can be ignored,
the optimal distribution is proportional to the target distribution to the power of one third. If we consider a
target of a finite volume and the probability of the initial overlapping of searchers with the target cannot be
ignored in the large N limit, the optimal distribution has a weak dependence on the target distribution, with its
variation being proportional to the logarithm of the target distribution. Using Langevin dynamics simulations,
we numerically demonstrate our predictions in one and two dimensions.
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I. INTRODUCTION

Target search by random walkers is a generic framework
for studying numerous first-passage processes in nature, in-
cluding chemical reaction, animal foraging, and genetic drift,
to name a few [1–18]. In many cases of searching, including
animal foraging and finding a missing child, reducing the
search time is highly desired. This motivated studies on the
optimal walk statistics minimizing the search time, with lots
of attention paid to Lévy flight [19–21], intermittent searching
[22–25], and, more recently, non-Markovian search strategies
[26].

Another way to reduce the search time is to deploy many
searchers into the system [27–42]. When N searchers are
looking for a target in parallel, the search time is determined
by the first searcher among them to reach the target, and
naturally, the search time is a decreasing function of N . If N is
small, the search time exhibits a universal behavior, inversely
proportional to N , regardless of the initial distributions in the
search domain [37]. As N increases, however, the N depen-
dence of the search time shows drastic differences depending
on the initial searcher distribution. If searchers with large N
are uniformly distributed, the search time becomes inversely
proportional to N2 [37,42]. On the other hand, if the searchers
depart from a point in the domain, the N dependence of the
search time shows much richer trends. For an intermediate
value of N , the search time decreases exponentially with N
until it reaches the time required for a random walker to
diffuse over the distance between its initial position and the
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target position. As increases N further, the search time barely
changes with N , entering a regime of weak logarithmic N
dependence [35,37].

Due to the sensitive dependence of the search time on the
initial searcher distribution at large N , if one tries to minimize
the search time, the information about the target position is
crucial for deciding how to deploy the searchers. For example,
let us consider the two limiting cases where the searchers are
deployed either uniformly or at a point. If the target position
can be specified with precision, then it is better to concentrate
the searchers around the expected target location. On the other
hand, if the target position is unknown, it is disadvantageous
to place the searchers at a point since the chosen location is
unlikely to be the target position and the search time would
decrease only inversely proportionally to ln N . In contrast, the
search time can be reduced by a factor of N−2 if the searchers
are distributed uniformly [37].

In this study, we extend this example to consider general
searcher distributions and ask the following question: What
would the optimal initial searcher distribution that minimizes
the search time be if partial information about the target loca-
tion is available in the form of a probability density function
(see Fig. 1 for illustration)? To answer this question, we first
derive the equation for the search time in the large N limit
when the target position and the initial searcher positions are
given by arbitrary distributions. Then we put forward the way
to determine the optimal searcher distribution when the target
distribution is given.

Our paper is organized as follows. In Sec. II, we define the
system and introduce key quantities. The main results of the
paper are presented in Sec. III. When the target volume can be
neglected, the optimal distribution is shown to be proportional
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FIG. 1. Schematic picture of a random target search by multiple
searchers as the partial information of target position is given. When
a target (bigger circle in blue) is located according to a probability
distribution (solid line), various distributions of initial searcher posi-
tions (dashed and dotted lines, with searchers as red smaller circles)
can be considered to minimize the search time.

to the one third power of the target distribution. When the
target volume cannot be neglected, the optimal distribution
has a weaker dependence, with its variation being proportional
to the logarithm of the target distribution. Using Langevin
dynamics simulations, we also confirm these analytic predic-
tions. In Sec. IV, we discuss the results and conclude.

II. SYSTEM

Consider a finite domain D with volume V containing a
small target located at r0, occupying a region of volume VT ,
denoted as T (r0). The target volume is assumed to be very
small compared to the domain volume, i.e., VT � V . Then N
searchers are introduced into the domain with initial positions
specified by an array of vectors R = (r1, r2, . . . , rN ), where
ri is the initial position of the ith searcher. The searchers
perform Brownian motion and randomly explore the domain
in parallel. Once one of the searchers arrives at the target for
the first time, the search process is ended, and the time until
that event is called the search time.

As defined above, the search time is a random vari-
able. To analyze it, we first consider the probability density
function (PDF) of searchers, which satisfies the diffusion
equation given as

∂ p(r, t ; r0; ri )

∂t
= D∇2 p(r, t ; r0; ri ), (1)

where the Laplace operator is applied to the searcher po-
sition r and p(r, t ; r0; ri ) indicates the probability for the
ith searcher departing from ri to be at r at time t , i.e.,
p(r, 0; r0; ri ) = δ(r − ri ), when the target is located at r0.
The domain is surrounded by a hard-wall boundary prevent-
ing the searchers from escaping, which is considered with
the reflective boundary condition n̂ · ∇p(r, t ; r0; ri ) = 0 when
r ∈ ∂D. Here, n̂ denotes the vector perpendicular to the do-
main boundary. Once the searchers arrive at the target, they are
absorbed by the target, which imposes an absorbing boundary
condition, p(r, t ; r0; ri ) = 0 when r ∈ T (r0).

The probability for each searcher to arrive at the target
increases with time, leading to a decrease in the probability of
remaining in the domain. For quantitative analysis, we define
the survival probability of a searcher as

S(t ; r0; ri ) ≡
∫
D∗

dd r p(r, t ; r0; ri ), (2)

where D∗ = D \ T (r0) is the domain outside the target. Since
the survival probability decreases as the probability for the
searcher to find the target increases, the decreasing rate of
the survival probability gives the first-passage probability of
the searcher:

F (t ; r0; ri ) = − ∂

∂t
S(t ; r0; ri ). (3)

We remark that S(t ; r0; ri ) is a probability which satisfies
the normalization condition S(t ; r0; ri ) � 1 and, in a finite
domain, limt→∞ S(t ; r0; ri ) = 0, while F (t ; r0; ri ) is a proba-
bility density function with the normalization condition given
as

∫ ∞
0 dt F (t ; r0; ri ) = 1.

It is well known that the first-passage probability for the
collective search of N searchers can be found by applying the
order statistics to the survival probability of single searcher.
With this approach, the distribution for the minimum of the
first-passage times is given as

FN (t ; r0;R) =
N∑

i=1

[
F (t ; r0; ri )

∏
j 	=i

S(t ; r0; r j )

]
. (4)

Equation (4) has a simple interpretation: The probability that
the target is found for the first time at time t is equal to the
probability for one of the searchers to reach the target at t
before the other searchers have arrived. Finally, the search
time is calculated by taking the average with FN (t ; r0;R) as

tN (r0;R) ≡
∫ ∞

0
dt t FN (t ; r0;R)

=
∫ ∞

0
dt

N∏
i=1

S(t ; r0; ri ), (5)

where the second equality is obtained with the integration by
parts.

Next, following the problem setup we consider, we intro-
duce the search times when the initial positions of the target
and of the searchers are random variables. By denoting the
PDF of the target as PT(r0) and the PDF of the searchers as
PS(R), the average search time can be obtained as

t̄N ≡
∫
D

dd r0

∫
dRPT(r0)PS(R)tN (r0;R), (6)

which is the key quantity in this study. In this expression, in-
tegration over the target position is performed over the whole
domain D, and dR indicates the integral over the initial posi-
tions of searchers to give normalizations of

∫
dd r0 PT(r0) = 1

and
∫

dRPS(R) = 1. In the following section, we derive the
equation for the optimal searcher distribution based on the
quantities introduced so far.

III. RESULTS

To start, let us briefly remind the readers of the setup.
We consider a target located at a position which is a ran-
dom variable following a given PDF PT(r0) and searchers
independently deployed into the system following the
searcher distribution we specify. Denoting the distribution of
an individual searcher as u(r) with a normalization,∫

dr u(r) = 1, the full searcher distribution then satisfies

024101-2



OPTIMAL SEARCHER DISTRIBUTION FOR PARALLEL … PHYSICAL REVIEW E 106, 024101 (2022)

PS(R) = ∏N
i=1 u(ri ). Considering that the search time is sig-

nificantly affected by the initial searcher position only when
there are many searchers in the domain, we focus on the
large N limit, for which the search time follows the large N
asymptotic behavior everywhere in the system. We allow the
initial configuration where the initial positions of searchers
overlap with the target.

Next, we consider a small target located at r0 and evaluate
the search time recorded by N searchers distributed according
to u(r). Following Eq. (6), the search time can be written as

t̄N =
∫
D

dd r0 t̄N,S(r0)PT(r0), (7)

where the searcher-position-averaged search time is defined
as

t̄N,S(r0) =
∫ ∞

0
dt [S̄(t ; r0)]N

. (8)

Here, the average survival probability is also given as

S̄(t ; r0) ≡
∫
D

dd r S(t ; r0, r)u(r). (9)

Since the initial overlap with the target is allowed, it is pos-
sible that S(t = 0; r0, r) = 0 when r ∈ T (r0), which means
that the target is found instantaneously. On the other hand,
if r ∈ D∗, the survival probability satisfies S(t = 0; r0, r) = 1
at t = 0 and gradually decreases with time. Thus, the average
survival probability given in Eq. (9) at t = 0 satisfies

S̄(0; r0) = 1 −
∫
T (r0 )

dd r u(r), (10)

and the decay of the survival probability is determined by tra-
jectories of searchers in configurations in which all searchers
are initially placed outside the target. For the large N limit,
t̄N,S is governed by the short-time behavior of the survival
probability due to the exponential dependence of the integrand
of Eq. (8) on N .

As Eqs. (1) and (2) indicate, the survival probability of
Eq. (9) can be calculated by obtaining the searcher PDF that
evolves from the initial distribution u(r) according to the
diffusion equation. This leads to

p(r, t ; r0) =
∫
D∗

dd r′ G(r, t ; r0; r′)u(r′), (11)

where G(r, t ; r0; r′) is the Green’s function of the diffusion
equation with an absorbing boundary condition at the target
surface and a no-current boundary condition at the domain
boundaries.

To make further progress, we analyze the small t behavior
of Eq. (11) and introduce approximations for both the Green’s
function and the searcher distribution. For the sake of concise-
ness, we present the details of the approximations for a point
target in a one-dimensional domain with the coordinate x ∈ D
and target position x0. The result can easily be extended to
consider a target with a finite volume in higher dimensions,
as suggested later. To proceed, it is useful to use the fact that
in the large N limit, the search time is mainly determined by
the searchers that are initially placed very close to the target,
which then arrive at the target within the time required to
diffuse the distance from the initial position of the searchers

to the target surface. A rough scale of this distance can be
obtained by considering a thin layer around the target and then
calculating the thickness ds required for this layer to contain
a searcher for the given searcher density. This leads to the
following relation for ds:∫

|x−x0|<ds

dx Nu(x) ∼ 1. (12)

The relation indicates that ds is roughly inversely proportional
to N . Therefore, in the large N limit, it is sufficient to consider
dynamics of the searchers very close to the target, and the
reflective boundary condition at the end of the search domain
does not play a significant role. Taking this into an account, we
simplify the Green’s function by ignoring the domain bound-
ary while considering only the absorbing boundary at the
target surface. Then the Green’s function can be found using
the image method as G(x, t ; x0; x′) = G0(x − x′, t ) − G0(x −
2x0 + x′, t ), where G0(x, t ) ≡ (4πDt )−1/2 exp[−x2/(4Dt )] is
the Gaussian kernel in free space.

As the next step of the approximation, we expand the initial
searcher distribution around the target location as u(x′) =
u(x0) + (∂u/∂x)|x=x0 (x′ − x0) + O(|x′ − x0|2). Then, we esti-
mate the scale of contributions of each term in the expansion
to the search time. By inserting the expansion into Eq. (12),
we can estimate the number of searchers around the target
captured by each term in the expansion. As a result, the scale
of the number of searchers captured by the nth order term is
estimated as O(dn+1

s ). Therefore, in the large N limit where ds

becomes very small, it is sufficient to consider only the lowest
order term of the searcher distribution, u(x0), to estimate the
search time.

By combining the approximations of the Green’s function
and the searcher distribution, we can analytically calculate the
PDF of each searcher given in Eq. (11) near the target as

p(x, t ′; x0) �
x∼x0

sgn(x − x0)u(x0)erf

(
x − x0√

4Dt

)
, (13)

where sgn(x) = −1 if x < 0 and sgn(x) = 1 if x > 0. By
integrating the PDF over the spatial domain, we obtain the
average survival probability given in Eq. (9) as

S̄(t ; x0) � 1 − 4u(x0)

√
Dt

π
. (14)

Inserting Eq. (14) into Eq. (8), we obtain the asymptotic
expression for the searcher-position-averaged search time

t̄N,S(x0) �
∫ ∞

0
dt [1 − 4u(x0)

√
Dt/π ]N

�
∫ ∞

0
dt exp[−4Nu(x0)

√
Dt/π ]

= π

8DN2u2(x0)
.

Last, if the target has a finite volume so that the initial overlap
with searchers occurs, the initial value of S̄(t ; x0) given by
Eq. (14) becomes less than 1 and is reduced by a factor of
S̄(0; x0) in Eq. (10), which is approximated in the small target
limit as S̄(0; x0) � 1 − VTu(x0). Other than the normalization
of the initial value, the decay of S̄(t ; x0) remains the same as in
the zero-target-volume limit since the first-passage dynamics
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for t > 0 is governed by the trajectories of initially nonover-
lapping searchers. As a result, the search time satisfies

t̄N,S(x0) � [1 − VTu(x0)]N π

8DN2u2(x0)
. (15)

For higher dimensions, the searcher-position-averaged
search time can be generalized as [42]

t̄N,S(r0) � [1 − VTu(r0)]N π

2DS2
TN2u2(r0)

, (16)

with ST being the surface area of the target. In one dimension,
we set ST = 2 since the target has two sides that can act as
absorbing boundaries.

Next, we take the target distribution into account and ad-
dress the equation for the fully averaged search time. To do
so, we insert Eq. (16) into Eq. (7) to obtain the expression for
the fully averaged search time,

t̄N = π

2DS2
TN2

∫
D

dd r0 [1 − VTu(r0)]N PT(r0)

u2(r0)
, (17)

which has the form of a functional of the searcher distribution
u(r). Analyzing Eq. (17), we derive the equations for the op-
timal searcher distribution. The analysis leads to two notable
cases: (i) the case where VT → 0 with a finite ST and (ii) the
case where VT is finite. We describe the result for each case in
the following.

A. The case with VT → 0 and a finite ST

The first case is the limit in which the target volume
can be ignored while its surface area remains finite. Such a
limit can be attained when the system is one-dimensional,
for which ST = 2 regardless of the target size, or when the
target has highly elongated shapes, such as a needle in a two-
dimensional domain or a disk in a three-dimensional domain.
For these cases, the integrand of Eq. (17) can be simplified
by setting VT = 0. Then, we calculate the variation of the
search time when the searcher distribution is varied as u(r) →
u(r) + εh(r) with a small parameter ε � 1. For the resulting
variation δt̄N ≡ t̄N [u(r) + εh(r)] − t̄N [u(r)], we obtain

δt̄N = − π

DS2
TN2

∫
D

dd r0 PT (r0)
εh(r0)

u3(r0)
+ O(ε2).

Here, the function for variation h(r) must satisfy∫
D dd r h(r) = 0 due to the normalization condition imposed

on u(r). When the searcher distribution is in its optimal form
u∗(r), the term linear to ε in the variation δt̄N should vanish.
This condition is satisfied if PT (r0)/[u∗(r0)]3 is a constant,
which leads to the equation for the optimal distribution, given
as

u∗(r) = NP
1
3

T (r). (18)

Here, N is the normalization constant calculated from∫
D dd r u∗(r) = 1. Remarkably, the optimal distribution for

this case is independent of the number of searchers. This
result suggests that it is beneficial to spread out the searchers
than concentrate them to minimize the search time. For
example, if the target distribution has the shape of a Gaussian
distribution with the width σ , the search time is minimized

t̄ N
(γ

)
/t̄

N
(3

)

γ

FIG. 2. The inverse of the search times for various target and
searcher distributions in one dimension. The symbols are obtained by
averaging the search times recorded in the Langevin dynamics sim-
ulations over many realizations of the target and the searcher initial
positions. The lines are analytic results obtained using Eq. (17). The
parameters used are N = 104, σ = 0.35L (Gaussian), and σ = 0.2L
(Lorentz). The search times are obtained by taking averages over 103

independent samples. The system size is L = 100a, where a is a
unit length, and typical step size of the random walk is 0.01a. For
comparison, a system with periodic boundary conditions, instead of
reflective boundary conditions, is also considered for the Gaussian
initial distribution with the same parameters (blue triangles).

when the searcher distribution is a Gaussian distribution with
the width

√
3σ .

To test the validity of this result, we perform Langevin
dynamics simulations for the random search process and
compare the search times while systematically varying the
searcher distribution. In doing so, we consider a one-
dimensional domain D = [−L, L] and a target with zero
volume placed at a position x0 which is sampled from a
random initial distribution PT(x0). For distributions, we in-
clude a Gaussian distribution PT(x0) ∝ exp[−x2

0/(2σ 2)] and
a Lorentz distribution PT(x0) ∝ σ/(x2

0 + σ 2), both of which
are truncated at the domain boundaries. Then we introduce
N searchers randomly placed according to the searcher dis-
tribution given as uγ (x) = N (γ )P1/γ

T (x), where N (γ ) is the
normalization constant for the given γ . For each realization,
the search time is measured with the time recorded by the first
searcher to reach the target, which is then averaged over many
realizations of different positions of the target and searchers.
We denote the resulting averaged search time as t̄N (γ ). Ac-
cording to our result in Eq. (18), we expect the search time to
have a minimum value at γ = 3, at which the searcher distri-
bution becomes its optimal form. In Fig. 2, we plot normalized
inverse search time t̄N (3)/t̄N (γ ) with respect to γ , for which
we expect to observe a maximum at γ = 3. As shown in Fig. 2
this expectation is clearly confirmed by our simulation.

In deriving the survival probability of Eq. (14), we as-
sumed the large N limit where a finite number of searchers
always exist close to the target and are absorbed without
touching a domain boundary [37]. As a result, the Green’s
function near the target was constructed using the free-space
Green’s function by ignoring the domain boundary, and thus,
our results should not depend on the boundary condition of
the domain considered. In order to check this conjecture, we
also measured in the simulations the average search time t̄N
for a system with a periodic boundary condition, instead of a
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reflective boundary condition, imposed on the domain bound-
ary. The simulation results presented in Fig. 2 clearly
demonstrate that the two different boundary conditions con-
sidered do not lead to noticeable differences.

B. The case with a finite VT

Next, we consider the optimal distribution when VT cannot
be ignored. The procedure for obtaining the equation for the
optimal distribution is the same as in the previous case, but
now the functional variation has to be taken for the full expres-
sion of Eq. (17). The optimal distribution obtained may have a
complicated form. As presented in the Appendix, however, a
rather simple expression can be obtained in the large N limit,
which reads

u∗(r) = c + 1

NVT
ln[PT(r)], (19)

where c is an irrelevant constant determined by the nor-
malization condition. We note that up to a constant, the
optimal distribution is proportional to the logarithm of the
target distribution. When the probability of the initial over-
lapping of searchers with a target is finite, it is better to
distribute searchers so that they have a much wider distribu-
tion than PT(r), as explicitly shown in the weak logarithmic
dependence. Again, we test this prediction numerically by
measuring the search time of N searchers with the initial
distribution given as uγ (r) = N (γ )P1/γ

T (r). Although the op-
timal distribution for this case cannot be written as a power
law of the target distribution, uγ (r) is still a fair approximation
of it in the large N limit, as we argue below.

To show this, we first rewrite the target distribution as
PT(r) = A exp[−I (r)]. Then the optimal distribution reads

u∗(r) = c′ − 1

NVT
I (r), (20)

where c′ is a constant. Accordingly, uγ (r) can be written as

uγ (r) = N (γ ) exp[−γ −1I (r)]. (21)

When γ is large, we expand Eq. (21) in γ −1 about
γ −1 = 0, which leads to N (γ ) = N0 + γ −1N1 + · · · and
exp[−γ −1I (r)] � 1 − γ −1I (r) + · · · . By keeping terms of
order up to γ −1, Eq. (21) can be written as

uγ (r) � (N0 + γ −1N1) − N0γ
−1I (r). (22)

Therefore, uγ (r) with γ = NVTN0 converges to the optimal
distribution in the large N limit.

The analysis above shows that if the search time is plotted
with respect to γ , it reaches its minimum when γ = NVTN0.
Therefore, if the inverses of the search times obtained with
various values of N are plotted with respect to γ /N , we expect
them to reach the maximum value all together when

γ

N
= VT

V
(23)

in the small VT and large N limit. Here, we used the relation
N0 = V −1. We numerically test this expectation with random
searches for a small but finite-sized target in two dimensions.
To do so, we consider a circular domain D with a radius
L and a target of a radius a randomly distributed according
to the Gaussian distribution centered at the domain center,

γ/N

t̄ N
,m

a
x
/t̄

N
(γ

)

γ

FIG. 3. The inverse of the search times vs γ /N for a finite-sized
target in a two-dimensional circular domain. The symbols indicate
average search times measured from the Langevin dynamics simula-
tions for various values of N . The dotted line indicates the value of
γ /N specified by Eq. (23). Inset: The inverse of the search times
with respect to γ . The parameters used are as follows: the target
radius a = 1 (taken as a unit length), the domain radius L = 20, and
σ = 0.5L for the target distribution. To obtain the average search
time by N searchers, we gathered the search times of independent re-
alizations of initial configurations until 107/N nonzero search times
were recorded. The typical step size of searchers per each time step
is 0.01a.

given as PT(r0) ∝ exp[−|r2
0|/(2σ 2)]. Then we introduce the

searchers according to the initial positions sampled with uγ (r)
and measure the search time recorded by N searchers. Consid-
ering different N , the inverses of the search times obtained are
plotted with respect to γ in the inset in Fig. 3. The inverse
search times reach their respective maxima at different values
of γ . Then, when plotted with respect to γ /N , as shown in the
main panel, these maximum points collapse with each other at
γ /N = VT/V , as predicted by Eq. (23). Note that the location
of γ /N given as (23) is indicated with a dotted line in Fig. 3,
and the search times indeed reach their minimum regardless
of the specific value of N , as predicted.

IV. DISCUSSION AND CONCLUSION

In this work, we have scrutinized collective target search by
many Brownian searchers when the target position is partially
known in the form of a PDF PT(r) and have found the optimal
distribution of the searchers which minimizes the search time.
To do so, we introduced a systematic approximation for the
survival probability of searchers and expressed the search time
as a functional of the searcher distribution. Examining the
condition for the variation of the search time to vanish, we
derived equations for the optimal distribution in terms of the
target distribution and the system parameters. In the large N
and small VT limit, the optimal distribution reaches one of two
limiting forms depending on whether VT can be ignored or
not. Most previous studies constrained the searchers so that
they did not initially overlap with the target, corresponding to
the VT → 0 limit, which is released in the present study. For
a target with a finite size, the initial overlapping configuration
becomes non-negligible in the large N limit, leading to the
distinct functional dependence of the optimal distribution on
the target distribution.
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In the case when VT can be ignored, e.g., when a point tar-
get is located in a one-dimensional search domain, the optimal
distribution satisfies u∗(r) ∝ P1/3

T (r) regardless of the number
of searchers. For the case where VT cannot be ignored, the
optimal distribution satisfies u∗(r) ∝ ln[PT(r)]/(NVT ) apart
from an irrelevant constant. We have confirmed these predic-
tions with the Langevin dynamic simulations. In particular,
for the case when VT cannot be ignored, we have found that
the optimal distribution still approximately satisfies u∗(r) ∝
P1/γ

T (r) with γ = NVT/V ; that is, γ is given as the number
of searchers initially placed in the target volume when the
searchers are uniformly distributed in the domain.

While a single target is considered here, one may think of a
situation where a set of multiple targets is distributed follow-
ing a distribution [43]. Repeating the procedures described in
Sec. III, we can generalize Eq. (14), in the limit of large N , to
the case of n targets as

S̄(t ; {xi}) � 1 − 4

(
n∑

i=1

u(xi )

)√
Dt

π
, (24)

where xi is the position of the ith target, randomly distributed
according to a distribution PT(x). The average search time t̄N
can then be expressed in terms of

∑n
i=1 u(xi ), and finding the

optimal distribution by taking a functional derivative of t̄N is
an interesting but nontrivial problem, which we leave for a
future study.

In this work, we have considered N noninteracting
searchers. Even in the absence of mutual interactions, the first-
passage dynamics of multiple searchers can be complicated
because the order statistics of N passage times are required. It
was recently shown that the presence of an interaction among
searchers leads to nontrivial behaviors in the search time [44].
Naturally, the optimal searcher distribution may show sensi-
tive dependence on the details of the searcher interaction as
well. Thus, it would definitely be an interesting avenue to
extend the current study to consider the situation where N
interacting searchers are involved.
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APPENDIX: DERIVATION OF EQUATION (19)

To derive the equation, we consider the variation of the
search time δt̄N = t̄N (ε) − t̄N (0) with t̄N given by Eq. (17),
upon taking u(r) → u(r) + εh(r). Here, h(r) is an arbitrary
function satisfying

∫
D dd h(r) = 0. If u(r) is the optimal dis-

tribution, δt̄N = 0 should be satisfied, which leads to

PT(r)
[1 − VTu(r)]N

S2
TN2u3(r)

(
1 + NVTu(r)

2[1 − VTu(r)]

)
= c0,

where c0 is a constant. To proceed, we use the approximations

[1 − VTu(r)]N � e−NVTu(r),(
1 + NVTu(r)

2[1 − VTu(r)]

)
� 1

2
NVTu(r),

which are valid in the small VT and large N limit, i.e., VT /V �
1 and NVT /V � 1. By rearranging the terms, we arrive at

√
PT(r)

NV 3
T

2c0S2
T

= NVTu(r)eNVTu(r)/2.

The optimal distribution can be obtained by solving this equa-
tion for u(r), which leads to

u∗(r) = 2

NVT
W0

[
1

2

√
c1VTPT(r)

]
, (A1)

where W0(x) is the Lambert W function and c1 =
NV 2

T /(2c0S2
T) is a dimensionless number. For large values

of x, this function can be approximated as W0(x) = ln x +
O(ln ln x). Therefore, we obtain the asymptotic expression for
the optimal searcher distribution in the large N limit as

u∗(r) � c + 1

NVT
ln[VTPT(r)],

where c is a constant determined by the normalization condi-
tion, and Eq. (19) is derived.
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