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The boundary treatment is fundamental for modeling fluid flows especially in the lattice Boltzmann method;
the curved boundary conditions effectively improve the accuracy of single-phase simulations with complex-
geometry boundaries. However, the conventional curved boundary conditions usually cause dramatic mass
leakage or increase when they are directly used for multiphase flow simulations. We find that the principal
reason for this is the absence of a nonideal effect in the curved boundary conditions, followed by a calculation
error. In this paper, incorporating the nonideal effect into the linear interpolation scheme and compensating for
the interpolating error, we propose a multiphase curved boundary condition to treat the wetting boundaries with
complex geometries. A series of static and dynamic multiphase simulations with large density ratio verify that
the present scheme is accurate and ensures mass conservation.
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I. INTRODUCTION

The lattice Boltzmann method (LBM) has already de-
veloped into an excellent numerical scheme for simulating
complex fluid flows and phase transitions [1,2]. Since the
boundary treatments play significant roles in the issues of
accuracy, stability, and efficiency, the lattice Boltzmann com-
munity has designed all kinds of boundary conditions [3–6].
For a solid boundary, the first thing of a boundary condition
(BC) in LBM is to calculate the missing distribution functions
which are streaming from the boundary into the fluid. The
halfway bounce-back boundary condition (HBBC) is pop-
ular in lattice Boltzmann simulations because it is simple,
robust, mass-conserving, and has formally second-order ac-
curacy. However, HBBC has to locate the boundary in the
middle of fluid-solid links; this degrades a curved bound-
ary into a zigzag geometry and then damages the accuracy
of simulations inevitably [7,8]. The requirement that cap-
tures the exact boundary geometry inspires the curved BCs,
which usually aim for the second-order accuracy. For the
boundaries with complex geometry, a few curved BCs were
proposed and widely used in single-phase lattice Boltzmann
simulations. Filippova and Hanel [3] constructed a fictitious
equilibrium distribution function of the solid node, and a
linear interpolation was applied to calculate the distribu-
tion function bouncing back from the wall. Nevertheless, the
scheme suffered from numerical instability when the relax-
ation time was close to 1 [9]. Mei et al. [4] eliminated the
stability issue by replacing the velocity of the solid node
with that of the secondary neighbor fluid node when the
boundary is closer to the fluid node. Bao et al. [10] further
improved the Mei scheme to satisfy mass conservation by
redefining the density term of the wall nodes in the fictitious
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equilibrium distribution function. Guo et al. [11] proposed
a curved boundary treatment with high numerical stability
by combining the nonequilibrium extrapolation scheme and
spatial interpolation. From a mathematical point of view,
Bouzidi et al. [5] proposed the interpolation boundary condi-
tion (IBC) by combining the bounce-back scheme and linear
or quadratic interpolation. Lallemand and Luo [6] extended
the BCs to moving boundaries and verified the Galilean in-
variance. Yu et al. [12] developed a unified version of the
Bouzidi scheme, which maintained the geometric integrity
of the curved wall and avoided the boundary treatment dis-
continuity of the previous scheme. Without interpolation or
extrapolation, Tao et al. [13] and Zhao et al. [14] realized
a single-node curved BC with second-order accuracy. They
promoted the computational efficiency and were able to cap-
ture the real geometry in the simulations of porous media.
The conventional curved boundary conditions effectively im-
proved the accuracy of simulations of single-phase fluid flows
with complex-geometry boundaries.

For multiphase flows, the boundary treatment is more com-
plex because various multiphase models are based on different
theories, while the boundary has to reflect the surface wetta-
bility. Numerical simulation of multiphase flow is one of the
most successful applications of LBM; specifically, the sing-
component two-phase model is very popular [2,15–17]. The
pseudopotential model mimicks the long-range intermolecu-
lar interaction by a density-dependent interparticle potential.
Theoretical analyses showed that its mechanical stability so-
lution agrees with thermodynamics only if the effective mass
takes the strict exponential function form [18,19]. Yuan and
Schaefer [20] calculated the effective mass based on an equa-
tion of state (EOS) and this enabled the pseudopotential model
to incorporate the common EOSs. Huang et al. [21] and Li
et al. [22] investigated the performances of forcing terms in
the pseudopotential model. Li et al. [23,24] improved the sta-
bility and thermodynamic consistency of the pseudopotential
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model with a large density ratio and implemented a virtual-
density contact angle scheme. Yang et al. [25] analyzed the
contact angle hysteresis at large Bond number. The nonideal
effect can also be evaluated from the thermodynamic free
energy [26,27]. Wen et al. [28] directly evaluated the nonideal
force by chemical potential and constructed a chemical-
potential multiphase model, which meets thermodynamics
and Galilean invariance. Then, a proportional coefficient was
introduced to decouple the computational mesh from the mo-
mentum space and improved the model to simulate multiphase
systems with very large density ratios and small spurious
currents [29]. A chemical-potential boundary condition was
implemented to express the surface wettability, so that the
contact angle can be linearly tuned by the chemical potential
of the surface. During the multiphase simulation, the real-time
contact angle can be accurately measured, and this enables
the mechanical analyses at the three-phase contact line in
real time [30–32]. However, when the conventional curved
BCs are directly used in multiphase lattice Boltzmann sim-
ulations, they caused dramatic mass leakage or increase, and
usually collapsed the evolutions because they could not deal
with the large change of fluid density adjacent to a wetting
boundary. Some studies directly compensated the leaking or
increasing mass to the zeroth distribution function to enforce
the mass conservation and proposed the modified interpola-
tion boundary condition (MIBC) [33,34]. However, in some
cases, the scheme caused the zeroth distribution function to be
negative [34]. Furthermore, it required very large mass com-
pensations and produced intense spurious currents (shown in
Secs. IV C and IV D), therefore the scheme was inaccurate
and did not solve the underlying problems. Essentially, the
mass problem in these curved BCs arose from the fact that the
nonideal effect has not been considered properly.

In this paper, we incorporate the nonideal effect into the
linear interpolation scheme and propose a multiphase curved
BC. The simulating results demonstrate that this scheme not

only guarantees the mass conservation, but also achieves
high accuracy and small spurious currents. The paper is
organized as follows. The second section describes the nu-
merical methods including the lattice Boltzmann method,
the chemical-potential multiphase model, and the chemical-
potential boundary condition. In the third section, we illustrate
the present multiphase curved BC. The fourth section presents
a series of verifications and test cases. Finally, the fifth sec-
tion gives a summary of the paper.

II. NUMERICAL METHODS

A. Lattice Boltzmann method

Discretized fully in time, space, and velocity, the lattice
Boltzmann equation (LBE) with the multiple relaxation times
can be concisely written as [35,36]

fi(x + eiδt, t + δt ) − fi(x, t ) = −M−1 · S · [m − m(eq)],
(1)

where fi(x, t ) is the particle distribution function at time
t and lattice site x, moving along the direction defined by
the discrete velocity vector ei with i = 0, . . . , N , m, and
m(eq) represent the velocity moments of the distribution func-
tions and their equilibria, respectively; M is a matrix that
linearly transforms between the distribution functions and
the velocity moments, namely, m = M · f ; and f = M−1 ·
m. For the two-dimensional nine-velocity (D2Q9) model on
a square lattice (N = 8), the velocity moments are m =
(ρ,e,ε, jx,qx, jy,qy,pxx,pxy)T. The conserved moments are the
density ρ and the flow momentum j = ( jx, jy) = ρu, u is the
local velocity. The equilibria of nonconserved moments de-
pend only on the conserved moments e(eq) = −2ρ + 3

ρ
( j2

x +
j2
y ), ε(eq) = ρ − 3

ρ
( j2

x + j2
y ), q(eq)

x = − jx, q(eq)
y = jy, p(eq)

xx =
1
ρ

( j2
x − j2

y ), p(eq)
xy = 1

ρ
( jx jy). The transformation matrix is de-

fined by

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1

−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 −2 0 2 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

0 0 −2 0 2 1 1 −1 −1

0 1 −1 1 −1 0 0 0 0

0 0 0 0 0 1 −1 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

The diagonal relaxation matrix has the nonnegative relaxation
rates

S = diag(1,se,sε, 1,sq, 1,sq,sν,sν ), (3)

in which se = 1.64, sε = 1.54, sq = 1.7 [37]. The shear vis-
cosity is ν = 1

3 ( 1
sv

− 1
2 ); in the present study, sv = 1/τ , and

τ = 0.8 unless otherwise specified. The evolution of LBM
includes two essential steps, namely collision and streaming;

hence, the corresponding computations of LBE are performed
as

Collision : f̃i(x, t ) − fi(x, t ) = −M−1 · S · [m − m(eq)], (4)

Streaming : fi(x + eiδt, t + δt ) = f̃i(x, t ), (5)

where fi and f̃i denote precollision and postcollision states of
the particle distribution functions, respectively. The dominant
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part of the computations, namely, the collision step, is com-
pletely local, therefore the discrete equations are natural to
parallelize.

B. Chemical-potential multiphase model

For a nonideal fluid system, following the classical
capillarity theory of van der Waals, the free energy func-
tional within a gradient-squared approximation is written as
[26,38–41]

� =
∫ [

ψ (ρ) + κ

2
|∇ρ|2

]
dx, (6)

where the first term represents the bulk free-energy density
and the second term describes the contribution from density
gradients in an inhomogeneous system, and κ is the surface
tension coefficient. The general equation of state and chemical
potential can be defined by the free energy density

p0 = ρψ ′(ρ) − ψ (ρ), (7)

and

μ = ψ ′(ρ) − κ∇2ρ, (8)

respectively. The chemical potential is the partial molar Gibbs
free energy at constant pressure [41]. The gradient of the
chemical potential is the driving force for isothermal mass
transport. The movement of molecules from higher to lower
chemical potential is accompanied by a release of free energy
and the chemical or phase equilibrium is achieved at the min-
imum free energy. With respect to the ideal gas pressure, the
nonideal force can be evaluated by a chemical potential [28]

F = −ρ∇μ + c2
s ∇ρ. (9)

Solving the linear ordinary differential equations (7)
and (8), and substituting a specific EOS, the chemical poten-
tials of some widely used EOSs can be obtained analytically.
The present study applies the famous Peng-Robinson (PR)
EOS

p0 = ρRT

1 − bρ
− aα(T )ρ2

1 + 2bρ − b2ρ2
, (10)

and its chemical potential is

μPR = RT ln
ρ

1 − bρ
− aα(T )

2
√

2b
ln

√
2 − 1 + bρ√
2 + 1 − bρ

+ RT

1 − bρ

− aα(T )ρ

1 + 2bρ − b2ρ2
− κ∇2ρ, (11)

where R is the gas constant, a is the attraction
parameter, b is the volume correction param-
eter, and the temperature function is α(T ) =
[1 + (0.37464 + 1.54226ω − 0.26992ω2)(1 − √

T/Tc)]2.
In the present simulations, the parameters are given by
a = 2/49, b = 2/21, and R = 1. The acentric factor ω

is 0.344 for water. To make the numerical results closer
to the actual physical properties, we define the reduced
variables Tr = T/Tc and ρr = ρ/ρc, in which Tc is the critical
temperature and ρc is the critical density.

A proportional coefficient k is introduced to decouple the
computational mesh from the momentum space [29] and re-
lates the length units of the two space, δx̂ = kδx. Here the

quantities in the mesh space are marked by a superscript.
Following the dimensional analysis, the chemical potential in
the mesh space can be evaluated by [28,29]

μ̂ = k2ψ ′(ρ) − κ̂∇̂2ρ. (12)

This approach greatly improves the stability of the chemical-
potential multiphase model, and the transformation holds the
mathematical equivalence and has no loss of accuracy.

The resulted external force is incorporated into LBE by a
forcing technique. Here, the exact difference method is used
and the body force term is simply equal to the difference
of the equilibrium distribution functions before and after the
nonideal force acting on the fluid during a time step [42]

Fi = f (eq)
i (ρ, u + δu) − f (eq)

i (ρ, u), (13)

where u is the fluid velocity, δu = δtF/ρ and f (eq)
i is the

equilibrium distribution function,

f (eq)
i (x, t ) = ωiρ(x, t )

[
1 + (ei · u)

c2
s

+ (ei · u)2

2c4
s

− (u)2

2c2
s

]
,

(14)
where the sound speed is cs = √

3/3. Accordingly, the macro-
scopic fluid velocity is redefined as v = u + δtF/(2ρ).

C. Chemical-potential boundary condition

The chemical potential can effectively indicate the wetta-
bility of a solid surface [26]. Since the present multiphase
model is driven by a chemical potential, the implementation
of the chemical potential boundary condition is simple and
quite natural. To specify the wettability of a solid surface,
one can assign a specific chemical potential to the solid nodes
of the surface. The specific chemical potential gives rise to a
chemical-potential gradient between the solid surface and the
neighboring fluid, reflecting the nonideal interaction between
them and resulting in the wetting phenomena. To calculate the
density gradient near the boundary, the boundary condition
needs to estimate the densities on the solid nodes adjacent
to the fluid, which include two or three layers of solid nodes
when the gradient is calculated by the central difference meth-
ods with the fourth or sixth order accuracy, respectively. The
densities on these layers of solid nodes can be calculated
based on the nearest neighbor nodes [32]

ρ(xs) =
∑

i
ωiρ(xs + eiδt )sw

∑
i

ωisw

, (15)

where xs + eiδt indicates the adjoining nodes and sw is a
switching function. For the first layer of solid nodes, sw = 1
when xs + eiδt is a fluid node; for the second or third layer of
nodes, sw = 1 when xs + eiδt is in the first or second layer,
respectively; otherwise, sw = 0. When the chemical-potential
boundary condition is implemented on a horizontal substrate,
the above equation can be simplified to a simple weighted av-
erage scheme based on the densities of the neighbor layer [28].
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FIG. 1. Schematic diagram of the multiphase curved boundary
condition for 0 � q < 1

2 .

III. CURVED BOUNDARY CONDITION
FOR MULTIPHASE FLOW

An important function of condition in LBM is to eval-
uate the missing distribution functions, which, in concept,
stream from the boundary to the fluid. For single-phase flows,
the fluid density can be regarded as uniform, nevertheless
the local density would fluctuate slightly due to coupling to
pressure. Without phase transitions, the collisions of distri-
bution functions do not involve nonideal effects. Thus, the
conventional curved boundary conditions, especially those
based on interpolation algorithms, work very well, such as
linear interpolation, quadratic interpolation, fictitious distribu-
tion function, multiple reflection boundary conditions. and so
on [3,5,43]. The multiphase lattice Boltzmann simulations are
quite different. Because the Boltzmann equation assumes that
the particles are uncorrelated prior to the collisions, LBE can-
not directly describe phase transitions. A multiphase model
has to evaluate the nonideal force and add it into the LBE
collision term as an external force. A boundary condition
can produce new distribution functions, so it acts as a colli-
sion step. The nonideal effect should be considered to reflect
the surface wettability; otherwise, the errors are intolerable.
Furthermore, in the typical water or vapor system, the liquid-
gas density ratio can reach around hundreds to thousands
of times, and the density profile across the phase transition
region is highly nonlinear; consequently, the boundary condi-
tions result in sizable calculating errors at three-phase contact
regions. Even at the liquid-solid and gas-solid interfaces, the
wetting boundary would remarkably change the adjacent fluid
density and lead to interpolating errors. A distribution func-
tion can be viewed as a mass component in LBM [44]; these
errors cause abnormal mass leakage or increase and then crash
the evolution in the multiphase simulations (please refer to
Fig. 3 to see a typical example ). Therefore, the nonideal effect
and the interpolating error must be handled properly before
a curved boundary condition is implemented in multiphase
simulations.

A. Nonideal effect in curved boundary condition

The present scheme is based on the interpolation boundary
condition, which combines the linear interpolation and the
bounce-back scheme [5]. Figures 1 and 2 are the schematic
diagrams of the present multiphase curved BC. A solid bound-
ary is located between a solid node xs and a boundary-fluid
node x1, which is a fluid node linked directly to the boundary.
If i denotes the discrete direction from node x1 to node xs,
then the task of the boundary condition is to calculate the
distribution function fī(x1, t + 1) for the next time step. A

FIG. 2. Schematic diagram of the multiphase curved boundary
condition for 1

2 � q � 1.

multiphase curved BC needs to correctly treat the nonideal
interactions between the wetting boundary and its adjacent
liquid.

In the schematic diagram of Fig. 1, the distance from the
boundary to the boundary-fluid node is 0 � q < 1

2 , and
the fictitious node x′ is 1 − 2q lattice unit away from x1. If
the fictitious distribution function f̃i(x′, t ) at the time step t is
known, the particle population streams towards xs passing x1,
collides with the boundary, and bounces back, and then travels
to x1 in a single time step; finally, it becomes fī(x1, t + 1). The
fictitious distribution function can be calculated directly by
the linear interpolation of the distribution functions f̃i(x1, t )
and f̃i(x2, t ) in a single-phase environment [5]. However, in
multiphase simulations, the boundary condition has to con-
sider the nonideal effect that a distribution function collides
with the wetting boundary. This nonideal effect can be embod-
ied by the nonideal force F(x1, t ) on the boundary-fluid node
x1. Let’s observe the two distribution functions that constitute
the interpolation. Obviously, during the time step, t , f̃i(x1, t )
has already collided with the boundary and contained the
nonideal effect. But f̃i(x2, t ) cannot reach the boundary in
the time step t , so that it neither collides with the boundary
nor contains the nonideal effect. The part of the nonideal
effect should be complemented according to the proportion
of f̃i(x2, t ) in the interpolation. Thus, we can design the
multiphase curved boundary condition for 0 � q < 1

2 by inte-
grating the linear interpolation, the bounce-back scheme, and
the nonideal effect

fī(x1, t + 1) = 2q f̃i(x1, t ) + (1 − 2q) f̃i(x2, t )

+ (1 − 2q)Fi(x1, t ). (16)

In the schematic diagram of Fig. 2, the distance from the
boundary to the boundary-fluid node is 1

2 � q � 1. If the
above scheme is still used, the fictitious node would locate
beyond x1, and the calculation will degenerate into an extrap-
olation. As a more accurate scheme, the interpolation can be
established on the distribution functions of the t + 1 time step.
After the local collision, f̃i(x1, t ) streams towards xs, collides
with the boundary, and bounces back and then travels to the
fictitious node x′′ in a single time step, which is 2q − 1 lattice
unit away from x1; finally, it becomes the fictitious distribution
function fī(x

′′, t + 1). fī(x1, t + 1) is calculated by the inter-
polation of fī(x2, t + 1) and fī(x

′′, t + 1), and the nonideal
effect that a distribution function collides with the wetting
boundary has also to be taken into consideration. Obviously,
different from fī(x

′′, t + 1), fī(x2, t + 1) has neither collided
with the boundary in the time step t nor contained the nonideal
effect of the wetting boundary. This part of the nonideal force
should also be complemented according to the proportion of
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FIG. 3. The mass change of drops on (a) a hydrophilic substrate with θ = 60◦ and (b) a hydrophobic substrate with θ = 120◦.

fī(x2, t + 1) in the interpolation. To avoid referring to the
fictitious node, we use the postcollision distribution functions
at the t time step; thus, the multiphase curved boundary con-
dition for 1

2 � q � 1 can be written as

fī(x1, t + 1) = 1

2q
f̃i(x1, t ) + (2q − 1)

2q
f̃ī(x1, t )

+ (2q − 1)

2q
Fi(x1, t ). (17)

B. Mass modification for interpolating error

Although complementing the nonideal effect has greatly
reduced the error, it is inevitable that the interpolation itself
causes a certain degree of errors when the density profile is
nonlinear. The interpolating errors are noticeably fluctuant at
the beginning of a multiphase simulation and become very
small after the initial stage. They will influence the chemical
potential and then disturb the phase transition and equilib-
rium. The mass fluctuation caused by the interpolating error is
compensated as the local and static mass component in every

time step [33,34],

f0(x1, t + 1)= f0(x1, t + 1) +
∑

( f̃i(x1, t ) − fī(x1, t + 1)),
(18)

where the sum includes all of the differences between the out-
flow and inflow distribution functions on the fluid-solid links
of each boundary-fluid nodes. This modification guarantees
the mass conservation without violating the conservation of
momentum.

Previous studies used MIBC in multiphase simulations
with curved wetting boundaries. After the interpolation of
IBC, MIBC uses Eq. (18) alone without the consideration
of the nonideal effect [33,34]. Thus, the mass compensations
in every time step are the total errors of the nonideal effect
and the interpolation, which are very large as demonstrated
in Sec. IV C. Whereas, since the nonideal effect is properly
treated, the mass modifications in the present scheme only
involve the interpolating errors in every time step. After the
initial stage, they gradually reduce to approach 0, as shown in
Sec. IV C.

FIG. 4. The dynamic evolutions of a drop on (a) a hydrophilic substrate with θ = 60◦ and q = 0.3, and (b) a hydrophobic substrate with
θ = 120◦ and q = 0.8. The drop contours are simulated by using the present scheme, whereas the dotted lines are simulated by using IBC. The
evolution times are 0, 10 000, and 15 000 time steps for (a1)–(a3) and (b1)–(b3), respectively.
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FIG. 5. (a) The mass change of a drop on a hydrophilic curved substrate with θ = 60◦. The evolving drops simulated by the present scheme
(contours) and IBC (dotted lines) are compared at the time step (a) 0, (b) 5000, and (c) 10 000.

When the boundary is located exactly in the middle of a
fluid node and a solid node, namely, q = 1

2 , the last two terms
in Eq. (17), which originate from the fictitious distribution
function and the nonideal effect, are equal to zero. Thus,
Eq. (17) becomes fī(x1, t + 1) = f̃i(x1, t ), and Eq. (18) can be
canceled. In other words, IBC, MIBC, and the present scheme
are identical to HBBC when the distance q is equal to 0.5
exactly. Since it only refers to f̃i(x1, t ) without interpolation,
which collides with the boundary and bounces back in the
time step t , HBBC has already considered the nonideal effect
and involved no interpolating error. However, when a simu-
lation includes some complex-geometry boundaries, HBBC
replaces the real curved boundary by a zigzag geometry,
which damages the computational accuracy definitely [7,8].

IV. NUMERICAL SIMULATIONS AND DISCUSSION

In this section, a series of simulations are performed to
validate the effectiveness of the present multiphase curved
BC. Sections IV A and IV B verify the mass conservation
of the present scheme by simulating a drop on a flat or a
curved wetting substrate. Section IV C quantitatively analyzes
the nonideal effect and the interpolating error. Section IV D
compares the spurious currents of the present scheme and
MIBC. The simulations in these sections apply the rectangular
computation domains whose width and height are 500 and 300
lattice units for the flat substrates and 500 and 600 lattice units
for the curved substrates, respectively. Section IV E simulates

drops falling on a curved wetting substrate and compares
the results with the benchmarks from the experiments and
simulations [45,46]. The width and height of the computa-
tional domain are 600 and 1200 lattice units, respectively. The
density fields are initialized by using the equation [2,21]

ρ(x, y) = ρg + ρl

2
+ ρg − ρl

2
tanh

[
2(r − r0)

W

]
, (19)

where ρg and ρl are the two-phase coexistence densities cal-
culated by the Maxwell equal-area construction, W = 10 is
the initial interface width, r0 is the initial radius of the droplet,
and r =

√
(x − x0)2 + (y − y0)2. The curvature radius of the

curved substrate is 100 lattice units. The drop radii take 50,
70, and 100 lattice units for the flat substrate, the curved
substrate, and the drop falling cases, respectively. The pe-
riodic boundary condition is applied at the left and right
boundaries, and HBBC is applied at the upper boundary.
IBC, MIBC, and the present scheme are implemented on the
substrates, and the chemical-potential BC is used to realize
the surface wettability. The contact angles of the substrates
are assigned 60◦ for hydrophilic and 120◦ for hydrophobic
substrates, in addition to another 150◦ hydrophobic substrate
for the drop falling.

A. Verification on flat wetting substrates

A sessile drop sitting on a flat wetting substrate is sim-
ulated to verify the mass conservation. The distances from

FIG. 6. (a) The mass change of a drop on a hydrophobic curved substrate with θ = 120◦. The evolving drops simulated by the present
scheme (contours) and IBC (dotted lines) are compared at the time step (a) 0, (b) 10 000, and (c) 20 000.
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the substrate to the horizontal lattice line take the successive
values from 0 to 1 with a step length of 0.1. M0 and M
indicate the initial and dynamic masses of the entire flow field,
respectively. Figure 3 presents clearly that, for all values of the
distance q, the masses of the flow field with the present BC
are always constant and are identical to the results by HBBC
(namely q = 0.5), no matter whether it is on the hydrophilic
or hydrophobic substrate. As a comparison, IBC is also used
in the simulations. On the hydrophilic substrate, IBC causes
dramatic mass leakage for all values of the distance q except
0.5 as shown in Fig. 3(a). Noticeably, the farther from q =
0.5, the more serious the mass leakage, and they are almost
symmetrical relative to q = 0.5. At the time step 20 000, the
residual masses for q = 0, 0.1, 0.2, 0.8, 0.9, and 1.0 have al-
ready reduced to about 2% of the initial mass, which indicates
that all the liquid has already evaporated and the flow field
turns into gas phase wholly. On the hydrophobic substrate,
IBC produces a dramatic mass increase for all q values except
0.5 as shown in Fig. 3(b). Similarly, the further from q = 0.5,
the more the mass increase, and they are almost symmetrical
relative to q = 0.5. At the time step 20 000, the soaring masses
for q = 0.0, 0.1, 0.2, 0.8, 0.9, and 1.0 have already exceeded
240% of the initial mass, thus the entire flow field turns into
a liquid phase gradually. The changes of the drop sizes during
the evolutions are illustrated in Fig. 4, in which Figs. 4(a1)
to 4(a3) apply the hydrophilic substrate with θ = 60◦ and
Figs. 4(b1) to 4(b3) apply the hydrophobic substrate with
θ = 120◦. During the evolutions of the multiphase system, the
contour of the drop remains the same when the present BC is
applied. The dotted lines represent the results simulated by
IBC. It is clear that IBC notably makes the drop shrink on the
hydrophilic substrate and grow on the hydrophobic substrate.

The above simulations demonstrate that IBC, which is
competent for treating complex boundaries in the simula-
tions of single-phase flows and cannot be directly applied in
multiphase flow environments. After considering the nonideal
effect and compensating for the interpolating error, the present
scheme meets the mass conservation on both hydrophilic and
hydrophobic flat substrates, no matter the distances between
the substrate and the horizontal lattice line.

B. Verification on curved wetting substrates

Different from the simulations in Sec. IV A, in which the
flat substrate has a constant distance q away from the hori-
zontal lattice line, this section verifies the mass conservation
of a sessile drop sitting on a curved wetting substrate. Since
the curved boundary can involve all types of the distance
q ∈ [0, 1], the simulations in this section reflect the overall
effect of a multiphase curved BC. Figure 5(a) presents the
mass changes of the flow field during the dynamic evolutions
of a drop on a hydrophilic curved substrate with θ = 60◦. The
simulation with the present scheme keeps the mass constant.
Whereas IBC makes the mass reduce dramatically, and at the
time step 20 000, the residual mass has already reduced to
about 2% of the initial mass, which suggests that the entire
flow field has already turned into a gas phase. Figures 5(b) to
5(d) compare the drop size during the dynamical evolutions,
and the contours and the dotted lines represent the simulating
results by using the present scheme and IBC, respectively.

Obviously, the drop in the flow field with IBC shrinks to
fade. Figure 6(a) presents the mass changes of the flow field
during the dynamic evolutions of a drop on a hydropho-
bic curved substrate with θ = 120◦. The simulation with the
present scheme keeps the mass constant, but that by using IBC
makes the mass increase notably. At the time step 25 000,
the total mass has already increased to more than 180% of
the initial mass, and the entire flow field turns into a liquid
phase. Figures 6(b) to 6(d) display the visual comparisons, in
which the contours and the dotted lines represent the drops
simulated by the present scheme and IBC, respectively. Re-
markably, the drop in the flow field with IBC grows quickly.
These simulations confirm that the present scheme satisfies
mass conservation and IBC cannot be applied directly in a
multiphase environment.

C. Quantification of nonideal effect and interpolating errors

MIBC combines IBC and Eq. (18) and is equivalent to
artificially compensate for all of the nonideal effect and the
interpolating errors. Whereas the present scheme takes into
account the nonideal effect through Eqs. (16) and (17), it only
compensates for the interpolating error. To distinguish the
influences caused by the nonideal effect and the interpolating
error, the quantitative analyses are conducted by calculating
the compensating mass M in every time step in the simula-
tions with MIBC and the present scheme.

Figures 7(a) and 8(a) present the compensating masses of
MIBC in the simulations of a drop on the wetting substrates,
which include both the nonideal effect and the interpolating
error. It is obvious that the absolute values of the artificial
compensation for MIBC are much larger and they are even
close to −10 and 50 in a single time step for the hydropho-
bic and hydrophilic substrates, respectively. On the contrary,
Figs. 7(b) and 8(b) show clearly that the compensating masses
required by the present scheme, which only involves the inter-
polating error, are far less than 1. They appear mainly in the
initial phase, fluctuate up and down, and converge to almost
zero quickly. Comparing the results of MIBC and the present
scheme manifests that the errors from the nonideal effect are
much more than that from the interpolation, and the consider-
ations of the nonideal effect in Eqs. (16) and (17) are accurate
and stable. In other words, the present scheme minimizes the
artificial intervention in the evolution of the flow field.

D. Spurious currents of drops on flat or curved substrates

The spurious currents are a nonphysical phenomenon in
lattice Boltzmann simulation for multiphase flow and the
boundary treatment plays an important role in spurious cur-
rents [18,28]. This section compares the spurious currents
caused by MIBC and the present scheme.

The simulations of a drop on various flat wetting substrates
are performed and the contact angle θ = 60◦, 90◦, and 120◦
represent the hydrophilic, neutral, and hydrophobic substrates,
respectively. Figure 9 shows that the spurious currents from
MIBC are sizable except q = 0.5. They approach 10−2 for
q = 0.4 and 0.6, and increase even to 5 × 10−2 when the
distances are more away from 0.5. Strikingly, the spurious
currents from the present scheme are about one order of
magnitude lower than those from MIBC except q = 0.5. Even
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FIG. 7. The compensating mass during the simulations of a drop on a hydrophilic substrate with θ = 60◦ by (a) MIBC and (b) the present
scheme.

more amazing is that most of the spurious currents from the
present scheme are less than those from HBBC.

The spurious currents are further investigated by simulat-
ing a drop on the curved wetting substrates with a series of
surface wettability. Since all kinds of q values are involved,
these simulations can reflect the overall effects of MIBC
and the present scheme on the spurious currents. Figure 10
presents that the spurious currents from the present scheme
are one order of magnitude lower than those from MIBC on
all wetting substrates. These test cases validate the accuracy
and robustness of the present scheme again.

E. Drops falling on a curved wetting substrate

To further demonstrate the effectiveness of the present
scheme in dynamic systems, we simulate the drop impact on a
curved substrate and the results are compared with the bench-

marks from the experiments and simulations [45,46]. The
dimensionless parameters refer to the definitions in the litera-
ture [46]. The bond number describes the ratio of gravitational
to capillary forces and is defined by Bo = g(ρL−ρG )D2

σ
, where D

is the diameter of the drop, g is the gravity acceleration, σ is
the liquid-gas surface tension, and ρG and ρL are the densities
of the gas and liquid, respectively. The dimensionless time
is related to gravity by t∗

g = t
√

g/D. In this section, we take
g = 980 cm/s2 and σ = 0.045 for the simulations.

Figures 11 and 12 present a drop impacting on a hy-
drophilic substrate with Bo = 2.2 and 14.5, respectively. In
the evolutions, the drops tend to adhere to the substrate and
engulf the perimeter of the hydrophilic cylinders due to the
influence of gravity. Since the case in Fig. 12 has a larger Bo,
it evolves faster and the gravitational force is strong enough
to prevail over the interfacial tension between the drop and

FIG. 8. The compensating mass during the simulations of a drop on a hydrophobic substrate with θ = 120◦ implemented by (a) MIBC and
(b) the present scheme.
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FIG. 9. The spurious currents of a drop on a flat wetting substrate
with the contact angles θ = 60◦, 90◦, and 120◦.

FIG. 10. The spurious currents of a drop on the curved sub-
strates with the wettability from hydrophilicity (θ = 50◦) to super
hydrophobicity (θ = 170◦).

FIG. 11. Dynamic evolutions of a drop impacting on a
hydrophilic cylinder with θ = 60◦ and Bo = 2.2.

FIG. 12. Dynamic evolutions of a drop impacting on a hy-
drophilic cylinder with θ = 60◦ and Bo = 14.5.

the hydrophilic cylinder. This causes the drop to break up and
detach from the hydrophilic substrate.

To compare the effect of the surface wettability, we in-
crease the contact angle of the cylinder to θ = 150◦, which
corresponds to a hydrophobic substrate. The drop falls to
the hydrophobic cylinder with three different Bond num-
bers, namely, Bo = 2.2, 4.0, and 14.5, and the simulating
results are shown in Figs. 13–15, respectively. For the lowest
Bo = 2.2, Fig. 13 presents that the drop retracts after hitting
the hydrophobic cylinder. This phenomenon is similar to the
bouncing of drops on a flat surface [31,47]. Unlike Fig. 11, in
which the drop swallows the hydrophilic cylinder, the drop in
Fig. 13 finally sits on the hydrophobic cylinder. With increas-
ing Bo to 4.0, the drop in Fig. 14 breaks upon contact with
the upper pole of the substrate. Then, the drop is separated
into two daughter drops and detached completely from the
hydrophobic substrate. Further increasing Bo to 14.5 results in
an interesting disintegration. In the impact process shown in
Fig. 15, the drop is divided into several small drops of various
sizes under the greater gravitational force. Similarly, the larger
the Bo, the faster the evolution.

The film thickness h f on top of the cylinder can be
measured and compared with the benchmarks from the experi-
ments and simulations [45,46]. The normalized film thickness
is defined by h∗ = h f /hi, where hi is the height of the drop
at the instant of impact. A dimensionless time is defined as

FIG. 13. Dynamic evolutions of a drop impacting on a hydropho-
bic cylinder with θ = 150◦ and Bo = 2.2.
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FIG. 14. Dynamic evolutions of a drop impacting on a hydropho-
bic cylinder with θ = 150◦ and Bo = 4.0.

FIG. 15. Dynamic evolutions of a drop impacting on a hydropho-
bic cylinder with θ = 150◦ and Bo = 14.5.

FIG. 16. Temporal variation of the film thickness on top of the
cylinder. The solid blue line and red line are the power-law curves
from experimental data [45,46], and the dotted lines are the results
of the present scheme simulation.

t∗ = (t − ti )Ui/D, where ti is the instant of impact between
the drop and substrate and Ui is the velocity at the moment
of drop impact. The temporal variation of the film thickness
on the top of the cylinder is plotted in Fig. 16. According
to the literature [45], the film thickness is expected to vary
as h∗ = 1 − t∗ at early times, and as h∗ = 0.15t∗−2 at inter-
mediate times. The five simulations in Fig. 16 correspond to
the dynamic evolutions in Fig. 11–15. It can be seen clearly
that the simulation results by using the present scheme are
in good agreement with the power-law-fitted curves of the
experimental data [45].

V. SUMMARY

The boundary treatment plays a significant role in the
numerical simulations of complex fluid flows. In the lat-
tice Boltzmann method, the effectiveness of the conventional
curved boundary conditions in single-phase simulationswas
confirmed by many numerical results [4–6,11,44]. However,
in multiphase environments, because the conventional curved
schemes have not considered the nonideal effect of wetting
boundaries and the interpolating error due to the remark-
able density changes, they caused dramatic mass leakage
or increase, and usually crashed the multiphase simulations.
This paper proposes a multiphase curved boundary condition
that incorporates the nonideal effect into the linear interpo-
lation scheme and compensates for the interpolating error.
The present scheme was validated by a series of static and
dynamic test cases with large density ratio. The numerical
results showed that it was accurate and guaranteed mass con-
servation. It only required a very small mass compensation,
and the spurious current was suppressed to a very low level.
These manifest that the present scheme is competent to depict
the wetting boundary with complex geometry in the simula-
tions of multiphase flow. We expect the multiphase curved
boundary condition can promote the accuracy of the numer-
ical simulations in the fields of capillary phenomena, moving
contact line, soft wetting, and so on [48–50].
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