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Diffuse-interface lattice Boltzmann modeling of charged particle transport in Poiseuille flow
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In this paper, we developed a coupled diffuse-interface lattice Boltzmann method (DI-LBM) to study the
transport of a charged particle in the Poiseuille flow, which is governed by the Navier-Stokes equations for fluid
field and the Poisson-Boltzmann equation for electric potential field. We first validated the present DI-LBM
through some classical benchmark problems, and then investigated the effect of electric field on the lateral
migration of the particle in the Poiseuille flow. The numerical results show that the electric field has a significant
influence on the particle migration. When an electric field in the vertical direction is applied to the charged
particle initially located above the centerline of the channel, the equilibrium position of the particle would
drop suddenly as the electric field is larger than a critical value. This is caused by the wall repulsion due to
lubrication, the inertial lift related to shear slip, the lift owing to particle rotation, the lift due to the curvature of
the undisturbed velocity profile, and the electric force. On the other hand, when an electric field in the horizontal
direction is adopted, the equilibrium position of the particle would move toward the centerline of the channel
with the increase of the electric field.
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I. INTRODUCTION

The transport of a particle in the Poiseuille flow, as a basic
prototype of particulate flows, has received increasing atten-
tion for its significance in a variety of industrial and biological
applications [1–3]. Segre and Silberberg [1] first conducted
an experimental study on the neutrally buoyant particle in the
Poiseuille flow and found that the particle always migrates
to the equilibrium position between the centerline and the
wall, which is the so-called Segre-Silberberg phenomenon,
and is also investigated theoretically in the later works. For
example, Cox and Brenner [4] considered a spherical particle
suspended in a three-dimensional Poiseuille flow, and derived
a theoretical expression of the migration velocity. Ho and Leal
[5] theoretically investigated the motion of a neutrally buoyant
particle in a two-dimensional Couette and Poiseuille flow, and
found that the particle reached a stable lateral equilibrium
position independent of the initial position of release. Then
Vasseur and Cox [6] studied the migration of neutral and
non-neutral buoyant particles in the Couette and Poiseuille
flows with the method developed in Ref. [4].

On the other hand, with the development of computational
techniques, the numerical simulation, as a more popular ap-
proach, has also been used to study the dynamic behavior of
the particle in the Poiseuille flow. For instance, Feng et al.
[7] studied the motion of a circular particle in the Poiseuille
flow with the finite-element method (FEM). They reported
the mechanisms of a circular particle in the Poiseuille flow,
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and found that their results are qualitatively consistent with
the available data. Inamuro et al. [8] investigated the motion
of one and two lines of neutrally buoyant circular cylinders
between flat parallel walls by the lattice Boltzmann method
(LBM), and also observed the Segre-Silberberg phenomenon
for both a single and two lines of cylinders. Shao et al.
[9] considered the inertial migration of spherical particles in
the Poiseuille flow by using a fictitious domain method, and
found that the results are in a qualitative agreement with the
theoretical and experimental data. Hu et al. [10] studied the
influence of thermal convection on a neutrally buoyant particle
migration in the Poiseuille flow via the LBM, and illustrated
that when the Grashof number exceeds a critical value, the
equilibrium position of the particle would change from the
upper part to the lower part of the channel.

It should be noted that most of these previous studies
focused on the uncharged particle migration in the Poiseuille
flow. In reality, however, the particle could be charged, and
the electrostatic force would have a significant effect on the
particle migration. Actually, the transport of the charged par-
ticle also attained great interest in the past years. Ye et al.
[11] investigated the electrophoretic motion of two spherical
particles in an aqueous electrolyte solution by the FEM, and
found that the faster particle, moving behind the slower par-
ticle, would climb and pass the slower particle when the two
particles’ centers are not located on the same line parallel to
the applied electric field. Bhattacharyya et al. [12] focused
on the migration of a colloidal particle in an electrolyte so-
lution under the influence of an external electric field. It is
demonstrated that as the particle velocity rises, the hydro-
dynamic drag gradually approaches the Stokes drag and the
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FIG. 1. Schematic of the physical problem [(a) an electric field applied in vertical direction, (b) an electric field applied in horizontal
direction].

electric force diminishes. Xie et al. [13] considered the two-
dimensional interactive motion of multiple dielectrophoretic
particles in an electrolyte subjected to a uniform DC elec-
tric field, and found that the behavior of interactive motion
of dielectrophoretic particles is affected significantly by the
difference of permittivity between the particle and electrolyte.
Tofighi et al. [14] investigated the sedimentation of an elliptic
disk under an electrostatic field by using the smooth particle
hydrodynamics method, and showed that for the specified
blockage and density ratios, the final sedimentation orien-
tation of the ellipse disk is dependent on the electric field
intensity. To our knowledge, the particle in the Poiseuille flow,
as a classic problem, has been studied extensively; however,
a charged particle in the Poiseuille flow under the influence
of an external electric field has not been considered. In this
work, we will study the migration of a charged particle in the
Poiseuille flow with the LBM, and focus on the influence of
an external electric field.

The lattice Boltzmann method, as a kinetic-based numeri-
cal approach, has gained great success in the study of complex
hydrodynamic problems [15–20]. Compared to the traditional
numerical methods, the LBM has some distinct advantages,
including the clear physical background, easy implemen-
tation of complex boundary conditions, natural parallelism
in algorithm, and simplicity in programming [15]. Due to
these advantages of the LBM, it has also been applied to
investigate particulate flows [21–23]. Recently, an efficient
approach, named the diffuse-interface LBM (DI-LBM) [24],
is developed for the fluid-particle interaction problems. In this
method, the fluid is filled with the whole domain, and the
sharp boundary between the fluid and particle is replaced by a
diffuse interface with a nonzero thickness, in which the phys-
ical variables are assumed to change smoothly. In addition,
the fluid-particle interaction is realized through modifying the
force term in the evolution equation, and there is no special
treatment on the fresh fluid nodes. Owing to the advantages
of the DI-LBM in the study of fluid-particle problems, it will
be extended to study the problem of a charged particle in the
Poiseuille flow.

The rest of the paper is organized as follows. In Sec. II, the
physical problem and macroscopic governing equations are
briefly introduced. In Sec. III, a triple-distribution-function
DI-LBM for the governing equations is developed, followed
by the numerical validations in Sec. IV. In Sec. V, the elec-
tric field effect on the lateral migration of the particle in

the Poiseuille flow is mainly investigated, and finally some
conclusions are given in Sec. VI.

II. PHYSICAL PROBLEM AND MACROSCOPIC
GOVERNING EQUATIONS

The schematic of the physical problem we consider is
shown in Fig. 1, where a neutrally buoyant particle with the di-
ameter D = 1 (unless otherwise stated) is placed in a channel
with L × W = 20D × 4D. The initial position of the particle
is located at (x0, y0) with x0 = L/2. The electric potential of
the particle surface is ϕp, and a uniform external electrical
field E0 is applied in the vertical (negative y) direction and
the horizontal (positive x) direction, respectively. The pressure
drop from inlet to outlet is �P = Pin − Pout, and the no-slip
boundary conditions are applied to the channel walls.

For the above physical problem, the governing equations,
including the Navier-Stokes equations, the internal electric
potential equation, and the external electric potential equation,
can be expressed as

∇ · u = 0, (1)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇P + ∇ · (μ∇u) + F, (2)

∇2ϕ = − ρe

εε0
, (3)

∇2ψ = 0, (4)

where ρ, u, and P are the fluid density, velocity, and pressure
and μ is the dynamic viscosity. The parameters ψ , ϕ, ε, and
ε0 denote the external electric potential, internal electric po-
tential, dimensionless dielectric constant, and permittivity of
vacuum. The external force F is given by F = ρeE where ρe =
−2n∞ze sinh( zeϕ

kbT ) is the net charge density, n∞ is the ionic
number concentration in the bulk solution, z is the valence of
ions, e is the fundamental electric charge, kb is the Boltzmann
constant, T is the temperature, and E = −(∇ψ + ∇ϕ) is the
total electric field. The boundary condition of the external
electric potential at particle surface is ∇nψ = 0.

It is known that when the surface electric potential is small
enough, the Debye-Hückel approximation ( sinh( zeϕ

KbT ) ≈ zeϕ
KbT )

can be applied, and Eq. (3) can be simplified by

∇2ϕ = 2n∞z2e2

εε0KbT
ϕ = κ2ϕ, (5)
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where κ =
√

2n∞z2e2

εε0KbT is the reciprocal of the Debye length.
To simplify the following analysis, we introduce some

dimensionless variables,

x∗ = x

d0
, u∗ = u

u0
, t∗ = t

d0/u0
, ρ∗ = ρ

ρ0
,

P∗ = P

ρ0u0
2/d0

, ϕ∗ = ϕ

ϕ0
, (6)

which can be used to derive the dimensionless governing
equations,

∇ · u = 0, (7)

ρ
∂u
∂t

+ ρu · ∇u = −∇P + ∇ ·
(

1

Re
∇u

)
+ ρ̄eE, (8)

∇2ϕ = λ2ϕ, (9)

∇2ψ = 0, (10)

where the superscript ∗ has been omitted. The dimensionless
parameters Re, ρ̄e, and λ are defined as

Re = u0d0ρ0

μ
, ρ̄e = −κ2εε0ϕ

2
0

ρ0u2
0

ϕ, λ = κd0. (11)

Besides the above governing equations for fluid and elec-
tric fields, we also need to consider the following equations for
the motion of the particle,

mp
dup

dt
= Fh + Fe +

(
ρ

ρp
− 1

)
mpg, (12)

Ip
dωp

dt
= Th + Te, (13)

dxp

dt
= up, (14)

where mp and Ip are the mass and rotational inertia of the
particle, ρp and up are the particle density and translational
velocity, ωp is the angular velocity of the particle, and g is the
gravity acceleration. xp is the position of the particle, and Fh

and Fe are the hydrodynamic and electrostatic forces. Th and
Te are hydrodynamic and electrostatic torques.

III. NUMERICAL METHOD

A. The diffuse-interface lattice Boltzmann method

To depict the transport of a charged particle in the
Poiseuille flow, a triple-distribution-function DI-LBM is de-
veloped. In this method, the evolution equations for fluid field
and internal and external electric fields are written as

fi(x + ci
t, t + 
t ) = fi(x, t ) − 1

τ f

[
fi(x, t ) − f eq

i (x, t )
]

+
t (1 − φ)Fi(x, t ) + F̄i(x, t ), (15)

gi(x + ci
t, t + 
t )

= gi(x, t ) − 1

τg
[gi(x, t ) − gi

eq(x, t )]

+
t (1 − φ)αGi(x, t ) + 
tφαḠi(x, t ), (16)

hi(x + ci
t, t + 
t )

= hi(x, t ) − 1

τh
[hi(x, t ) − hi

eq(x, t )] + 
tφαHi(x, t ),

(17)

where 
t and 
x are the time step and lattice spacing, and
τ f , τg, and τh are the relaxation times for the flow and internal
and external electric potential fields. α is an artificial diffusion
coefficient [25,26]. ci = cei is the discrete velocity vector with
c = 
x/
t being the lattice speed. The equilibrium distribu-
tion functions f eq

i (x, t ), geq
i (x, t ), and heq

i (x, t ) are defined as
[17,25,26]

f eq
i (x, t ) = ρwi

(
1 + ci · u

c2
s

+ (ci · u)2

2c4
s

− u2

2c2
s

)
, (18)

g(eq)
i (x, t ) =

{
(w′

0 − 1)ϕ, i = 0,

w′
iϕ, i �= 0,

(19)

h(eq)
i (x, t ) =

{
(w′

0 − 1)ψ, i = 0,

w′
iψ, i �= 0,

(20)

where wi and w′
i are the weight coefficients. cs is the lattice

sound speed and is related to lattice speed c. To make the
model more efficient, the popular D2Q9 and D2Q5 lattice
models [27] are considered for the flow and electric potential
fields, respectively. In the D2Q9 model, w0 = 4/9, w1−4 =
1/9, w5−8 = 1/36, and c2

s = c2/3, while in the D2Q5 model,
w′

0 = 0,w′
1−4 = 1/4, and c2

s = c2/2.
The parameter φ is a hyperbolic tangent function and is

defined as

φ = 1 + tanh(2l/εd )

2
, (21)

where l is the distance of the node to the boundary of the
particle, and εd is the thickness of diffuse interface. Fi and
Gi are the discrete force and source terms, and can be given
by [28]

Fi = wi

(
1 − 1

2τ f

)(
ci − u

c2
s

+ ci · u
c4

s

ci

)
· ρ̄eE, (22)

Gi = w′
iλ

2ϕ. (23)

In addition, to describe the fluid-particle interaction prop-
erly, the terms F̄i, Ḡi, and Hi are adopted, and they should be
given by

F̄i = φ

(
1 − 1

2τ f

)
wiρ

(
ci · (us − u∗)

c2
s

+ (usus − u∗u∗) :
(
cici − c2

s I
)

2c4
s

)
, (24)

Ḡi = w′
i

(ϕp − ϕ)


t
, (25)

Hi = w′
i

(−∇nψ )


x
, (26)

where ϕp denotes the surface potential of the particle, and us is
the velocity of the particle (us = up + ωp × (x − xp); x is the
coordinate of the grid). u∗ is the velocity without considering
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the fluid-particle interaction, and it is calculated by

u∗ =
∑

i ci fi + 
t (1−φ)
2 ρ̄eE

ρ
. (27)

Through considering the interaction between the particle and
fluid, the macroscopic quantities can be determined by

ρ =
∑

i

fi, (28)

u = u∗ + 1

2
φ(us − u∗), (29)

ϕ =
∑q−1

i=1 gi + w′
0(1 − φ)τg
tαG + w′

0φτgαϕp

1 − w′
0 + w′

0φτgα
, (30)

ψ = 1

1 − w′
0

q−1∑
i=1

hi − w′
0

1 − w′
0

φτh
tα∇nψ/
x. (31)

Finally, through the Chapman-Enskog analysis [17], the
governing equations can be recovered with the following vis-
cosity and artificial diffusion coefficient,

μ = ρ0c2
s

(
τ f − 1

2

)

t, (32)

α = c2
s

(
1

2
− τg

)

t = c2

s

(
1

2
− τh

)

t . (33)

Due to the kinetic nature of the LBM, the gradient terms
∇ϕ and ∇ψ can be calculated by the following second-order
local schemes [25,26],

∇ϕ = − 1

τg
tc2
s

∑
i

cigi, (34)

∇ψ = − 1

τh
tc2
s

∑
i

cihi. (35)

B. Numerical approach for particle movement

Here for simplicity, we adopt the first-order Euler method
for Eqs. (12), (13), and (14),

un+1
p = un

p + 
t

mp

[
Fh + Fe +

(
ρ

ρp
− 1

)
mpg

]
, (36)

ωn+1
p = ωn

p + 
t

Ip
(Th + Te), (37)

xn+1
p = xn

p + 
tup. (38)

In the implementation of Eq. (36) for the motion of the
charged particle, the electrostatic force Fe and hydrodynamic
force Fh acting on the particle have to be determined before-
hand. In the framework of LBM, the hydrodynamic force Fh

and torque Th can be calculated by

Fh = −
x2


t

∑
n

φnρ(us − u∗), (39)

Th = −
x2


t

∑
n

(xn − xp) × [φnρ(us − u∗)], (40)

where xn is the coordinate of the node n. The electrostatic
force Fe and torque Te are computed by

Fe =
∑
∂�

σe · n
s, (41)

Te =
∑
∂�

(x − xp) × σe · n
s, (42)

where σe = εε0ϕ
2
0

ρ0u2
0d2

0
(EE − 1/2|E|2I) is the Maxwell stress ten-

sor, n is the outward unit vector normal to the interface of the
particle, and 
s is the unit arc length of the particle surface.

IV. NUMERICAL VALIDATIONS

In this section, three benchmark problems are used to test
the accuracy of the present DI-LBM. The first one is the
inertial migration of an uncharged neutral buoyant particle in
the Poiseuille flow, the second one is a particle with a uniform
surface charge immersed in an electrolyte solution, and the
third one is the coaxial electrophoretic motion of a spherical
particle.

A. An uncharged neutral buoyant particle moving
in the Poiseuille flow

The configuration of this problem is similar to that in
Fig. 1, and the only difference is that the electric field is
not included. The pressure drop from inlet to outlet is set to
be �P = 0.00267, the lattice spacing is 
x = 1/25, and the
relaxation time is τ f = 0.75. The channel Reynolds number
is Re = 96.12, and the particle is released at initial position
(x0, y0) = (L/2, 0.25W ).

Figure 2 shows the trajectory of the particle, and a com-
parison of the results of Tao et al. [29] and the homogenized
lattice Boltzmann method (HLBM) [30] is also made. From
this figure, one can observe that with the increase of time, the
particle would finally reach the equilibrium position between
the wall and the centerline of the channel (y = 0.5W ), which
is in good agreement with the data reported in Ref. [29]
and obtained by HLBM. In addition, to give a quantitative
comparison, we also measured the equilibrium position of
the particle, and presented the results of different methods in
Table I. As seen from this table, our result is very close to
those of Ref. [29] and HLBM.

0 5 10 15 20 25 30
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6
Present
Tao et al. (2016)
HLBM

FIG. 2. The trajectory of the moving particle in the Poiseuille flow.
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TABLE I. A comparison of the particle equilibrium position be-
tween the present work and some previous studies.

Present Tao et al. [29] HLBM

0.2861 0.2849 0.2872

B. A particle with a uniform surface charge immersed
in an electrolyte solution

To further test the capacity of the DI-LBM in describing
the distribution of electric potential around the charged par-
ticle, the problem of a particle with a uniform surface charge
immersed in an electrolyte solution is considered. As shown in
Fig. 3, the computational domain is Lx × Ly = 30 × 30, and
the particle with the diameter D = 1.0 is fixed at the center
of the domain. The dimensionless parameter λ = 10, and the
electric potential on the particle surface is set as ϕp = 1.0. Un-
der the no-flux boundary condition applied for all the physical
variables, one can obtain the following analytical solution,

ϕ = ϕpB2(λr)

B2(λD/2)
, r � D/2, (43)

where B2 is the second kind of Bessel function and r is the
distance to the center of the particle.

We performed a simulation with the lattice spacing 
x =
1/25 and the relaxation time τg = 0.75, and presented a
comparison of analytical and numerical solutions along the
horizontal centerline in Fig. 4. From this figure, one can see
that the numerical solution agrees well with the analytical
solution.

C. The coaxial electrophoretic motion of a spherical particle

The last validation problem we considered is the coaxial
electrophoretic motion of a spherical particle with the radius
a in a long cylindrical tube with the radius b. The parameter
κa ≈ 1, the electric potentials on the particle surface and
cylindrical tube surface are ϕp = 1.0 mV and ϕm = 0.0 mV,
and the other parameters are the same as those in Ref. [31]. We
performed some simulations with the D3Q15 lattice model,
and presented the velocity of the spherical particle as a

FIG. 3. Schematic of a charged particle immersed in an elec-
trolyte solution.

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Analytical
Numerical

FIG. 4. Analytical and numerical solutions of the electric poten-
tial around the circular particle with a uniform surface charge.

function of the radius ratio a/b in Fig. 5 where the velocity of
the particle is normalized with Ueq = εε0ϕpE/μ. As shown
in this figure, the velocity of the particle decreases with the
increase of a/b, which is in good agreement with the available
data [31].

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we will perform some simulations to study
the lateral migration of a charged neutral buoyant particle in
the Poiseuille flow under an external electric field. To this
end, a grid-independent test is first conducted under different
lattice sizes, and then the particle migration under the vertical
and horizontal electric fields is investigated.

0.15 0.2 0.25 0.3
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Present
Liu et al. (2007)

FIG. 5. The velocity Up of the spherical particle against the ra-
dius ratio a/b.
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0 500 1000 1500 2000 2500
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0 500 1000 1500 2000 2500
0.5

0.55

0.6

0.65

0.7

0.75

0.8

(a) (b)

FIG. 6. The lateral positions of the particle at different lattice resolutions and time [(a) the case with a vertical electric field, (b) the case
with a horizontal electric field].

A. A grid-independent test

A grid-independent test on the physical problem shown in
Fig. 1 is first carried out under different lattice resolutions.
The pressure difference is set to be 
P = 0.00267, the cor-
responding channel Reynolds number is Re = 96.12, and the
other parameters are λ = 10 and ρ̄e = −6.95 × 10−5ϕ. The
initial position of the particle is fixed at y0 = 0.75W , and
the external electric field is E0 = 1. The electric potential on
the particle surface is φp = 1.0 for the case with a vertical
external electric field and φp = −1.0 for the case with a
horizontal external electric field. Figure 6 shows the lateral
trajectories of the particle under different grid resolutions. It
can be found from this figure that the results under D = 35
x
and D = 40
x are almost the same as each other, and for
this reason, the grid resolution D = 35
x is adopted in the
following simulations.

B. The charged particle motion under a vertical external
electric field

We now performed some simulations to study the effect of
the vertical external electric field on the lateral migration of
the charged particle, and focused on three cases with the ini-
tial positions y0 = 0.75W, 0.65W , and 0.25W . We conducted
some simulations under different values of the external elec-
tric field intensity E0, and presented the lateral equilibrium
position yeq of the charged particle in Fig. 7. Based on the
results shown in this figure, one can observe that for the
cases with y0 = 0.75W and 0.65W , the equilibrium position
is still above the centerline as electric field density E0 is small
enough, while it would gradually approach the centerline with
the increase of E0. In particular, when E0 is larger than a
critical value Ec, the equilibrium position of the case with
y0 = 0.75W would reduce suddenly from 0.69W above the

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

(a) (b)

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FIG. 7. The effect of vertical electric field on the lateral equilibrium position yeq of the particle: (a) E0 ∈ [0, 50], (b) E0 ∈ [0, 10].
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0.55 0.6 0.65 0.7 0.75 0.8 0.85

0

2

4

6

8

10

12

Numerical

Fitting curve

FIG. 8. The relation between the critical electric field intensity
Ec and the initial position y0.

centerline to 0.27W below the centerline. For the case with
y0 = 0.25W , however, the equilibrium position is below the
centerline and gradually approaches the wall with the increase
of E0. It should also be noted that the equilibrium position of
the charged particle is related to the initial position for a small
E0, but it would be independent on the initial position as E0

is large enough. In addition, from Fig. 7(b) one can also find
that for the cases with y0 = 0.65W and 0.75W , the critical
values of electric field density E0 are about 2 and 6, which
means that as E0 increases, the initial position is closer to
the centerline and the transition of the equilibrium position
is earlier. To see this more clearly, we presented the values
of critical electric field intensity (Ec) with different initial
positions (y0) in Fig. 8, and a least-square fitting gives the
following approximate expression,

Ec = 12.44 exp

[
−

(
y0/W − 0.8758

0.1576

)2]
, y0 > 0.5W, (44)

which shows that Ec increases exponentially with y0. We
also gave a special discussion on the critical value of electric
field intensity Ec for the case with y0 = 0.75W . In order to
explore the interesting bifurcation phenomenon, we presented
the time evolutions of the particle lateral position at E0 = 6
and E0 = 7 in Fig. 9. When the dimensionless time tυ/D2

(υ = μ/ρ denotes the kinematic viscosity) is no more than
1.4, the particle trajectories are almost the same for both cases
of E0 = 6 and 7, and the bifurcation phenomenon begins to
occur after tυ/D2 = 1.4. Particularly, for case of E0 = 6, the
particle rises and reaches its equilibrium position above the
centerline, while for E0 = 7, the particle would descend and
cross the centerline to reach an equilibrium position below the
centerline.

We also tested the effect of the particle size on the equi-
librium position, and plotted the results in Fig. 10, where
the initial position of the charged particle is y0 = 0.75W . As
seen from this figure, the critical value for the transition of
particle equilibrium position is different for different particle
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FIG. 9. Time evolutions of the lateral position of the particle at
E0 = 6 and E0 = 7.

sizes. With the increase of E0, the smaller particle has a earlier
transition of the equilibrium position.

We now try to understand the phenomena observed above
from a mechanical point of view. It is known that for the
uncharged neutrally buoyant particle in the Poiseuille flow,
the lateral equilibrium position is determined by four different
mechanisms [7], i.e., the wall repulsion due to lubrication, the
inertial lift related to shear slip, the two lifts due to particle
rotation, and the curvature of the undisturbed velocity profile.
As the electric field is involved, however, another mechanism
related to the electric force should be considered. Actually,
when a vertical electric field with a negative value is applied,
the particle experiences a downward force and moves toward
the wall. In the following, a detailed analysis on the above
mechanisms is performed to explain the interesting bifurca-
tion phenomenon. First of all, the effect of the wall is to force
the particle away from the wall to the center of the channel,
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FIG. 10. The lateral equilibrium positions of the charged particle
with different sizes.
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FIG. 11. The evolutions of the slip velocity at E0 = 6 and E0 = 7.

but when particle is far away from the wall, the wall effect
would be reduced significantly.

Second, we focused on the effect of the inertial lift related
to shear slip. It is known that the shear slip create a slip
velocity (uslip) which is the deference between the particle
and the fluid velocities (uslip = up − u). For a particle in the
Poiseuille flow, if the slip velocity is positive, the particle
leads the fluid, and the inertial lift force push the particle to
the wall. However, if the slip velocity is negative, the particle
lags the fluid, and the inertial lift force pushes the particle to
the centerline [7]. As shown in Fig. 11, the slip velocities at
E0 = 6 and E0 = 7 are both negative, and thus the role of the
inertial lift force is to push the particle to the centerline.

Third, we considered the effect of the lift due to particle
rotation. Figure 12 shows the evolution of the angular velocity
of the particle in time for the cases of E0 = 6 and E0 = 7.
From this figure, it can be seen that the angular velocity
of particle is always positive at E0 = 6, but for the case of
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FIG. 12. The evolutions of the angular velocity of the particle at
E0 = 6 and E0 = 7.
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FIG. 13. The evolutions of the Magnus force on the particle at
E0 = 6 and E0 = 7.

E0 = 7, it changes from the positive value to the negative
value with the time increases. Since the rotation of the particle
can drive the surrounding fluid to rotate, the fluid velocity on
one side of the particle increases and simultaneously the fluid
velocity on the other side decreases. According to Bernoulli’s
principle, an increase in fluid velocity will result in a decrease
in pressure, and a decrease in fluid velocity will result in an
increase in pressure, which will lead to a pressure difference in
the lateral direction of the rotating particle and form a Magnus
force perpendicular to the direction of motion of the particle.
The Magnus force is expressed as [32]

Fm = 1
2πρD2(u − up)ω, (45)

which indicates that the direction of the Magnus force is
dependent on the angular velocity and the relative velocity
of the fluid and particle. When the particle lags the fluid,
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FIG. 14. The migration of freely rotating and nonrotating parti-
cles at E0 = 6 and E0 = 7.
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FIG. 15. Internal and external electric potential fields around the particle [(a) and (b) internal electric potential fields, (c) and (d) external
electric potential fields].

the direction of the Magnus force is upward if the angular
is positive; otherwise the direction of the Magnus force is
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FIG. 16. The evolutions of the electric force on the particle at
E0 = 6 and E0 = 7.

downward. As shown in Fig. 13, the Magnus force is always
upward at E0 = 6, but with the increase of time, it changes
from upward to downward at E0 = 7. In order to better explain
the effect of the rotation, we also performed some simulations
where the particle is not allowed to rotate. As we can see from
Fig. 14, the particle without rotating has a lower equilibrium
position at E0 = 6, which means that the lift due to the particle
rotation plays a crucial contribution in the transition of the
equilibrium position.

Fourth, the effect of a lift due to the curvature of the undis-
turbed velocity profile is analyzed. For the case of E0 = 6,
the velocity of the particle at the steady state is 0.7928Um,
while the undisturbed fluid velocity is 0.8483Um at the center

FIG. 17. The mechanisms for the lateral migration of the charged
particle in the Poiseuille flow.
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FIG. 18. Lateral equilibrium position of the particle under different values of electric field intensity.

of the particle; the velocity is 0.9805Um at its lower tip which
is larger than 0.591Um at the upper tip. This shows that the
curvature creates a higher velocity of the fluid relative to the
particle on the upper side, which causes a low pressure on the
upper side of the particle. In this case, the particle would be
pushed away from the centerline. For the case with E0 = 7,
the situation is opposite when the equilibrium position of the
particle is below the centerline. The velocity of the particle is
0.7227Um, and the undisturbed fluid velocity is 0.7898Um at
the center of the particle. However, the velocity is 0.4981Um

at its lower tip, which is smaller than 0.9565Um at the upper
tip. It is also clear that the curvature creates a higher velocity
of the fluid relative to the particle on the upper side, which
causes a low pressure on the upper side of the particle. Thus,
the particle would moves toward the centerline.

The last mechanism of the lateral migration of the charged
particle in the Poiseuille flow is the lift force due to the
electric field. It should be noted that there is a thin double
electric layer around the particle, and the electric charges in
the electric double layer move under the effect of the electric
force, thereby driving the movement of the surrounding fluid.
The electric force acting on the particle leads the particle to
move against the surrounding liquid. We presented the internal
and external electric potential fields around the particle at
E0 = 6 and E0 = 7 in Fig. 15. From this figure, one can find
that there is no obvious difference between internal electric
potential fields at E0 = 6 and E0 = 7, but the external electric
potential fields show a great difference. We also plotted the
electric force caused by the external potential field in Fig. 16,
and the results show that the particle at E0 = 7 is subjected
to a stronger downward electric force than that at E0 = 6.
Therefore, the lift due to the electric field is also crucial to
the transition of the equilibrium position.

In summary, the equilibrium position of the charged par-
ticle in the Poiseuille flow is determined by five competing
mechanisms. As illustrated in Fig. 17, for the particle above
the centerline, two of them (the lift due to particle rotation,
the lift due to the curvature of the undisturbed velocity profile)
are upward, while three of them (the wall repulsion due to

lubrication, the inertial lift related to shear slip and the electric
force) are downward. For the case of E0 = 6, the downward
lift cannot conquer the upward lift, and hence the equilibrium
position is above the centerline. For the case of E0 = 7, how-
ever, the downward lift can dominate over the upward lift due
to the increase of the electric force, which causes the particle
to reach a lower equilibrium position.

C. The charged particle motion under a horizontal external
electric field

We continued to investigate the effect of the horizontal
external electric field on the lateral migration of the charged
particle. The electric potential on the particle surface is ϕp =
−1.0, and only two different initial positions y0 = 0.75W and
0.25W are considered. The other parameters are the same as
those in the previous part. We carried out some numerical
simulations of the particle migration under different values
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FIG. 19. Lateral equilibrium position of the particle under differ-
ent particle sizes.
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FIG. 20. The evolutions of the slip velocity of the charged particle.

of the electric field intensity (E0), and presented the results
in Fig. 18. As shown in this figure, the equilibrium position
of the charged particle is related to the initial position when
E0 is small. The equilibrium position would remain above the
centerline if the position of the particle is initially located
above the centerline, and vice versa. However, we would
like to point out that when E0 is positive [see Fig. 18(a)],
the particle’s equilibrium position gradually approaches the
centerline with the increase of E0. If E0 is large enough, the
equilibrium position of the particle is stable at the centerline,
and does not change with the electric field intensity. From the
above discussion, it is clear that there is a critical electric field
intensity Ec, beyond which the equilibrium position would be
only at the centerline. Moreover, it is also found that for two
cases with initial positions y0 = 0.75W and 0.25W , the equi-
librium position of the charged particle is symmetric about the
centerline. It indicates that the position of the particle can be

controlled by applying the horizontal external electric field.
On the other hand, when E0 is negative [see Fig. 18(b)], the
equilibrium position of the particle is stable at the position of
0.82W or 0.18W if the magnitude of E0 is large enough. We
note that these above phenomena are qualitatively consistent
with the theoretical analysis in the previous study [33].

Figure 19 shows the effect of the particle size on the equi-
librium position. It can be seen from this figure that when E0

is small, the equilibrium position approaches to the centerline
as the particle size increases, and the critical electric field
intensity Ec increases with the increase of the particle size.

Here it should be noted that unlike in the above discus-
sion, the electric force plays a similar role as the inertial lift
related to shear slip. To see this more clearly, we presented
the evolutions of the slip velocity in time in Fig. 20 where
E0 = 2 and E0 = 60. From this figure, one can observe that a
larger electric field intensity results in a larger slip velocity
which leads to an increase of the inertial lift. This inertial
lift further pushes the particle to the centerline. In addition,
we also plotted the evolutions of the angular velocity and the
Magnus force at E0 = 2 and E0 = 60 in Fig. 21. As seen from
this figure, the angular velocity decreases with the increase of
E0, which results in a decrease in the Magnus force due to
particle rotation, and the particle is pushed to the centerline.
We now focused on the effect of the lift due to the curvature
of the undisturbed velocity profile. For the case E0 = 2, the
velocity of the particle at the steady state is 0.7675Um, and
the undisturbed fluid velocities at the lower and upper tips are
0.9742Um and 0.5637Um. This illustrates that the curvature
creates a higher velocity of the fluid relative to the particle
on the upper side which causes a low pressure on the upper
side of the particle and pushes the particle away from the
centerline. When the particle is stabilized at the centerline,
it is no longer subjected to lateral forces. Therefore, the equi-
librium position of the charged particle in the Poiseuille flow
under the influence of the horizontal external electric field is
determined by four different mechanisms, as shown in Fig. 22.
Actually, as the external electric field intensity increases, the
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FIG. 21. The evolutions of the angular velocity (a) and Magnus force (b) of the charged particle.
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FIG. 22. The mechanisms for the lateral migration of the charged
particle in the Poiseuille flow.

wall repulsion and the inertial lift related to shear slip would
become strong enough to balance the lifts due to particle
rotation and curvature of the undisturbed velocity profile once
the particle is at the equilibrium position (yeq = 0.5W ).

VI. CONCLUSIONS

In this paper, a triple-distribution-function DI-LBM is pro-
posed for the transport of a charged particle in the Poiseuille
flow, and a detailed study on the effects of intensity and di-
rection of the electric field, the initial position and the particle
size on the lateral migration of the particle in the Poiseuille
flow is conducted. The numerical results demonstrate that the
external electric field has a significant influence on the lateral
equilibrium position of charged particle. When a vertical ex-
ternal electric field is considered, the equilibrium position of
particle is dependent on the initial position for a small electric
field intensity, but insensitive to the initial position when the
electric field intensity is large enough. It is also found that

there is a critical value of electric field intensity that causes
an abrupt change of the equilibrium position from above
the centerline to below the centerline. These phenomena are
determined by the competition among different mechanisms,
i.e., the wall repulsion due to lubrication, the inertial lift
related to shear slip, the lifts due to particle rotation and the
curvature of the undisturbed velocity profile, and the electric
force.

On the other hand, when a horizontal external electric field
with a small intensity is adopted, the equilibrium position
remains above the centerline when the initial position is above
the centerline, and vice versa. However, when the electric
field intensity is larger than a critical value, the equilibrium
position would be at the centerline and independent of the
initial position and the electric field intensity. It should be
noted that these interesting phenomena are determined by the
competition among four different mechanisms, i.e., the wall
repulsion due to lubrication, the inertial lift related to shear
slip, the lifts due to particle rotation, and the curvature of the
undisturbed velocity profile. Finally, it is also found that as
the particle size increases, so does the critical value of electric
field intensity.
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