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Multiscale analysis of the particles on demand kinetic model
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We present a thorough investigation of the particles on demand kinetic model. After a brief introduction of
the method, an appropriate multiscale analysis is carried out to derive the hydrodynamic limit of the model.
In this analysis, the effect of the time-space dependent comoving reference frames are taken into account.
This could be regarded as a generalization of the conventional Chapman-Enskog analysis applied to the lattice
Boltzmann models which feature global constant reference frames. Further simulations of target benchmarks
provide numerical evidence confirming the theoretical predictions.
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I. INTRODUCTION

The lattice Boltzmann method (LBM) has developed as an
essential tool in computational fluid dynamics [1,2]. The abil-
ity of this method in various applications such as multiphase
[3–6], micro- [7,8], and turbulent flows [9,10] has long been
proven, attracting many researchers to extend the merits of
this kinetic-based method. As one of the most fundamental
fields in fluid dynamics, compressible flows have been the
focus of significant research efforts, leading to development of
“gasdynamics.” The compressibility of a gas and the thermo-
dynamics of such media allow shock waves and discontinuous
solutions, which require special treatments in numerical stud-
ies [11].

While the LBM has been extensively used in the incom-
pressible flow regime [1], its application in compressible flows
is still an open field of study, directing researchers towards
developing various models [12–17]. Considering that the re-
strictions in the conventional lattice Boltzmann (LB) models
are mainly due to the fixed velocity sets [1], the idea of shifted
lattices was first introduced in [16], which was found to be
significantly useful in increasing the range of performance of
LB simulations of supersonic flows [16]. In this method, the
peculiar velocities ci known for each type of lattice [18] are
shifted by a constant to mitigate the errors associated with the
violation of Galilean invariance

vi = ci + U . (1)

While the model is able to operate well in unilateral flows such
as a shock tube, it cannot be used in general setups, where a
wide range of temperatures and velocities might emerge. To
overcome this, the idea of projecting particles to the comoving
reference frame led to the development of the particles on
demand kinetic model [19]. In the so-called PonD method, the
peculiar velocities are regarded as the relative velocities with
respect to the comoving reference frame λ = {u, T }, where u
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is the local velocity of the flow and T is the local tempera-
ture. The new definition of the discrete velocities revokes the
known restrictions on the range of velocity and temperature
in LBM applications. This opens a novel perspective into the
world of computational kinetic methods, especially for simu-
lation of compressible flows. However, in the PonD model, the
range of complexity rises as well as its ability to span a wide
range of applications, for which the former models were in-
sufficient or computationally nonefficient to provide accurate
solutions. For example, with the new realization of the discrete
velocities in PonD, the advection becomes nonexact, requiring
interpolation techniques, where the accuracy and stability of
the model will depend on the choice of interpolation kernels.
This is in contrast to the LBM, where a simple and exact
point-to-point streaming step is adopted. Therefore, we will
carry out a detailed analysis of the model to examine its range
of applicability.

In PonD, the discrete velocities are defined as

vi =
√

θci + u, (2)

where θ = T/TL for an ideal gas. Equation (2) describes that
the peculiar velocities ci are first scaled by some definite factor
of the square root of the local temperature and then shifted
by the local velocity of the flow. While the former revokes
the restriction on the lattice temperature TL, the latter results
in Galilean invariance. The populations corresponding to the
reference frame λ = {T, u} are denoted by f λ

i .

II. EXACT EQUILIBRIUM

To derive the discrete form of the equilibrium, we follow
[20] and consider the nondiscrete velocities v = √

θc + u in
the comoving reference frame λ = {T, u}. Upon substitution
in the Maxwell-Boltzmann equilibrium function and choosing
θ = T/TL, one gets

f λ,eq(x, c) = ρ

(2πRT )D/2
exp

(
− (v − u)2

2RT

)

= ρ

(2πRT )D/2
exp

(
− c2

2RTL

)
, (3)

2470-0045/2022/106(1)/015304(12) 015304-1 ©2022 American Physical Society

https://orcid.org/0000-0003-0171-6791
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.106.015304&domain=pdf&date_stamp=2022-07-08
https://doi.org/10.1103/PhysRevE.106.015304


EHSAN REYHANIAN PHYSICAL REVIEW E 106, 015304 (2022)

where D stands for the dimension. We define the phase-space
integral

I =
∫

exp

(
− c2

2RTL

)
�(v)dv, (4)

where � is a polynomial in v. The above integral can be
represented by the following series using the Gaussian-type
quadrature:

I =
∑

α

Wα exp

(
− c2

α

2RTL

)
�(vα ), (5)

where Wα are the corresponding weights in each direction α.
To reduce the computations, it is of interest to consider a one-
dimensional case. By using the general definition �(v) = vm,
where m is an integer, the integral Eq. (4) becomes

I =
√

θ

∫
exp

(
− c2

2RTL

)
(
√

θc + u)mdc. (6)

Introducing the scaling factor
√

2RTL to nondimensionalize
the velocity terms, one can rewrite the latter as

I =
√

2RTLθ
(m+1)

Im,û/
√

θ , (7)

where

Im,a =
∫ ∞

−∞
exp(−ĉ2)(ĉ + a)mdĉ, (8)

and the superscript denotes the dimensionless quantities. It
is well known that the following definite integral can be ex-
pressed in terms of a third-order Hermite formula

Im =
∫ ∞

−∞
exp(−x2)xmdx =

3∑
j=1

w̃ jx
m
j , (9)

where x is a dummy variable and x1 = −√
3/2, x2 = 0, x3 =√

3/2 are the abscissas with the corresponding weights of
w̃1 = √

π/6, w̃2 = 2
√

π/3, w̃3 = √
π/6. Using the Newton

formula, one can expand Eq. (8) as

Im,a =
m∑

k=0

∫ ∞

−∞
exp(−x2)xmdx

(
m
k

)
am−k

=
m∑

k=0

3∑
j=1

w̃ jx
k
j

(
m
k

)
am−k

=
3∑

j=1

w̃ j

m∑
k=0

xk
j

(
m
k

)
am−k

=
3∑

j=1

w̃ j (x j + a)m. (10)

Therefore, the peculiar discrete velocities are derived as
before:

c1 =
√

2RTLĉ1 = −
√

3RTL,

c2 = 0, (11)

c3 =
√

2RTLĉ3 =
√

3RTL,

which constructs a D1Q3 lattice {−C, 0,C} with the lattice
temperature TL = C2/3.

Finally, Eq. (7) reduces to

I =
√

2RT
√

2RTL
m

3∑
i=0

w̃i(
√

θ ĉi + û)m

=
√

2πRT
3∑

i=0

wi(
√

θci + u)m

=
√

2πRT
3∑

i=0

wi�(vi ), (12)

where wi = w̃i/
√

π . Due to the splitting property of the
phase-space integral, i.e., dc = dc1 · · · dcD the latter formula
in D dimensions becomes

I =
√

2πRT
D

Q∑
α=0

wα�(vα ), (13)

where wα = wi, j,...,D = wiw j · · · wD is the tensor product of
one-dimensional weights, vα = v(i, j,...,D) and Q = i j · · · D is
the total number of discrete velocities. Considering Eq. (5),
the Gaussian weights are obtained as

Wα =
√

2πRT
D
wα exp

(
c2
α

2RTL

)
. (14)

Finally, the discretized equilibrium populations are derived
from the continuous function as

f eq
α = Wα f eq(x, cα ) =

√
2πRT

D
wα exp

(
c2
α

2RTL

)

=
√

2πRT
D
wα exp

(
c2
α

2RTL

)
ρ

(2πRT )D/2
exp

(
− c2

α

2RTL

)

= ρwα, (15)

which is exact and free of velocity terms and, hence, the
Galilean invariance is ensured.

III. ANALYSIS OF PARTICLES ON DEMAND

In this section, we analyze the kinetic equations in the
PonD framework. After a brief introduction of the method,
we demonstrate how to derive the recovered thermohydro-
dynamic limit. Namely, we conduct the Chapman-Enskog
analysis by expanding the kinetic equations into multiple lev-
els of time and space scales. Finally, we derive the recovered
range of the Prandtl number and present an order verification
study.

A. Kinetic equations

Similar to the LBM, the kinetic equations can split into two
main parts. The first is collision using the Bhatnagar-Gross-
Krook (BGK) model, with exact equilibrium populations

f ∗
i (x, t ) = fi(x, t ) + ω(ρwi − fi )(x,t ), (16)

where f ∗
i (x, t ) are the postcollision populations, which are

computed at the gauge λ = λ(x, t ), and ω is the relaxation
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parameter. Next, the streaming step is conducted via the semi-
Lagrangian method, where the information at the monitoring
point (x, t ) is updated by traveling back through the charac-
teristics to reach the departure point xid = x − viδt . However,
due to the dependency of the discrete velocities Eq. (2) on
the local flow field, the departure point may be located off the
grid points. This is in contrast to the LBM, where the lattice
provides exact streaming along the links. Hence, the informa-
tion at the departure point must be interpolated through the
collocation points. Furthermore, in order to be consistent, the
populations at the departure point must be in the same refer-
ence frame as the monitoring point. Hence, the populations at
the collocation points are first transformed to the gauge of the
monitoring point and then are interpolated [19]. Finally, the
advection step is indicated by

fi(x, t ) =
N−1∑
p=0


(xd − xp)Gλ
λp

f ∗λP (xp, t ), (17)

where xp, p = 0, . . . , N − 1, denote the collocation points
(grid points) and 
 is the interpolation kernel. As mentioned
before, the populations are transformed using the transforma-
tion matrix G. In general, a set of populations at gauge λ can
be transformed to another gauge λ′ by matching Q linearly
independent moments:

Mλ
mn =

Q∑
i=1

f λ
i vm

ixv
n
iy, (18)

where m and n are integers. This may be written in the ma-
trix product form as Mλ = Mλ f λ where M is the Q × Q
linear map. Requiring that the moments must be independent
from the choice of the reference frame leads to the matching
condition

Mλ′ f λ′ = Mλ f λ, (19)

which yields the transformed populations:

f λ′ = Gλ′
λ f λ = M−1

λ′ Mλ f λ. (20)

Finally, the macroscopic values are evaluated by taking the
pertinent moments

ρ =
∑

i

fi, (21)

ρu =
∑

i

fivi, (22)

ρu2 + DρT =
∑

i

fiv
2
i . (23)

The implicitness in the above equations requires a predictor-
corrector step to find the comoving reference frame. Hence,
the advection step is repeated by imposing the new evaluated
velocity and temperature until the convergence is achieved.
To this end, discrete velocities Eq. (2) at each monitoring
point (x, t ) are initially set relative to the gauge λ0 = {T0, u0},
where u0 = u(x, t − δt ) and T0 = T (x, t − δt ) are known
from the previous time step. Constructing the initial discrete
velocities v0

i = √
θ0ci + u0, the advection Eq. (17) is followed

to compute the populations f λ0
i (x). Using Eqs. (21)–(23),

the new macroscopic quantities are evaluated to define the

FIG. 1. Schematic of the semi-Lagrangian advection and the lo-
cation of the departure points.

corrected gauge λ1 = {T1, u1}, which results in the corrected
velocities v1

i and consequent populations f λ1
i . The iterations

will continue until the reference frame is converged to a fixed
value λ∞ = limn→∞{Tn, un}. In the limit of the comoving
reference frame, the computed velocity u∞ = u(x, t ) and tem-
perature T∞ = T (x, t ) by moments Eqs. (22) and (23) are
equal to those defined as the reference frame λ∞ = λ(x, t ) =
{T (x, t ), u(x, t )}, i.e.,∑

i

f λ
i u =

∑
i

f λ
i (

√
T/TLci + u), (24)

∑
i

f λ
i (u2 + DT ) =

∑
i

f λ
i ||

√
T/TLci + u||2. (25)

For more details, see [19]. A convergence analysis for the
iterative algorithm of “predictor-corrector” is provided in the
Appendix.

B. Chapman-Enskog analysis

In this section, we aim at recovering the hydrodynamic
limit of the model. Before we begin, it is important to note that
due to time-space dependent discrete velocities, the noncom-
mutativity relation viα∂α fi �= ∂α (viα fi ) is taken into account at
each step of the following analysis.

We assume that the comoving reference frame λ(x, t ) has
been reached at the monitoring point. In other words, Eqs. (24)
and (25) are legitimate. For simplicity, we first neglect the
interpolation process and recast the advection equation as

f λ
i (x, t ) = Gλ

λi
f ∗
i (xid , t − δt ), (26)

where λi = λ(xid , t − δt ) is the corresponding comoving ref-
erence frame at each departure point. Figure 1 illustrates the
semi-Lagrangian advection and the departure points using
the D1Q3 lattice. By definition, Eq. (26) is recast into the
following form:

f λ
i (x, t ) = M−1

i,λ M∗(xid , t − δt ), (27)

where the dummy indices are dropped in the right-hand side
and

M∗ = M f ∗ = M + ω(Meq − M ) (28)

are the postcollision moments. Note that since the equilibrium
populations are exact, the equilibrium moments Meq coincide
with the Maxwell-Boltzmann moments.
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In the following, we also drop the superscript λ for sim-
plicity. Using the Taylor expansion up to third order one can
write

M∗(x − viδt, t − δt )

= M∗(x, t ) − δtDiM
∗ + δt2

2

× (
D2

i M∗ − Diviα∂αM∗) + O(δt3), (29)

where Di = ∂t + viα∂α is the material derivative. Finally, sub-
stituting the expansion Eq. (29) into Eq. (27) results in

δtDi fi − δt2

2
D2

i fi

= −ω f neq
i + δtDi

(
ω f neq

i

) + δtDiM−1
i M∗

− δt2

2
D2

i

(
ω f neq

i

) − δt2

2
M−1

i Diviα∂αM∗

− δt2

2
Di

(
DiM−1

i M∗) − δt2

2
DiM−1

i DiM
∗. (30)

By applying the operator Di upon the latter equation and
neglecting the higher-order terms O(δt3), we get

δt2

2
D2

i fi = −δt

2
Di

(
ω f neq

i

) + δt2

2
D2

i

(
ω f neq

i

)
+ δt2

2
Di

(
DiM−1

i M∗). (31)

Eventually, substituting Eq. (31) from Eq. (30) yields

Di fi = − ω

δt
f neq
i + Di

(ω

2
f neq
i

)
+ DiM−1

i M∗

− δt

2
DiM−1

i DiM
∗ − δt

2
M−1

i Diviα∂αM∗. (32)

To start the analysis, first the following expansions are
introduced:

fi = f (0)
i + ε f (1)

i + ε2 f (2)
i ,

M∗ = M∗(0) + εM∗(1) + ε2M∗(2),

∂t = ε∂
(1)
t + ε2∂

(2)
t ,

∂α = ε∂ (1)
α . (33)

Rearranging the equations and collecting the corresponding
terms on each order yields

O(ε0) : f (0)
i = f eq

i → M (0) = Meq, (34)

O(ε1) : D(1)
i f (0)

i − D(1)
i M−1

i M (0) = − ω

δt
f (1)
i , (35)

O(ε2) : ∂
(2)
t f (0)

i + D(1)
i

[(
1 − ω

2

)
f (1)
i

]
= − ω

δt
f (2)
i + ∂

(2)
t M−1

i M (0) + D(1)
i M−1

i

(
1 − ω

2

)
M (1)

− δt

2
M−1

i D(1)
i (MVαM−1)∂αM (0), (36)

where Vα = diag(vα ). Recalling that f (0)
i = M−1

i M (0),
Eq. (35) is rewritten as

M−1
i ∂

(1)
t M (0) + viαM−1

i ∂ (1)
α M (0) = − ω

δt
f (1)
i , (37)

where we can derive the first-order evolution equation for the
equilibrium moments by multiplying both sides of Eq. (37) by
M and recalling that M (1) = M f (1):

D(1)M (0) = − ω

δt
M (1), (38)

where D = ∂t + MVαM−1∂α . Finally, the second-order ki-
netic equation (36) can be rearranged to

∂
(2)
t M (0) + D(1)

[(
1 − ω

2

)
M (1)

]

= − ω

δt
M (2) − δt

2
D(1)(MVαM−1)∂αM (0), (39)

where M (2) = M f (2).

C. Conservation equations

With the split kinetic equations at three different orders,
we are now able to derive the hydrodynamic limit of the
present kinetic model. However, due to the dependence of
the multiscale kinetic equations on the linear mapping matrix
M and its corresponding inversion, we specify a lattice to
proceed with the analysis. In the following, we consider the
most commonly used lattices in one- and two-dimensional
applications, i.e., D1Q3, D1Q5, D2Q9, and D2Q25, where the
peculiar velocities ci and the lattice reference temperature TL

in Eq. (2) are known for each of them [18].

1. D1Q3

The three linearly independent moments in Eq. (18) are

M00 =
∑

i

fi,

M10 =
∑

i

fivi, (40)

M20 =
∑

i

fiv
2
i ,

which all are conserved moments and coincide with their
counterpart equilibrium ones. Hence, the mass, momentum,
and total energy conservation implies that M (1) = M (2) =
[0, 0, 0]†. The inversion of the mapping matrix is obtained as

M−1 =

⎡
⎢⎢⎣

1 − u2

θ
2u
θ

−1
θ

u2−√
θu

2θ

√
θ−2u
2θ

1
2θ

u2+√
θu

2θ
−√

θ−2u
2θ

1
2θ

⎤
⎥⎥⎦, (41)

where it is observed that∑
i

M−1
i j =

{
1, j = 1
0 otherwise. (42)

Finally, the first-order equations are recovered from Eq. (38)
as

∂
(1)
t

⎡
⎣ ρ

ρu
ρu2 + ρθTL

⎤
⎦ + ∂ (1)

α

⎡
⎣ ρu

ρu2 + ρθTL

2ρuH

⎤
⎦ =

⎡
⎣0

0
0

⎤
⎦, (43)

where H = θ/2 + u2/2 is the total enthalpy and h = θ/2 is
the specific enthalpy, which implies Cp = 3/2 for an ideal
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gas. Similarly, the second-order equations are obtained from
Eq. (39):

∂
(2)
t

⎡
⎣ ρ

ρu
ρu2 + ρθTL

⎤
⎦ = −δt

2

⎡
⎢⎣

0

X (1),(1)
M

X (1),(1)
E

⎤
⎥⎦, (44)

where

X (1),(1)
M = ρ∂ (1)

α u∂ (1)
α θ, (45)

X (1),(1)
E = ρ∂

(1)
t θ∂ (1)

α u + ρ∂ (1)
α θ

(
∂

(1)
t u + 3∂ (1)

α u2), (46)

and the double superscript denotes the product of two
first-order terms. Finally, the hydrodynamic equations are
recovered by collecting the first- and second-order equa-
tions Eqs. (43) and (44) and recalling the expansions Eq. (33),

∂t

⎡
⎣ ρ

ρu
ρu2 + ρθTL

⎤
⎦ + ∂α

⎡
⎣ ρu

ρu2 + ρθTL

2ρuH

⎤
⎦ =

⎡
⎣ 0

−XM

−XE

⎤
⎦, (47)

where

XM = δtρ∂αu∂αθ, (48)

XE = δt

2
(∂α (ρθ )∂αu2 − ∂αθ∂α (ρθTL)), (49)

are the error terms in the momentum and energy equa-
tions, respectively. As a conclusion, the thermohydrodynamic
equations for the D1Q3 lattice are recovered as the one-
dimensional compressible Euler equations (vanishing viscos-
ity) with error terms of O(δt ) in the momentum and energy
equations.

2. D1Q5

In this section, we consider the D1Q5 lattice with the
discrete velocities C = {0,±m,±n}, where m = rn and r =
(
√

5 − √
2)/

√
3 is the ratio of the roots of the fifth-order Her-

mite polynomial [18]. The weights and the lattice reference
temperature are defined as

w0 = −3r4 − 3 + 54r2

75r2
, (50)

w±m = 9r4 − 6 − 27r2

300r2(r2 − 1)
, (51)

w±n = 9 − 6r4 − 27r2

300(1 − r2)
, (52)

TL = m2(r2 + 1)

10r2
, (53)

where we choose m = 1. The independent system of moments
is M = [M00, M10, M20, M30, M40]† with the nonequilibrium
moments

M (k) = [
0, 0, 0,

∑
f (k)
i v3

i ,
∑

f (k)
i v4

i

]†
, k = 1, 2. (54)

Once again, we observe that relation Eq. (42) holds for this
lattice structure as well. According to Eq. (38), the first-order
equations are derived correctly as in Eq. (43). On the other

hand, Eq. (39) gives the second-order equations as

∂
(2)
t

⎡
⎣ ρ

ρu
ρu2 + ρθTL

⎤
⎦ + ∂ (1)

α

⎡
⎣ 0

0
(1 − ω/2)q(1)

⎤
⎦ =

⎡
⎣0

0
0

⎤
⎦, (55)

where

q(1) =
∑

i

f (1)
i v3

i = −δt

ω

(
∂

(1)
t Qeq + ∂ (1)

α Req) (56)

is the nonequilibrium heat flux derived from Eq. (38) and

Qeq =
∑

i

ρwiv
3
i , (57)

Req =
∑

i

ρwiv
4
i , (58)

are the equilibrium high-order moments coinciding with
their Maxwell-Boltzmann expressions. It is straightforward to
show

q(1) = −2δt

ω

(
(3 − γ )pu∂ (1)

α u + pCp∂
(1)
α T

)
. (59)

Since using a single population leads to a fixed specific heat
γ = (D + 2)/D, the viscous part in Eq. (59) vanishes, while
the Fourier heat flux is retained. This is in contrast to the
D1Q3 lattice, where, due to the same number of velocities
and conservation laws, the Fourier heat flux in the energy
equation vanishes as well as the viscous terms in the momen-
tum and energy equations. Finally, the thermohydrodynamic
equations recovered by using the D1Q5 lattice are obtained as

∂t

⎡
⎣ ρ

ρu
ρu2 + ρθTL

⎤
⎦ + ∂α

⎡
⎣ ρu

ρu2 + ρθTL

2ρuH

⎤
⎦ =

⎡
⎣ 0

0
2∂α (k∂αT )

⎤
⎦,

(60)

where k = (1/ω − 1/2)pδtCp is the conductivity and Cp =
3/2.

The most distinctive feature of the recovered equations is
the absence of error terms in the momentum and energy
equations. Although the Galilean invariance of D1Q5 models
has been verified in isothermal setups [18], here we observe
a somewhat different behavior. The adaptive construction of
discrete velocities in PonD guarantees Galilean invariance
even with the D1Q3 lattice. Having the exact equilibrium,
all the recovered equilibrium moments up to fourth order
[Eq. (58))] match with their Maxwell-Boltzmann counter-
parts. However, we observe that the insufficiency of the
mapping matrix M and its inversion in the D1Q3 lattice is
responsible for the generated errors [see Eq. (36)]. Accord-
ing to the invariant-moment rule Eq. (19), the sufficiency
of linearly independent moments is crucial for a meaningful
transformation between two reference frames. Not having
met this criterion, the D1Q3 (and its two-dimensional tensor
product as we will see later) is unable to provide an error-free
transformation. On the other hand, due to its sufficient system
of moments, the D1Q5 lattice does not introduce errors during
the transformation and, together with the fully recovered equi-
librium moments, the hydrodynamic equations are derived in
their correct form.
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3. D2Q9

The D2Q9 lattice can be considered as the tensor product
of two D1Q3 lattices. The independent moment system in this
type of lattice structure is

M = [M00, M10, M01, M11, M20, M02, M21, M12, M22]†, (61)

where the nonequilibrium moments are

M (k) = [
0, 0, 0, M (k)

11 , M (k)
20 , M (k)

02 , M (k)
21 , M (k)

12 , M (k)
22

]†
, (62)

and the conservation of energy implies M (k)
20 + M (k)

02 = 0.
The first-order equations are derived as

∂
(1)
t

⎡
⎢⎣

ρ

ρuα

Peq
αα

⎤
⎥⎦ + ∂

(1)
β

⎡
⎢⎣

ρuβ

Peq
αβ

2ρuβH

⎤
⎥⎦ =

⎡
⎣0

0
0

⎤
⎦, (63)

where

Peq
αβ = ρuαuβ + ρθTLδαβ (64)

is the equilibrium pressure tensor. The second-order equa-
tions are obtained as

∂
(2)
t

⎡
⎣ ρ

ρuα

Peq
αα

⎤
⎦ + ∂

(1)
β

⎡
⎣ 0

(1 − ω/2)P(1)
αβ

(1 − ω/2)Q(1)
ααβ

⎤
⎦ =

⎡
⎣ 0

O(δt )
O(δt ) + 3q

⎤
⎦,

(65)

where P(1)
αβ is the nonequilibrium pressure tensor derived from

Eq. (38),

P(1)
αβ = −

(
δt

ω

)(
∂

(1)
t Peq

αβ + ∂ (1)
γ Qeq

αβγ

)
, (66)

and

Qeq
αβγ = ρuαuβuγ + ρθTL(uαδβγ + uβδαγ + uγ δαβ ). (67)

Using the first-order Eq. (63), it can be shown that

∂
(1)
t Peq

αβ + ∂ (1)
γ Qeq

αβγ

= p
(
∂ (1)
α uβ + ∂

(1)
β uα

) + (
p − ρc2

s

)
∂ (1)
γ uγ δαβ, (68)

where c2
s = γ T is the speed of sound of an ideal gas.

The second-order equation for the energy part Eq. (65) is
originally derived as

∂
(2)
t

(
Peq

xx + Peq
yy

) + ∂ (1)
x

[(
1 − ω

2

)
Q(1)

xyy

]
+ ∂ (1)

y

[(
1 − ω

2

)
Q(1)

xxy

]
+ 3u∂ (1)

x

[(
1 − ω

2

)
P(1)

xx

]
+ 3v∂ (1)

y

[(
1 − ω

2

)
P(1)

yy

]
= O(δt ), (69)

while the closure relation

Q(1)
nnn = 3unP(1)

nn , n = x, y, (70)

has been used to render the final equation in a concise form.
As a result, the error term 3q appears in the right-hand side
(RHS) of the energy equation, where

q =
(

1 − ω

2

)[
P(1)

xx ∂ (1)
x u + P(1)

yy ∂ (1)
y v

]
. (71)

However, the nonequilibrium heat flux Q(1)
ααβ is computed in

two separate steps. While the terms Q(1)
xxy and Q(1)

xyy are included
in the nonequilibrium system of moments in Eq. (38), the
diagonal elements Q(1)

xxx and Q(1)
yyy are slaved by the closure

Eq. (70). Consequently, the final form of the nonequilibrium
heat flux is derived as

Q(1)
ααβ = −δt

ω

[
∂

(1)
t Qeq

ααβ + ∂ (1)
α Req

αβ − 3ρθTL∂
(1)
β (θTL)

]
, (72)

where

Req
αβ = 2ρuαuβ (H + θTL) + 2ρθTLHδαβ (73)

is the fourth-order equilibrium moment and from Eq. (63) one
can compute

∂
(1)
t Qeq

ααβ + ∂ (1)
α Req

αβ = 2puα

(
∂ (1)
α uβ + ∂

(1)
β uα

)
+ 2

(
p − ρc2

s

)
∂ (1)
γ uγ uβ + 2p∂ (1)

β h,

(74)

where h = (D/2 + 1)θTL. On an interesting note, we observe
that the insufficiency of the diagonal elements of the third-
order nonequilibrium moment has caused an anomaly in the
appearance of the nonequilibrium heat flux Eq. (72). The
nonconventional term in the RHS of Eq. (72) will contribute
to the Fourier heat flux and will alter the value of the Prandtl
number as we will see later. On a separate comment, we note
that, similar to the D1Q3 case, there exist error terms with the
order of O(δt ) in the momentum and energy equations.

Finally, the hydrodynamic equations for the D2Q9 lattice
are recovered as

∂t

⎡
⎣ ρ

ρuα

ρE

⎤
⎦ + ∂β

⎡
⎣ ρuβ

ρuαuβ + pδαβ + ταβ

ρuβH + uαταβ + qβ

⎤
⎦ =

⎡
⎣ 0

O(δt )
O(δt ) + 3q

⎤
⎦,

(75)

where

ταβ = −μ

(
∂αuβ + ∂βuα − 2

D
∂γ uγ δαβ

)
− η∂γ uγ δαβ (76)

is the shear stress tensor and qβ = −k∂βT is the Fourier heat
flux. The shear viscosity, bulk viscosity, and the conductivity
are

μ =
(

1

ω
− 1

2

)
pδt, (77)

η =
(

1

ω
− 1

2

)(
D + 2

D
− γ

)
pδt, (78)

k =
(

1

ω
− 1

2

)(
D − 1

2

)
pδt, (79)

respectively. We note that the bulk viscosity vanishes at the
limit of a monatomic ideal gas, as expected [21].

The error terms in the momentum and energy equations are
found as

XαM = −δtρUαβ∂βθ, (80)

XE = −δt

2

(
−ρ

θ

Cv

(∂αuα )2 − ∂αθ∂α (ρθTL) + 4ρuα∂βθUβα

)

− 3q̄, (81)
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where

U = ∇u � I =
[
∂xu 0
0 ∂yv

]
(82)

is the Hadamard product of the velocity gradient tensor and
the identity matrix and

q̄ = μ[(3 − γ )((∂xu)2 + (∂yv)2) + 2(1 − γ )∂xu∂yv]. (83)

Finally, the Prandtl number is found as

Pr = μCp

k
= D + 2

D − 1
, (84)

which amounts to 4 in two dimensions as reported in [19].

4. D2Q25

The D2Q25 lattice is a tensor product of two D1Q5 lattices
with the independent moment system of

Mmn =
∑

i

fiv
m
ixv

n
iy,

m = 0, . . . , 4
n = 0, . . . , 4,

(85)

where the property Eq. (42) holds for the inversion mapping
matrix M−1. While the first-order equations coincide with
those obtained in Eqs. (63), the second-order equations are
derived as

∂
(2)
t

⎡
⎣ ρ

ρuα

Peq
αα

⎤
⎦ + ∂

(1)
β

⎡
⎣ 0

(1 − ω/2)P(1)
αβ

(1 − ω/2)Q(1)
ααβ

⎤
⎦ =

⎡
⎣0

0
0

⎤
⎦. (86)

The nonequilibrium pressure tensor is recovered as in Eq.
(66); however, the nonequilibrium heat flux is derived as

Q(1)
ααβ = −δt

ω

[
∂

(1)
t Qeq

ααβ + ∂ (1)
α Req

αβ

]
. (87)

Finally, the hydrodynamic equations for the D2Q25 lattice
are recovered as

∂t

⎡
⎣ ρ

ρuα

ρE

⎤
⎦ + ∂β

⎡
⎣ ρuβ

ρuαuβ + pδαβ + ταβ

ρuβH + uαταβ + qβ

⎤
⎦ =

⎡
⎣0

0
0

⎤
⎦, (88)

where the shear stress tensor ταβ is defined in Eq. (76) with
the dynamic viscosity Eq. (77). The conductivity, however, is
recovered as

k =
(

1

ω
− 1

2

)
pδt

(
D + 2

2

)
, (89)

which implies Pr = 1.
Similar to the D1Q5 lattice, the hydrodynamic equa-

tions are recovered free of error terms.

D. Variable specific heat

To achieve an arbitrary specific heat γ , it is conventional
to adopt a second population. However, one can assign the
second population to either carry the total energy or the extra
internal energy. We introduce the following equilibrium for
the second population:

geq
i = 2 f eq

i

[(
Cv − D

2

)
T + (1 − φ)

v2
i

2

]
, (90)

FIG. 2. Schematic of the interpolation process and the colloca-
tion points during the semi-Lagrangian advection.

where φ = 1 implies that the excess internal energy as the
difference from a D-dimensional gas is conserved by the g
population, while the kinetic energy is maintained by the f
population [17]. On the other hand, φ = 0 corresponds to the
conservation of the total energy by the g population. Conse-
quently, the total energy is computed as

2ρE = 2ρe + ρu2 =
∑

i

gi + φ
∑

i

fiv
2
i . (91)

Since the hydrodynamic equations for the D2Q25 lattice are
free of error terms, it seems natural to choose φ = 1 so the
equilibrium function of the second population is only a func-
tion of temperature and free of velocity terms. However, the
choice of φ = 1 for the D2Q9 lattice will retain the error terms
in the momentum and total energy equations, with the only
difference that the specific heat will possess an arbitrary value
instead of that of a monatomic ideal gas. In this case, the
Prandtl number becomes

Pr = 2γ

3 − γ
, (92)

which limits the value of the adiabatic exponent to γ = 3 as
higher values will amount to unphysical answers. On the other
hand, choosing φ = 0 will remove the errors from the total
energy equation. Since there will be no closure relation for the
diagonal elements of the nonequilibrium third-order moment,
the Prandtl number will take its natural value Pr = 1, inde-
pendent of the choice of γ . Nevertheless, a variable Prandtl
number can always be achieved by using two relaxation
parameters [17].

E. Interpolation

So far, the analysis has been carried out assuming a con-
tinuous space, whereas one must account for the interpolation
of transformed populations during the advection process. As
mentioned before, the departure point accessed during the
semi-Lagrangian advection does not essentially coincide with
a grid point and a set of collocation points is required to
interpolate for the missing information.

In order to proceed with the analysis, we consider the
discretized form Eq. (17), where N number of points are used
for the interpolation. Without loss of generality, we assume
vi > 0. The departure point will be located on an off-grid
point xd = x − viδt , where x is a grid point. Depending on the
order of the interpolation, a set of grid points xp around the
departure point will be used for the interpolation process. We
assume that the first point of this stencil is located in the dis-
tance nδx from the monitoring point x such that x0 = x − nδx,
where n is an integer (see Fig. 2). The advection Eq. (17) is

015304-7



EHSAN REYHANIAN PHYSICAL REVIEW E 106, 015304 (2022)

recast in the following form:

f λ
i (x, t ) =

N−1∑
p=0

lpM−1
i,λ M∗(xp, t − δt ), (93)

where lp are the interpolation weights. At this point, no ex-
plicit type of the interpolation function is assumed and the
weights lp or their properties remain to be derived. Consider-
ing that xp = x − (n − p)δx, one can expand Eq. (93) using
the Taylor series up to third-order terms,

fi(x, t ) =
∑

p

lpM−1
i

×
(

M∗(x, t ) − δt D̄pM∗(x, t ) + δt2

2
D̄2

pM∗(x, t )

)

= f ∗
i (x, t )

∑
p

lp − δtM−1
i

∑
p

lpD̄pM∗(x, t )

+ δt2

2
M−1

i

∑
p

lpD̄2
pM∗(x, t ), (94)

where D̄p = ∂t + (n − p)(δx/δt )∂x, p = 0 : N − 1.
In the following, we compute the individual terms in

Eq. (94). In order to be consistent, any interpolation scheme
requires the weights to sum to unity, i.e.,∑

p

lp = 1. (95)

The other terms are computed as follows:∑
p

lpD̄pM∗ = D̄0M∗ −
∑

p

lp p
δx

δt
∂xM∗, (96)

∑
p

lpD̄2
pM∗ = D̄2

0M∗ +
(∑

p

lp p2 − 2n
∑

p

lp p

)

× δx2

δt2
∂xxM∗ − 2

∑
p

lp p
δx

δt
∂xt M

∗. (97)

In a moment-conserving interpolation function [22,23], we
have the property∑

p

lp(pδx)r = (xd − x0)r, (98)

where the number of conserved moments r depends on the
order of the interpolation function. Hence, we require the
interpolation scheme to obey the property Eq. (98) with r = 2
at least. This implies that a stencil with a minimum of three
points must be used for the interpolation.

Substituting Eq. (98) in Eqs. (96) and (97) leads to∑
p

lpD̄pM∗ = ∂t M
∗ + vi∂xM∗ = DiM

∗, (99)

∑
p

lpD̄2
pM∗ = ∂tt M

∗ + 2vi∂xt M
∗ + v2

i ∂xxM∗

= D2
i M∗ − Divi∂xM∗. (100)

It can be simply verified that once the averaged terms Eqs.
(99) and (100) are plugged into Eq. (94), the kinetic equa-
tion of the continuous case Eq. (30) is recovered. Therefore,

FIG. 3. The measured Prandtl number against the adiabatic ex-
ponent using the D2Q9 lattice and different values of φ.

all the analyses presented so far are also valid when the inter-
polation procedure is included provided that the interpolation
function encompasses three support points at least and abides
the moment-conserving property.

F. Prandtl number

In Sec. III D, it was shown that the choice of equilib-
rium for the second population for a standard lattice such
as D2Q9 will affect the recovered energy equation. Besides
the unwanted error terms, the Prandtl number obtained by the
Chapman-Enskog analysis will be a rational function of the
specific heat, i.e., Eq. (92), if only the extra internal energy
is assigned to the second population (φ = 1). On the other
hand, choosing φ = 0 will remove the error terms and re-
cover Pr = 1. Moreover, we illustrated that in order to have
a consistent scheme, the interpolation function must feature
a moment-conserving property with at least three support
points.

To verify our analysis, we conduct the standard test
case to measure the value of the Prandtl number [19]. We
choose the D2Q9 lattice with the first-order (N = 2, r = 1),
second-order (N = 3, r = 2), and third-order (N = 4, r = 3)
Lagrange interpolation schemes. Figure 3 shows that our anal-
yses are consistent with the simulations. It is also clearly
visible that the interpolation scheme with r < 2 deviates from
the underlying theoretical values.

G. Convergence study

The standard LBM is a second-order accurate scheme in
space and time featuring δx = δt = 1. On the other hand,
it is well known that the compressibility errors in the stan-
dard LBM scale with Ma2 and the Navier-Stokes equations
(NSE) is recovered with error terms proportional to Kn2,
where Kn is the Knudsen number [2]. However, it has been
shown that the semi-Lagrangian LBM (SLLBM) [12,24] can
achieve higher orders by decoupling the time step from the
grid spacing provided that the time step - in another sense
the CFL (Courant-Friedrichs-Lewy) number - and the Mach
number are kept relatively low. Then, high-order interpolation
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FIG. 4. Convergence of the L∞ error in the linear advection test:
all schemes recover the underlying order of accuracy.

functions can lead to a high spatial order of accuracy. In this
case, as shown and discussed in [12,25], the discretization
errors are on the order of O(min(δxN/δt, δxN−1)). On the
other hand, we have shown that using nine discrete velocities
in the PonD framework will introduce error terms on the order
of O(δt ) in the momentum and energy equations. Finally, one
can summarize that the present model includes error terms as
deviations from the full compressible NSE, which are on the
order of

D1Q3, D2Q9 : O
(

min

(
δxN

δt
, δxN−1

)
, δt, Kn2

)
,

D1Q5, D2Q25 : O
(

min

(
δxN

δt
, δxN−1

)
, δt2, Kn2

)
, (101)

where the compressibility error O(Ma2) is eliminated thanks
to the exact equilibrium function. In the following, we will
assess the validity of these results by conducting numerical
simulations. To verify the spatial discretization errors, a den-
sity profile is advected with the following initial conditions:

ρ0(x) = 1 + exp(−300(x − 0.5)2), 0 � x � 1,

p0(x) = 1,

u0(x) = 1. (102)

While the number of grid points Nx is varied in this simu-
lation, the time step is fixed at a small value δt = 10−4 to
eliminate the chance of dominance of temporal errors. A third-
order Lagrange interpolation function with four support points
is adopted in this simulation and the value of the specific
heat is chosen as γ = 1.4. We let the simulations run until
t = 1, which corresponds to one period in time. To reflect the
maximum error throughout the domain, the L∞ error defined
as

L∞ = max

(∣∣∣∣ρ(x) − ρ0(x)

ρ0(x)

∣∣∣∣
)

(103)

is measured to investigate the error convergence.
Figure 4 shows that the underlying order of accuracy of the

interpolation function is recovered for both D2Q25 and D2Q9
lattices and is independent of the choice of the equilibrium

FIG. 5. Mach profile of the linear advection test at δt = 10−4,
using the D2Q9 lattice, Nx = 400, and φ = 0.

function for the second population, as expected. Figure 5
shows the local Mach number for number of grid points
N = 400. It is noticed that the range of the Mach number in
this simulation is significantly high, whereas it was shown that
the compressibility errors in SLLBM [24] can already prevail
at Ma = 0.1. This is due to the Galilean-invariant nature of
the PonD model where it eliminates the compressibility errors
by designing particles at the comoving reference frame and
the exact collision seen from those particles.

To study the behavior of the temporal errors, we simu-
late the advection of a vortex by a uniform flow at Maa =
Ua/

√
γ T0 = 0.845 [16]. The velocity field in the cylindrical

coordinates and in the advected reference frame is uθ (r) =
umaxr exp[(1 − r2)/2], where r = r′/R is the reduced radius
and R is the radius of the vortex. The vortex Mach number
is defined based on the maximum tangential velocity in the
comoving reference frame, Mav = umax/

√
γ T0, and is fixed to

Ma = 0.4. The Reynolds number is fixed to Re = 2UaR/ν =
6 × 105 and a 400 × 400 grid is used. The vortex is allowed
to complete one cycle of rotation during one period of ad-
vection and then the x velocity component is measured along
the centerline, where its deviation from the exact solution is
indicative of errors. This simulation is repeated with different
time steps with a fixed advection velocity.

Figure 6 shows the L∞ errors for both the D2Q25 and
D2Q9 lattices. We see the results are recovered consistently
with Eq. (101), where the D2Q25 lattice shows second-order
convergence, while the D2Q9 lattice is first order in time when
the excess internal energy is assigned to the g population, i.e.,
φ = 1. Another interesting point, which rises in this simula-
tion is the nonmonotonic behavior of the temporal errors in
the D2Q25 lattice. This is due to the competing effect between
the O(δxN/δt ) and O(δt2) error terms, when the resolution δx
and the order of the interpolation N are fixed. Depending on
their orders of magnitude, the latter might take over at small
time steps and increase the errors as time is refined. At first,
a second-order convergence is observed until Uaδt/δx = 0.5.
After this point, further refinement results in increasing the
errors, implying that the O(δxN/δt ) term has become domi-
nant. This reverse effect, which was also reported in [25], is
not observed in the D2Q9 lattice in this setup since the O(δt )
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FIG. 6. Time refinement study in the simulation of the advected
vortex: convergence of the L∞ error by decreasing the time step.
400 × 400 grid points are used.

terms retain greater magnitude throughout the refinement
procedure.

As said earlier, the choice of φ can affect the recovered
energy equation when the D2Q9 lattice is used, such that φ =
0 can remove the errors from the energy equation. However,
the momentum equation will still have the O(δt ) errors and
the scheme will be effectively first order in time. To verify
this, we augment the postcollision f populations by a forcing
term as

f ∗
i (x, t ) = fi(x, t ) + ω(ρwi − fi )(x,t ) + f̂iδt, (104)

where f̂i = M−1
i X and

X = [0, XxM , XyM , 0, 0, 0, 0, 0, 0]† (105)

includes the error terms in the momentum equation recovered
in Eq. (81). Choosing φ = 0 and forcing out the error terms
XαM , we repeat the same simulation using the D2Q9 lattice.
As demonstrated in Fig. 7, the scheme becomes second-order

FIG. 7. Time refinement study in the simulation of the advected
vortex: convergence of the L∞ error by decreasing the time step.
The D2Q9 lattice is used with φ = 1 and φ = 0 augmented by the
correction term.

FIG. 8. Radial sound pressure measured at θ = −45◦ with re-
spect to the x axis at nondimensional times t∗ = {6, 8, 10}. The
governing parameters are Maa = 1.2, Mav = 0.25, Re = 800, and
Pr = 0.75. DNS from [26].

accurate in time once the error terms are corrected. This indi-
cates that the analyses are consistent with simulations.

IV. BENCHMARK

In this section, the interaction of a vortex with a standing
shock front is considered. The Mach number of the vortex is
Mav = 0.25 and its radius is denoted by Rv . When passing
through the shock front with the intensity Maa = 1.2, sound
waves are generated by the vortex. To assess the numerical
accuracy of a model, one can measure the sound pressure and
compare to the direct numerical simulation (DNS) solution
[26]. In this simulation, the Reynolds number is defined as
Re = a∞Rv/ν, where a∞ is the speed of sound upstream of
the shock and the dimensionless time t∗ = ta∞/Rv is used.
Figure 8 shows the radial sound pressure measured from the
center of the vortex along the θ = −45◦ line with respect to
the x axis. The results are captured at three different times
for Re = 800 and Pr = 0.75. Compared to the DNS solution,
one observes that the D2Q9 lattice overestimates the pressure,
while removing the error terms (φ = 0 and adding the cor-
rection term) leads to a significant improvement such that the
latter together with the D2Q25 lattice are in good agreement
with the DNS solution.

V. CONCLUSION

In this paper, a consistent analysis of the particles on
demand kinetic model was presented. Due to the off-lattice
property of the model, the semi-Lagrangian advection is
used, which requires interpolation schemes. In our Chapman-
Enskog analysis, we have taken into account the effect of
the interpolation and transformation of populations during the
advection process. By doing so, we have derived the hydro-
dynamic limit of the model for commonly used one- and
two-dimensional lattices. It has been demonstrated that the
D2Q9 lattice in the PonD framework has error terms on the
order of the time step in the momentum and energy equations,
while the D2Q25 lattice can recover the full compressible
NSE. However, the error terms corresponding to the energy
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equation recovered from the D2Q9 lattice could be eliminated
by adopting a second population to carry the total energy
instead of the excess internal energy.

Furthermore, we discussed that similar to other semi-
Lagrangian LB schemes, the spatial order of accuracy can be
increased by employing high-order interpolation functions at
low CFL numbers. However, the compressibility errors are no
longer present thanks to the Galilean-invariant nature of the
model.

As for the validation, the presented analysis were verified
on various numerical benchmarks. It was shown that the re-
sults were improved upon, including corrections to remove the
error terms.

Finally, we comment that the current analysis can be
applied to three-dimensional lattices. In the case of tensor-
product lattices such as D3Q27 and D3Q125, the recovered
equations for fluid properties such as viscosity, conductivity,
and Prandtl number will be the same as their two-dimensional
counterparts [Eqs. (77)–(79), (84), and (89)]. However, for
any general lattice, a separate investigation must be carried
out due to their unique form of mapping matrix.
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APPENDIX

In this section, we aim to analyze the predictor-corrector
step during the advection process. To this end, we take the
D1Q3 lattice with the inverted mapping matrix M−1 as shown
by Eq. (41). For simplicity, the interpolation kernel is once
again neglected. The goal is to find the comoving gauge at
point x and time t0 + δt assuming that the flow variables are
known at time t0. As explained in Sec. III A, the particles at
point x are first set relative to the initial gauge λ0 = λ(x, t0).
Hence the initial values of the discrete velocities are

v0
i = vi(x, t0) =

√
θ0ci + u0, (A1)

where θ0 = θ (x, t0) and u0 = u(x, t0). At the next step, the
semi-Lagrangian advection is followed using Eq. (27):

f λ0
i = M−1

i,λ0
M∗(x − v0

i δt, t0
)
. (A2)

Consequently, using Eqs. (21)–(23), the updated density, mo-
mentum, and total energy values are obtained and denoted as
ρ1, (ρu)1, (2ρE )1, respectively.

In general, one can express the populations at the nth
iteration by

f λn
i = M−1

i,λn
M∗(x − vn

i δt, t0
)
, (A3)

where λn = {Tn, un} denotes the reference frame correspond-
ing to the computed temperature Tn = θnTL and velocity un.
The flow variables are updated as

ρn+1 =
∑

i

f λn
i , (A4)

(ρu)n+1 =
∑

i

f λn
i vn

i , (A5)

(2ρE )n+1 =
∑

i

f λn
i vn

i
2
. (A6)

It is straightforward to show

f λn
0 =

(
1 − u2

n

θn

)
ρ(xn

0 ) + 2un

θn
(ρu)

(
xn

0

) − 1

θn
(2ρE )

(
xn

0

)
,

f λn
1 = u2

n − √
θnun

2θn
ρ
(
xn

1

) +
√

θn − 2un

2θn
(ρu)

(
xn

1

)
+ 1

2θn
(2ρE )

(
xn

1

)
,

f λn
2 = u2

n + √
θnun

2θn
ρ
(
xn

2

) −
√

θn + 2un

2θn
(ρu)

(
xn

2

)
+ 1

2θn
(2ρE )

(
xn

2

)
, (A7)

where xn
j , j = 0, 1, 2, are the departure points as shown in

Fig. 1, at the nth iteration, such that

xn
0 = x − unδt,

xn
1 = x −

√
θnδt − unδt,

xn
2 = x +

√
θnδt − unδt . (A8)

It can be observed that xn
0 is always the middle point be-

tween xn
1 and xn

2. Note that the moments [ρ, ρu, 2ρE ] in
Eq. (A7)—evaluated at departure points xn

j —are known from
the previous time step t = t0. It must be commented that the
transformation process is not positivity preserving; i.e., the
transformed populations can assume negative values depend-
ing on the target reference frame [see Eq. (A7)].

Before proceeding further, we use Taylor series to expand
these terms around (x, t0) up to third-order accuracy. Finally,
taking the first two moments of Eqs. (A7), we have

ρn+1 = ρ(x, t0) − δt∂x(ρu) + δt2

2
∂xx(2ρE ) + O(δt3), (A9)

(ρu)n+1 = (ρu)(x, t0) + δt2

2
u3

n∂xxρ − δt2

2
unθn∂xxρ

− 3

2
δt2u2

n∂xx(ρu) + δt2

2
θn∂xx(ρu) − δt∂x(2ρE )

+ 3

2
δt2un∂xx(2ρE ). (A10)

It is observed that the evaluated density during the iterations
is independent of its previous values (there is no dependence
on ρn). Hence, one can write ρ = ρn = ρn+1. For further
simplification, assume the isothermal condition, i.e., θn = 1.
According to Eq. (A10), the difference of computed momenta
between two subsequent iterations is

ρ(un+1 − un) = δt2

2

(
u3

n − u3
n−1

)
∂xxρ − δt2

2
(un − un−1)∂xxρ

− 3

2
δt2(u2

n − u2
n−1

)
∂xx(ρu)

+ 3

2
δt2(un − un−1)∂xx(2ρE ). (A11)
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It is straightforward to show that∣∣∣∣un+1 − un

un − un−1

∣∣∣∣ = O(δt2). (A12)

Hence, the predictor-corrector algorithm is always convergent
at relatively low time steps.

Another approach is to evaluate the derivative of the itera-
tion function. According to the fixed-point iteration method,

the iterative process xn+1 = �(xn) will be convergent if
|� ′(x)| < 1 for a specified interval.

Rearranging Eq. (A11) as un+1 = �(un), it can be shown
that ∣∣∣∣∂�

∂u

∣∣∣∣ = O(δt2). (A13)
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