
PHYSICAL REVIEW E 106, 015303 (2022)

Asymptotic method for entropic multiple relaxation time model in lattice Boltzmann method

Xiangshuo Tang *

Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, USA

Yue Yu
Department of Mathematics, Lehigh University, Bethlehem, Pennsylvania 18015, USA

Alparslan Oztekin
Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, USA

(Received 29 October 2021; accepted 9 June 2022; published 7 July 2022)

To improve the numerical stability of the lattice Boltzmann method, Karlin et al. [Phys. Rev. E 90, 031302(R)
(2014)] proposed the entropic multiple relaxation time (EMRT) collision model. The idea behind EMRT is to
construct an optimal postcollision state by maximizing its local entropy value. The critical step of the EMRT
model is to solve the entropy maximization problem under certain constraints, which is often computationally
expensive and even not feasible. In this paper, we propose to employ perturbation theory and obtain an asymptotic
solution to the maximum entropy state. With mathematical analysis of particular cases under relaxed constraints,
we obtain the unperturbed form of the original problem and derive the asymptotic solution. We show that the
asymptotic solution well approximates the optimal states; thus, our approach provides an efficient way to solve
the constrained maximum entropy problem in the EMRT model. Also, we use the same idea of the EMRT
model for the initial condition of the distribution function and propose to leave the entropy function to determine
the missing information at the initial nodes. Finally, we numerically verify that the simulation results of the
EMRT model obtained via the perturbation theory agree well with the exact solution to the Taylor-Green vortex
problem. Furthermore, we also demonstrate that the EMRT model exhibits excellent stability performance for
under-resolved simulations in the doubly periodic shear layer flow problem.
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I. INTRODUCTION

The lattice Boltzmann method (LBM) is an effective
computational tool to simulate fluid flows [1]. The LBM
represents each computational node by distribution functions.
Distribution functions could be considered as the density dis-
tribution of microscopic particles. The evolution of this kinetic
system could recover the Navier-Stokes (N-S) equations in
its hydrodynamic limit at a small Mach number (Ma). The
advantage of this numerical scheme is its feature of locality,
i.e., the computation is performed almost locally at each fluid
node. It makes the LBM easy to be implemented for parallel
computing.

The most commonly used collision model in LBM is the
Bhatnagar-Gross-Krook (BGK) model [2,3]. However, this
model would become numerically unstable as the Reynolds
number (Re) increases. To improve the numerical stability of
LBM, different collision models have been developed.

In the BGK model, there is only one relaxation parameter,
and everything will relax to the equilibrium state at the same
rate. The multiple relaxation time (MRT) collision model
[4] proposes a generalization of the BGK model such that
different moments of distribution functions could relax to
the equilibrium state at different rates. In the MRT model,

*xit213@alum.lehigh.edu

to recover the desired fluid viscosity, one only needs to fix
the relaxation parameters up to the second-order moments.
The relaxation parameters can be tuned without restrictions
for the higher-order moments since they would not affect the
recovery of N-S equations, which offers extra flexibility for
the model. However, one drawback of the MRT model is the
lack of a clear physical interpretation of these higher-order
moments. Therefore, parameters tuning in the MRT model
often rely on one’s experiences rather than the physical in-
terpretation.

The entropic collision model successfully derived the en-
tropy function of the discrete system in the LBM [5,6]. The
remarkable thing about this derivation is that it introduces
the second law of thermodynamics into the LBM. Before
introducing the entropy function, the constraints on collision
are only about the conservation of mass and momentum. The
entropy function expands our understanding of the collision
process and helps us predict the direction of time in which the
collision would most probably proceed. The entropic model
is initially built on the BGK collision model (EBGK), where
there is only a single relaxation parameter. The idea is to
let the collision process always increase the value of local
entropy [5,7]. To realize this idea, it first finds the boundary
of the maximum step size, within which the entropy function
is guaranteed to increase along the direction of the BGK
collision model. Then it rescales the relaxation parameter by
this maximum step size to let the postcollision state remain
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within the boundary. The entropic BGK (EBGK) model ex-
hibits excellent numerical stability. However, this model has a
potential accuracy issue. Because the EBGK needs to dynami-
cally rescale the only relaxation parameter, it would inevitably
modify the local viscosity during the collision. Also, it is com-
putationally expensive to find the boundary of the maximum
step size. Several optimization strategies have been proposed
to improve efficiency [8–10].

Karlin, Bösch, and Chikatamarla [11,12] proposed an en-
tropic multiple relaxation time (EMRT) collision model. This
model combines the idea of a multiple relaxation time model
and entropy function. As mentioned above, the MRT model
allows us to freely tune higher-order moments’ relaxation
parameters, while the issue is that the higher-order moments
lack the physical interpretation. The EMRT model looks for
the physical interpretation of the entropy function. It pro-
poses to set the postcollision state to be such a state that
the entropy function could reach the local maximum value.
To recover the desired N-S equation, we need to fix the re-
laxation parameters up to the second-order moments during
the collision. For the relaxation of higher-order moments, it
leaves the entropy function to determine the optimal values.
Thus, the postcollision states would be the local maximum en-
tropy states under certain constraints. Compared to the EBGK
model, the EMRT model addresses the potential accuracy
issue because the tuning of higher-order moments would not
affect fluid viscosity. It is worth mentioning that there are
subtle differences between how EMRT and EBGK models
treat the entropy functions. The EBGK model ensures that
the postcollision state would always lie within the boundary,
and the entropy value would guarantee to increase after the
collision step. On the other hand, the EMRT model is like
a “best-effort method”: it fixes relaxation parameters up to
the second-order moments and then does its best to make
the postcollision state’s entropy as large as possible. Wilson
et al. [13] also provided another interpretation of the entropy
function based on the “Principle of Minimum Discrimination
Information”. They derived a similarly constrained minimiza-
tion of the Kullback-Leibler Divergence problem.

The key to realizing the EMRT model is to solve the
constrained entropy maximization problem, i.e., seeking the
maximum entropy state under constraints of the density, mo-
mentum, and second-order moments. However, the entropy
maximization is a challenging problem to be solved. To the
best of our knowledge, the exact solution to this problem is
still not available. One option is to look for the numerical
solutions to get the approximations. For example, we could
use gradient descent methods or Newton’s method [14] to
solve the problem. However, the numerical methods are com-
putationally expensive. They generally need to take several
iterations for the solutions to be converged. To improve the
efficiency, Wilson et al. solved the constrained optimization
problem by only taking a single step of Newton’s method
[13]. This strategy is helpful, and we will show that a single
Newton’s step could give a good approximation based on a
reasonable initial guess. However, it still requires us to con-
struct and solve a 3×3 matrix. Moreover, to implement the
EMRT model, we need to repeatedly solve the constrained
entropy maximization problem at each node and time step.
Therefore, developing a more efficient algorithm is necessary.

Karlin et al. [11,12] first assumed that all the higher-order
moments relax to an equilibrium state at the same rate to seek
the approximate solutions. By this assumption, there would
be two relaxation parameters in the collision. A fixed one
is for the relaxation up to the second-order moments, and
an adaptive one is for the higher-order ones. A higher-order
relaxation parameter function represents the entropy value
of the postcollision state, and it would reach the maximum
value at its critical point (i.e., the derivative is zero). Although
it is difficult to find the exact solution to the critical point,
Karlin et al. take the Taylor expansion on the derivative of
entropy function around the local equilibrium state, simplify
the expression by removing all the terms which are proven
to be the value of zero, and get the approximate solution by
setting the first nonzero term to zero. This approximation to
the higher-order relaxation parameter is also referred to as
the KBC stabilizer. The idea of a KBC stabilizer could be
further applied to the general form, where the higher-order
moments would have different relaxation parameters [15].
However, this generalization is inefficient because it requires
the inverse of the “correlation matrix” to approximate the
optimal values for the higher-order relaxation parameters.
Recently, Krämer et al. [16] attempted to solve the entropy
maximization problem in its general form. They proposed to
take the Taylor expansion of the entropy function around the
global equilibrium state (i.e., the equilibrium state under the
unit fluid density and zero velocities) and make a quadratic
approximation. This entropy function is slightly different from
the original one and is referred to as the “quadratic pseudoen-
tropy.”

In this paper, we propose to apply perturbation theory
[17,18] to solve the entropy maximization problem in its
general form, where all the higher-order moments could re-
lax to the equilibrium states at their rates. The advantage
of asymptotic solutions is that it represents the solutions in
the analytical forms; thus, it avoids the iterative scheme in
the numerical methods and would be more efficient. At the
same time, the asymptotic solutions could give good approx-
imations of the maximum entropy states in practice. The
asymptotic solutions are the main results of this paper, and
we develop an efficient algorithm to implement the idea of
the EMRT model. We will discuss discovering the “unper-
turbed” form of the original problem by analyzing particular
cases under relaxed constraints. Furthermore, we will show
the detailed derivation of the asymptotic solution and compare
it to Newton’s method, which is considered as a reference
solution.

Another benefit of solving the constrained entropy max-
imization problem in its general form is that it could help
us develop the initial and boundary conditions [19,20]. Of
course, there could be a problem with imposing initial and
boundary conditions since only the moments up to the sec-
ond order are available initially and at the boundary nodes.
However, we could still apply the idea of the EMRT model
and let the entropy function determine the missing informa-
tion about the higher-order moments. More specifically, we
could assume the distribution functions for all nodes initially
and boundary nodes at all times would be the states with
maximum entropy under constraints up to the second-order
moments. To implement this idea for the initial and boundary
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FIG. 1. Particle velocities in the D2Q9 lattice model.

conditions, we need to solve the entropy maximization prob-
lem in its general form.

II. LATTICE BOLTZMANN METHOD

This paper considers the popular two-dimensional nine-
velocity lattice model (D2Q9), where all the micro-
scopic particles are constrained to nine discrete velocities
(see Fig. 1).

The distribution function fi(x, t ) represents the density
distribution function for the microscopic particle with discrete
velocity vi at lattice nodes x for the time step t . At each
computational node, it is convenient to consider all nine dis-
tribution functions as a vector f (x, t ) ∈ R9. The equation of
LBM with BGK collision model [2,3] writes

f (x + v, t + 1) = f post (x, t ) = f (x, t )

+ω[ f equ(x, t ) − f (x, t )], (1)

where f post (x, t ) and f equ(x, t ) are the postcollision states
and local equilibrium states, respectively. The scalar ω is the
relaxation parameter in the BGK model, which is associated
with the fluid viscosity following the relation

ν = c2
s

(
1

ω
− 1

2

)
, (2)

where cs = 1/
√

3 is the speed of sound in this lattice model.
The local equilibrium states f equ(x, t ) has the same fluid
density ρ and velocities u as distribution f (x, t ), and we
take the Maxwell-Boltzmann distribution as the equilibrium
states. Under the small Mach number assumption, the discrete
equilibrium states f equ

i (ρ, u) are expanded to the polynomial
form as

f equ
i (ρ, u)=ρwi

(
1+uαviα

c2
s

+uαuβ

(
viαviβ−c2

s δαβ

)
2c4

s

)
+O(u3),

(3)
where ρ and u are the local fluid density and velocity and
vi represents the microscopic particle velocity. The Einstein
summation notation is used. The function of δαβ is the Kro-
necker delta function. The weight wi is corresponding to the

particles with different velocities, it has the values

wi =
⎧⎨
⎩

4/9, i = 0,

1/9, i = 1, 2, 3, 4,

1/36, i = 5, 6, 7, 8.

(4)

The evolution of this kinetic system (1) consists of two
steps: streaming and collision. The microscopic particles
move to the neighbor lattice nodes in the streaming step de-
pending on their velocity. In the collision step, the particle
distribution functions would relax toward the local equilib-
rium state f equ and eventually be rearranged to reach the
postcollision states f post. The streaming and collision steps
occur alternatively, and this system could recover the N-S
equations under the hydrodynamic limits. The recovery of
N-S equations from LBM equations could be derived by
Chapman-Enskog expansion [12,21,22]. We will not discuss
the detail of the derivation in this paper.

A remarkable advancement in the LBM is the derivation
of the entropy function for this system [5,6]. The entropy
function introduces the second law of thermodynamics into
the LBM and expands our understanding of the collision step.
The H function has the form

H ( f (x, t )) =
8∑

i=0

fi(x, t ) ln

(
fi(x, t )

wi

)
, (5)

where the weight wi has the same values in Eq. (4).

III. MOMENT REPRESENTATION

For the streaming step, the representation of f (x, t ) is a
natural choice because each element fi directly represents the
particle distribution with velocity vi. However, it is more con-
venient for the collision step to use moment representation.
From the perspective of linear algebra, we could represent the
same vector f ∈ R9 by choosing any other basis. The idea
behind moment representation is to pick a basis so that all
the elements in this coordinate system are the moments of
the distribution function. The moment representation makes
it mathematically convenient to discuss the collision step.

In LBM, the fluid variables (e.g., fluid density and veloci-
ties) are represented by the moments of distribution functions
f . The moments (up to the second order) of f are defined as

ρ =
8∑

i=0

fi, (6a)

ρuα =
8∑

i=0

fiviα, (6b)

ρ�αβ =
8∑

i=0

fiviαviβ, (6c)

where the fluid density ρ and velocity uα are related to the
zeroth- and first-order moment, respectively. In the LBM, the
fluid density is also related to pressure. The second-order
moment �αβ is a tensor, and it represents the flux of mo-
mentum. In the Chapman-Enskog expansion, we could derive
the relation between the nonequilibrium parts of the second-
order moment and velocity gradients. In general, we define
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the moments as [12]

ρmpq =
8∑

i=0

fiv
p
ixv

q
iy, (7)

where mpq is related to the order of the moments, and we
normalize them by the fluid density ρ. For example, m00 = 1
is related to zeroth order (normalized by ρ itself); m10 = ux

and m01 = uy are the fluid velocities, which are related to the
first-order moments (6b); m20 = �xx, m02 = �yy, and m11 =
�xy are the elements related to the second-order moments
tensor (6c). Finding the corresponding physical interpretation
for the higher-order moments is difficult. But we still need
them for computation.

We need to choose nine linearly independent vectors for
moment representation as to its basis. For the moments up to
the second order (6), it is natural to choose all of them (i.e.,
1, ux, uy, �xx, �yy, and �xy) since they have clear physical
interpretation and are directly related to the recovering of N-
S equations. Then, we still need to pick three more vectors
from the higher-order moments to construct the basis. We do
not think one choice could be better because the higher-order
moments lack the physical interpretation, and it is just a linear
transformation. In this paper, we follow the choice in [12], i.e.,
Qxyy = m12, Qyxx = m21, and Qxxyy = m22. After choosing the

basis, we write the moment representation m ∈ R9 as

m = (1, ux, uy,�xx,�yy,�xy, Qxyy, Qyxx, Qxxyy)ᵀ, (8)

where ᵀ represents the transpose. With the transforming ma-
trix M and its inverse M−1, we easily transform distribution
functions between its regular representation f and moment
representation m as

ρm = M f , (9a)

f = ρM−1m, (9b)

where ρ is the density. The transformation matrix M (9a) is

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 1 0 1 0 1 1 1 1
0 0 1 0 1 1 1 1 1
0 0 0 0 0 1 −1 1 −1
0 0 0 0 0 1 −1 −1 1
0 0 0 0 0 1 1 −1 −1
0 0 0 0 0 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(10)
and its inverse matrix M−1 (9b) is

M−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 −1 −1 0 0 0 1
0 0.5 0 0.5 0 0 −0.5 0 −0.5
0 0 0.5 0 0.5 0 0 −0.5 −0.5
0 −0.5 0 0.5 0 0 0.5 0 −0.5
0 0 −0.5 0 0.5 0 0 0.5 −0.5
0 0 0 0 0 0.25 0.25 0.25 0.25
0 0 0 0 0 −0.25 −0.25 0.25 0.25
0 0 0 0 0 0.25 −0.25 −0.25 0.25
0 0 0 0 0 −0.25 0.25 −0.25 0.25

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

IV. THE DIAGRAM OF COLLISIONS

In order to improve the numerical stability, different col-
lision models have been developed for the LBM. We discuss
some of these collision models and eventually introduce the
EMRT collision model. Finally, we draw the diagram of dif-
ferent collision models and compare their postcollision states.

A. BGK collision model

Let us first revisit the BGK collision model [2,3], the most
commonly used model in the LBM. The postcollision state is

f BGK = f + ω( f equ − f ), (12)

where f BGK is the postcollision state of the BGK model, and
other terms have the same meaning as Eq. (1). There is only
a single relaxation parameter ω in the BGK model and the
distribution function f would relax to the equilibrium states
f equ at the same rate.

The diagram of collision models is shown in Fig. 2. For
visualization, we represent the vectors f ∈ R9 in this 2D
plane. The distribution function f is about to experience the
collision step, and f equ is the local equilibrium state. Because
the collision step has to satisfy the conservation of mass and

momentum, we assume that all points in the plane have the
same density and velocities as f . In other words, no matter
what collision model we choose, its postcollision state has
to be in this plane. We choose the “second-order moments”
and “higher-order moments” as two coordinates. In this case,
any point on the axis of “second-order moments” represents
(�xx, �yy, �xy) ∈ R3 and on axis of “higher-order moments”
represents (Qxyy, Qyxx, Qxxyy) ∈ R3, respectively.

The collision diagram of the BGK model is straightforward
[Fig. 2(a)]. The postcollision state f BGK has to lie somewhere
on the line connecting f and f equ, and its position depends on
the specific value of relaxation parameter ω (12). The value
of ω usually is greater than 1 and it leads to a over-relaxation
in the collision step. We will provide a possible explanation
of why it could cause the numerical instability issue from the
perspective of entropy function in the following section.

B. Multiple relaxation time collision model

The idea behind the MRT model is that different moments
could relax to the equilibrium states at different rates [4].
This is different from the BGK model, where there is only a
single relaxation parameter ω. In order to recover the desired
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(a) BGK model (b) MRT model

(c) Entropic BGK model (d) Entropic MRT model

FIG. 2. The schematic of collision models. The distribution function f (solid dot) is going to experience collision step, and its equilibrium
state is f equ (solid diamond). The BGK collision model is shown in (a), where f BGK (open triangle) is the postcollision state. It lies on the point
of the line (dashed line) connecting f and f equ depending on the relaxation parameter ω (12). The MRT collision model is shown in (b), where
the vertical line f MRT (solid line) is the possible postcollision states. The entropic BGK collision model is shown in (c). With entropy function
(5), we draw a few contours (dotted line) of the entropy levels. The state f α (asterisk) is related to the solution α in Eq. (13), and f EBGK (open
dot) is the postcollision state of the EBGK model. The entropic multiple relaxation time model is shown in (d), where the postcollision state
f EMRT (open square) is the solution of the entropy maximization problem (15).

viscosity, we need to fix the relaxation parameters to the same
value as ω up to the second-order moment. At the same time, it
is free to choose the relaxation parameters of the higher-order
moments. The possible postcollision states of MRT are the
vertical line of f MRT in Fig. 2(b). It shows that the postcol-
lision state f BGK is also on this line and we consider it as a
limiting case of f MRT (i.e., the relaxation parameters of the
higher-order moments are also equal to the value of ω). The
problem of MRT model is that it is difficult to find the physical
interpretation for the higher-order moments. In other words,
we do not know much about which point we should pick as
the postcollision state along f MRT line.

C. Entropic BGK collision model

The derivation of entropy function (5) introduces the sec-
ond law of thermodynamics into the LBM [5,6]. It expands
our understanding of the collision step. We draw the contours

of the entropy level in the collision diagram [see Fig. 2(c)].
The local equilibrium state f equ is the point with maximum
entropy value in the plane (because all the points share the
same fluid density ρ and velocities u, this is equivalent to the
constraints of fixed fluid density and velocities).

The entropic collision model is initially built on the BGK
model (EBGK) [5,7]. The key idea behind the EBGK model
is to let the collision step always increase the local entropy
value. To realize this idea, it first looks for the auxiliary point
f α, which shares the same entropy value of f along the line
connecting f and f equ. As shown in Fig. 2(c), the auxiliary
point f α could be considered as the boundary: if the postcol-
lision state f post falls into the segment between f and f α , it
would guarantee that the collision would increase the local
entropy value. We need to solve the following equation to
find f α:

H ( f ) = H ( f + α( f equ − f )), (13)
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where α is a scalar and solving the value of α is equivalent
to finding the auxiliary state f α . With the solution of α, the
entropic BGK model rescales the relaxation parameter ω to
get the postcollision state as follows:

f EBGK = f + α

2
ω( f equ − f ), (14)

where f EBGK is the postcollision state shown in Fig. 2(c).
Practically, the value of variable α is very close to the value

of 2 (thus the value of α
2 is close to the value of 1). That is the

reason why the postcollision state of the EBGK model f EBGK

is very similar to the BGK model f BGK [see Fig. 2(c)]. By
rescaling the relaxation parameter ω, the entropic collision
model exhibits excellent stability performance. However, the
EBGK model could cause a potential accuracy issue. Because
the value of α is not exact the value of 2, rescaling the single
relaxation parameter ω would dynamically modify the local
viscosity. As it is shown in Fig. 2(d), the postcollision state
f EBGK is moving along the line connecting f and f equ rather
than along the line of f MRT .

Although it is difficult to prove the numerical stability
issue for the LBM mathematically, the entropy function could
provide a possible explanation for the BGK model when Re is
large, as shown in Eq. (2), we have ω ≈ 2. On the other hand,
in Eq. (13), the value of variable α is also very close to 2 in
practice. Therefore, in flows with a high Reynolds number,
we often have ω ≈ α, which means the postcollision state
f BGK would be very close to the auxiliary point f α. We see
this by comparing the f α = f + α( f equ − f ) [see the term
in the right-hand side of Eq. (13)] and Eq. (12). Because the
auxiliary point f α is the boundary for entropy value to in-
crease [see the contours in Fig. 2(c)], if the postcollision state
f BGK is very close to this boundary, it is quite possible for the
postcollision state f BGK to go beyond it in some situations,
and thus cause entropy value to decrease during the collision.
This might explain why the BGK model would experience the
numerical stability issue for large Re flow simulation.

On the other hand, if the Re is small or higher resolution
grids are applied, the value of relaxation parameter ω in the
BGK model would be much smaller than the value of 2 and the
postcollision state f BGK would be far away from the boundary
of the auxiliary point f α. In this case, it is unlikely that the
postcollision states f BGK would go beyond that boundary,
and the entropy value would most likely increase during the
collision. Then, the BGK model might not experience the nu-
merical stability issue because the collision step is consistent
with the physics.

D. Entropic multiple relaxation time collision model

The problem with the EBGK collision model is that it is
built on the BGK model, where there is only a single relax-
ation parameter ω. Could we build a collision model based on
the idea of a multiple relaxation time model while still taking
advantage of the entropy function? That is the idea behind
the EMRT collision model [11,12]. In the EMRT model, the
relaxation parameters up to the second-order moments are the
same as those in the MRT model (i.e., to recover the desired
viscosity). At the same time, it leaves the entropy function (5)
to determine the optimal relaxation parameters for the higher-
order moments. The problem with the MRT model is that the

higher-order moments lack the physical interpretation, while
the EMRT model looks for the physics in the entropy function.
More specifically, we would like the postcollision state of
EMRT to be the state with maximum local entropy value
under the constraints of the fixed fluid density ρ, velocities
uα and the second-order moments tensor �αβ .

As it is shown in Fig. 2(d), the postcollision state f EMRT is
the point where the vertical line of f MRT is tangent to some
contour of entropy level. Because the postcollision state of
the EMRT model would always fall into the line of f MRT, it
is able to recover the desired viscosity from the perspective
of Chapman-Enskog expansion. It is worth mentioning that
the EMRT model treats the entropy function differently from
it does in the EBGK model. Setting the postcollision state as
the maximum entropy state can not guarantee that the entropy
value would always increase during the local collision step.
However, the EMRT model does “make the best effort” to get
the entropy of the postcollision state as large as possible under
certain constraints.

In order to realize the idea of the EMRT model, the crit-
ical step is to solve the constrained entropy maximization
problem. However, it is a challenging task. In the following
section, we will discuss the solutions to this problem in detail.

V. ENTROPY MAXIMIZATION PROBLEM

In order to get the postcollision states f post in the EMRT
model, we need to solve the entropy maximization problem
under certain constraints. We convert it to the equivalent min-
imization problem in terms of H function as

minimize H ( f post ) =
8∑

i=0

f post
i ln

(
f post
i

wi

)
,

subject to ρ =
8∑

i=0

f post
i ,

ρuα =
8∑

i=0

f post
i viα,

ρ�
post
αβ =

8∑
i=0

f post
i viαviβ, (15)

where α, β = x, y and the H function is given in Eq. (5) (we
will use the term “entropy maximization” and “minimization
of H function” interchangeably in the following). The con-
straints on fluid density ρ and velocities uα (ux, uy) are due to
the conservation of mass and momentum during the collision.
In order to recover the desired viscosity, we need to fix the
relaxation parameters of the second-order moments, which
means we need to impose the constraints on the second-order
moment tensor for the postcollision states �

post
αβ (where �

post
xx

and �
post
yy are the diagonal components and �

post
xy is the off-

diagonal component, respectively). As we discussed earlier,
the relaxation parameters of the second-order moments would
be set to be the value of ω, so it is easy to derive the equa-
tions of the second-order moments tensor for the postcollision
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state �
post
αβ as

�
post
αβ = �αβ + ω

(
�

equ
αβ − �αβ

)
, (16)

where �αβ , �
equ
αβ , and �

post
αβ are the second-order moments

for the precollision state, equilibrium state, and postcollision
state, respectively. If we take the second-order moments of the
equilibrium state f equ (3), we get

�
equ
αβ = c2

s δαβ + uαuβ, (17)

where cs is the speed of sound and δαβ is the Kronecker delta
function. The relaxation parameter ω is determined by the
desired viscosity (2).

We could also convert it to the equivalent unconstrained
version if we look at the entropy maximization problem (15)
from the perspective of moment representation. With the
transformation matrix M and its inverse M−1, we transform
the postcollision states between the ordinary representation
f post and its moment representation mpost (9). Given the fluid
density ρ, velocities uα , and second-order moment tensor
�

post
αβ , if we pick any value for three higher-order moments

Qpost
xyy , Qpost

yxx , and Qpost
xxyy (8), we would know everything about

postcollision states f post (and hence the entropy value). There-
fore, the equivalent unconstrained version of the entropy
maximization problem could be defined as

minimize
8∑

i=0

f post
i

(
Qpost

xyy , Qpost
yxx , Qpost

xxyy

)

× ln

(
f post
i

(
Qpost

xyy , Qpost
yxx , Qpost

xxyy
)

wi

)
,

given ρ, uα and �
post
αβ , (18)

where the values of fluid density ρ, velocities uα , and second-
order moments �

post
αβ are fixed. Our target is to find the optimal

values of Q∗
xyy, Q∗

yxx, and Q∗
xxyy such that the H function could

reach the minimum value. For simplicity, we will discard the
superscript of “post.”

A. Two special cases

Although it is difficult to solve the entropy maximization
problem in its general form (15) and (18), we could find the
exact solutions to this family of problems for two special
cases. Let us discuss these two particular cases and hope their
solutions can provide some insights into the general problem.

In the first case, we would like to find the distribution func-
tions with maximization entropy value under the constraints
only on the fixed fluid density ρ and velocities ux and uy as

minimize H ( f ) =
8∑

i=0

fi ln

(
fi

wi

)
,

subject to ρ =
8∑

i=0

fi,

ρux =
8∑

i=0

fivix, ρuy =
8∑

i=0

fiviy. (19)

The Lagrange multiplier could solve this problem [23], and
the solutions are the local equilibrium states as

f equ
i (ρ, u) = ρwi

∏
α=x,y

(2 − ϕ(uα ))

(
2uα + ϕ(uα )

1 − uα

)viα

, (20)

where ϕ(uα ) = √
3u2

α + 1 and α = x, y. For f equ
i to be posi-

tive, |uα| < cs = 1/
√

3 has to be satisfied, which agrees with
the small Mach number assumption. If we take the Taylor
expansion about uα , the most commonly used polynomial
form of equilibrium states (3) would be recovered.

The second particular case is more interesting. We would
like to find the distribution functions with the maximization
entropy value under the constraints not only on fluid densities
ρ and velocities ux and uy but also on the diagonal elements
�xx and �yy in second-order moment tensor

minimize H ( f ) =
8∑

i=0

fi ln

(
fi

wi

)
,

subject to ρ =
8∑

i=0

fi,

ρux =
8∑

i=0

fivix, ρuy =
8∑

i=0

fiviy,

ρ�xx =
8∑

i=0

fivixvix, ρ�yy =
8∑

i=0

fiviyviy, (21)

where the difference between this particular case and the
general entropy maximization problem (15) is that it does
not impose any constraint on the off-diagonal element �xy

in second-order moments. Asinari and Karlin [24] discussed
this problem. They referred to the solution as “generalized
Maxwellian.” It is “among the only few analytic results on the
relevant distribution functions in the classical kinetic theory.”
We could also apply the Lagrange multiplier to solve this
problem. The solution [24] is

f ∗
i = ρwi

∏
α=x,y

3(1 − �αα )

2

(√
�αα + 1uα

�αα − 1uα

)viα

×
(

2
√

�2
αα − u2

α

1 − �αα

)v2
iα

, (22)

where wi is the weight with the same values as in (4). The
solution of f ∗ (22) looks complicated, but if we transform
it into the moment representation m∗ (8), the solution would
look more elegant,

m∗ =

⎛
⎜⎝1, ux, uy,�xx,�yy, uxuy︸︷︷︸

�xy

, ux�yy︸ ︷︷ ︸
Qxyy

, uy�xx︸ ︷︷ ︸
Qyxx

, �xx�yy︸ ︷︷ ︸
Qxxyy

⎞
⎟⎠

ᵀ

,

(23)
where the elements of 1, ux, uy, �xx, and �xy are recovered
as expected (since they are the constraints on this particular
case). The off-diagonal element of the second-order moment
�xy = uxuy and higher-order moments Qxyy = ux�yy, Qyxx =
uy�xx, and Qxxyy = �xx�yy are all the function of constraints.
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Let us go back to the entropy maximization problem in its
general case (15) and (18). It would have a different story if
we still apply the Lagrange multiplier to solve it. Constructing
the Lagrangian L and taking the partial derivative is not dif-
ficult. However, the generated system equations become too
complicated to solve when we introduce the constraint on the
diagonal element �xy.

B. Numerical solutions

In order to solve the entropy maximization problem (15)
and (18), we apply a numerical method. For example, we
could apply Newton’s method [14] to solve it. Newton’s
method is an iterative method, where it would update the solu-
tions based on the previous guess in each iteration. Newton’s
method would make a quadratic approximation to the target
function based on the function value, gradient, and Hessian
matrix from the previous guess, and then take the solutions
minimizing that quadratic approximation as the next guess.

It is easier to apply Newton’s method in the unconstrained
version of the entropy maximization problem (18), where
we consider the H function as a function of three variables
Qxyy, Qyxx, and Qxxyy [we will write it as the vector form as
Q = (Qxyy, Qyxx, Qxxyy)ᵀ]. The update algorithm is

Q(k+1) = Q(k) − [∇2H (Q(k) )]−1∇H (Q(k) ), k = 0, 1, 2, . . . ,

(24)
where Q(k) ∈ R3 is the numerical solution of kth iteration, and
Q(0) is the initial guess. The term ∇2H (Q(k) ) and ∇H (Q(k) )
are the Hessian matrix H and gradient g of the target entropy
function (18), respectively. For the Hessian matrix, we need to
get its inverse form. Practically, this term could be rewritten
as the solution of the linear system of equations Hx = g.

The issue with numerical solutions is that it is expensive.
Several iterations are needed for convergence, and the lin-
ear system equations must be solved for each iteration (the
Hessian matrix H is a 3×3 matrix for the D2Q9 model).
Therefore, a more efficient solution would be more attractive
because we need to solve the entropy maximization problem
at each computational node for each time step.

VI. PERTURBATION THEORY

Instead of seeking the numerical solutions to the entropy
maximization problem (15) and (18), we propose to apply
perturbation theory [17,18] to solve it. Perturbation theory is
a powerful mathematical tool for solving complex problems.
It explores the asymptotic behavior of the equations at the
limit as a small parameter goes to zero. The intuition behind
perturbation theory is that it converts a complex problem into
an infinite set of more manageable subproblems at different
scales. We gradually derive and solve them. Although deriving
and solving the infinite set of subproblems might be as hard as
solving the original problem, the power of perturbation theory
is that solving only a few of them might provide enough infor-
mation to approximate the exact solution at the scales that we
are interested in. The advantage of an asymptotic solution is
that it presents the solutions in the analytical form (hence very
efficient compared with numerical solutions). On the other
hand, it could give a surprisingly good approximation of the
exact solutions. Therefore, the perturbation theory looks much

more attractive in solving the entropy maximization problem
than the numerical methods.

Typically, solving a problem by perturbation theory con-
sists of three steps: (1) Find the solvable “unperturbed
problem” by inserting a small parameter ε into the original
problem. (2) Derive and solve the subproblems corresponding
to the coefficients in different order of small parameter ε. (3)
Sum the series. We will discuss all these steps in detail.

The first step in perturbation theory is to discover the
unperturbed problem. We introduce a small parameter ε into
the original problem. If we set this small parameter ε to 0,
the original problem would reduce to the problem defined as
the “unperturbed problem.” It has to be solvable as a valid
candidate for the unperturbed problem. Sometimes, it is not
apparent to insert the small parameter ε and discover the
unperturbed problem. As discussed by Holmes [18], a good
understanding of the physics in the original problem might
help decide to insert the small parameter ε. However, it always
requires several guesses (probably some luck).

How should we insert the small parameter ε into the
entropy maximization problem? Let us start with a slightly
modified version of the original problem. Suppose we are
asked to solve the entropy maximization problem [it is easier
to discuss the equivalent unconstrained version (18)], while
the constraints on the off-diagonal element �xy happens to be
the value of uxuy in the second-order moment. For this pur-
posely designed problem, how should we choose the values
for the higher-order moments Qxyy, Qyxx and Qxxyy so that the
entropy function could get the maximum value? If we go back
to the second particular case (21) and examine its solutions
more carefully, it would provide some insights. A reasonable
guess about the solutions to the higher-order moments might
be

Qxyy = ux�yy, Qyxx = uy�xx, Qxxyy = �xx�yy, (25)

where they have precisely the same values as the solutions of
“generalized Maxwellian” (23) in the second particular case.

This guess is indeed the solution to the purposely de-
signed problem! Let us prove it. If we look at the second
particular case (21) from the perspective of the moment rep-
resentation, its solutions m∗ (23) tells us that given the fixed
density ρ, fluid velocities ux and uy, and diagonal elements
of the second-order moments �xx and �yy, the distribu-
tion functions would get the maximum entropy states when
its off-diagonal element and the higher-order moments take
the values as �xy = uxuy, Qxyy = ux�yy, Qyxx = uy�xx, and
Qxxyy = �xx�yy simultaneously. In other words, for any other
choice on off-diagonal element and higher-order moments,
it would always have less entropy value than the maximum
value.

In our purposely designed entropy maximization problem,
if the constraint on the off-diagonal element �xy happens to
be the value of uxuy (by definition), we claim that, for any
other choice on the higher-order moments, it would never get a
greater entropy value than when we simultaneously choose the
values in Eq. (25). Why? Suppose someone claims that when
Qxyy = X , Qyxx = Y , and Qxxyy = Z , it would have larger en-
tropy value than our solutions. If it is true, then the solutions
�xy = uxuy, Qxyy = X , Qyxx = Y , and Qxxyy = Z would have
greater entropy value than the solutions (23) in the second
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particular case. This leads to a contradiction. Therefore, the
values in Eq. (25) must be the solutions to this purposely
designed problem.

However, we know how to solve the entropy maximization
problem (21) only when the constraint on the off-diagonal
element �xy happens to be the value of uxuy. What if the
constraint on off-diagonal element �xy is an arbitrary value?
The answer is simple: for any value of constraint on the off-
diagonal element �xy, we assume it is being perturbed around
the value of uxuy as

�xy = uxuy + ε, (26)

where a small parameter ε is naturally introduced, we dis-
cover the unperturbed problem of the entropy maximization
problem (18). When we set ε = 0, the maximization problem
would reduce to the “unperturbed” problem, to which we
already know the solutions. The original problem could be

fully represented by the introduction of this small parameter ε,
i.e., for any value of �xy, we consider it as being “perturbed”
around the value of uxuy by a small amount of ε.

After inserting a small parameter ε, we are ready to explore
the asymptotic behavior of the entropy maximization problem
(15) and (18). In order to apply perturbation theory, we need
to assume that all the variables of the higher-order moments
Qxyy, Qyxx, and Qxxyy as well as the introduced Lagrange mul-
tipliers λ1, λ2, . . . , λ6 are also the function of small parameter
ε. More specifically, we assume they have the polynomial
form as

V (ε) ∼ V (0) + V (1)ε + V (2)ε2 + V (3)ε3 + · · · , (27)

where V represents the variables of the higher-order moments
Qxyy, Qyxx, and Qxxyy as well as the introduced Lagrange mul-
tipliers λ1, λ2, . . . , λ6. We substitute the off-diagonal element
�xy with the value given in Eq. (26), and rewrite the system
equations generated by the Lagrange multipliers as

ln

(
ρ

w0

)
+ ln[1 − �xx − �yy + Qxxyy(ε)] ∼ λ1(ε),

ln

(
ρ

2w1

)
+ ln[ux + �xx − Qxyy(ε) − Qxxyy(ε)] ∼ λ1(ε) + λ2(ε) + λ4(ε),

ln

(
ρ

2w2

)
+ ln[uy + �yy − Qyxx(ε) − Qxxyy(ε)] ∼ λ1(ε) + λ3(ε) + λ5(ε),

ln

(
ρ

2w3

)
+ ln[−ux + �xx + Qxyy(ε) − Qxxyy(ε)] ∼ λ1(ε) − λ2(ε) + λ4(ε),

ln

(
ρ

2w4

)
+ ln[−uy + �yy + Qyxx(ε) − Qxxyy(ε)] ∼ λ1(ε) − λ3(ε) + λ5(ε),

ln

(
ρ

4w5

)
+ ln[uxuy + ε + Qxyy(ε) + Qyxx(ε) + Qxxyy(ε)] ∼ λ1(ε) + λ2(ε) + λ3(ε) + λ4(ε) + λ5(ε) + λ6(ε),

ln

(
ρ

4w6

)
+ ln[−uxuy − ε − Qxyy(ε) + Qyxx(ε) + Qxxyy(ε)] ∼ λ1(ε) − λ2(ε) + λ3(ε) + λ4(ε) + λ5(ε) − λ6(ε),

ln

(
ρ

4w7

)
+ ln[uxuy + ε − Qxyy(ε) − Qyxx(ε) + Qxxyy(ε)] ∼ λ1(ε) − λ2(ε) − λ3(ε) + λ4(ε) + λ5(ε) + λ6(ε),

ln

(
ρ

4w8

)
+ ln[−uxuy − ε + Qxyy(ε) − Qyxx(ε) + Qxxyy(ε)] ∼ λ1(ε) + λ2(ε) − λ3(ε) + λ4(ε) + λ5(ε) − λ6(ε), (28)

where wi is the weights given in Eq. (4). We write the variable
of the higher-order moment as Qxyy = Qxyy(ε) to emphasize
it is a function of small parameter ε, and the same applies to
Qyxx, Qxxyy and λi.1

As a next step, we need to gradually derive the sub-
problems from the system equations (28) and solve the
corresponding coefficients of variables (27) in different

1We need to replace all the equal signs “=” with the asymptotic
sign “∼” in the system equations. The asymptotic sign “∼” makes
the equations less rigorous (i.e., the left and right-hand sides do not
have to be precisely equal anymore) but more powerful. This step is
essential in the perturbation theory.

orders. Collecting the ε0 terms could derive the system equa-
tions for the constant terms. The solutions to this subproblem
are

Q(0)
xyy = ux�yy, Q(0)

yxx = uy�xx, Q(0)
xxyy = �xx�yy, (29)

where Q(0)
xyy, Q(0)

yxx, and Q(0)
xxyy are the same solutions to unper-

turbed problems (25). That is what we expect. Collecting the
ε0 terms is equivalent to setting ε = 0 and the problem would
reduce to the unperturbed version. We always use constant
terms to check if any mistake is made in the perturbation
method. Solving the system equations in constant terms could
also give the solutions of the λ

(0)
i , which is required for the

subproblem in the future. For simplicity, we will not present
the solutions of coefficients for λ

(k)
i in the paper.
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In order to collect ε1 terms, we need to take the Taylor
expansion of Eq. (28) around Q(0)

xyy, Q(0)
yxx, and Q(0)

xxyy. For exam-
ple, the second term of the first equation in Eq. (28) could be
expanded as

ln[1 − �xx − �yy + Qxxyy(ε)] = ln
(
1 − �xx − �yy + Q(0)

xxyy

)
+ Q(1)

xxyyε + Q(2)
xxyyε

2 + · · ·(
1 − �xx − �yy + Q(0)

xxyy
)

+ · · · , (30)

where Q(1)
xxyy, Q(2)

xxyy, . . . are the coefficients corresponding to
the different order of small parameter ε (27). With the help of
Taylor expansion, we get the system equations for ε1 terms.
By solving this subproblem, we get

Q(1)
xyy = uy(�yy − 1)

u2
y − �yy

,

Q(1)
yxx = ux(�xx − 1)

u2
x − �xx

,

Q(1)
xxyy = uxuy(�xx − 1)(�yy − 1)(

u2
x − �xx

)(
u2

y − �yy
) , (31)

where Q(1)
xyy, Q(1)

yxx, and Q(1)
xxyy are the coefficients corresponding

to the first order of small parameter ε.
Similarly, if we collect ε2 terms, we get the system of

equations for ε2 terms. By solving it, we get

Q(2)
xyy = uxψ (x)

(
�2

yy − u2
y

)
(�yy − 1)

2
(
u2

x − �xx
)2(

u2
y − �yy

)3 ,

Q(2)
yxx = uyψ (y)

(
�2

xx − u2
x

)
(�xx − 1)

2
(
u2

y − �yy
)2(

u2
x − �xx

)3 ,

Q(2)
xxyy = (�xx − 1)(�yy − 1)

[
φ(x)φ(y) − u2

xu2
yψ (x)ψ (y)

]
2
(
u2

x − �xx
)3(

u2
y − �yy

)3 ,

(32)

where the term ψ (α) = 2u2
α − 3�αα + 1 and φ(α) = (2u2

α −
�αα )(u2

α − �αα ) for α = x, y.
If we keep doing it, we get the coefficients of ε3, ε4, . . . ,

terms. As the order of ε increases, the subproblems become
more and more complicated. Practically, it is too tedious to
derive and solve these system equations manually. We apply
the symbolic programming technique to do the tasks. In this
paper, the computation is performed by writing the programs
in Maple (Maplesoft, Waterloo, Ontario) [25].

After solving the coefficients for the higher-order moments
Qxyy, Qyxx, and Qxxyy, the last step is to sum the coefficients
to get the asymptotic solutions for the entropy maximization
problem (18). Sometimes, summing the series is not as simple
as adding up each term, which is a rich topic in the pertur-
bation theory [17]. Therefore, we will discuss two practical
considerations of the series summation.

The first consideration is what if the coefficients derived
by the perturbation theory are divergent. If the series are
divergent, it does not make sense to add them to approximate
the summation naively. The result would not give us much
useful information. On the other hand, there is nothing wrong
with the divergent series, and they are just what they are.

The issue is we implicitly represent the summation by adding
up the Taylor-like series when they are divergent. In order
to address this issue, we need to figure out a way to extract
useful information from the divergent series. In this case, we
apply the technique of Padé approximants [17] to represent
the asymptotic solutions.

The second consideration is how many coefficients should
be included in the asymptotic solutions. As the order of small
parameter ε increases, the corresponding coefficients become
more and more complicated [see the solutions in Eq. (29),
(31), and (32) for comparison]. If we have to calculate so
many coefficients that the computational overhead in per-
turbation theory might outweigh Newton’s method, then the
perturbation theory would not be attractive to solve the en-
tropy maximization problem.

We conduct a numerical experiment to test the accuracy
of asymptotic solutions. In the entropy maximization prob-
lem (18), we set the constraints as ρ = 1.0, ux = 0.05, uy =
−0.03, �xx = 0.35, and �yy = 0.40. A specific value of ε

would represent a specific constraint on off-diagonal element
�xy as given in Eq. (26). The asymptotic solutions of the
higher-order moment Qxyy, Qyxx, and Qxxyy would be calcu-
lated by adding terms up to first, second and third order of ε,
respectively. We also present the Padé summation P1

2 (ε) for a
reference

P1
2 (ε) = a0 + a1ε

1 + b1ε + b2ε2
, (33)

where ai and bi are determined by taking the Taylor expansion
and comparing the coefficients with the polynomials (27) for
the same order of ε [17]. It is worth mentioning that Padé
summation P1

2 requires the same number of coefficients as
third-order polynomials. We take the numerical solutions by
Newton’s method (24) as the reference solution and quan-
tify the deviation between asymptotic solutions and Newton’s
method as

E f = ‖ f asym − f ref‖2

‖ f ref‖2
, (34)

where ‖ · ‖2 is the Euclidean norm in R9 and f asym, f ref ∈ R9

are the asymptotic solutions and the reference solutions by
Newton’s method, respectively.

The test results are shown in Fig. 3, where the log scale
is taken in the y coordinate. We set ε to be within the range
(−0.06, 0.06), which is much broader than the interest of
flow simulation in this paper. As expected in the asymptotic
solutions, the smaller the parameter ε is, the better approxi-
mation the asymptotic solutions would make. We observe it
clearly for all the solutions in Fig. 3(a). When the problem
reduces to the “unperturbed” form at ε = 0, the asymptotic
solutions become the exact solutions. In this case, the value of
E f (0) actually represents the relative error of the solution by
Newton’s method. It is too small to be shown in current limit
values in y coordinate.

Another important observation in Fig. 3(a) is that the first-
order asymptotic solutions give much larger error than other
solutions. We see the gap between them for all the values
of ε (except ε = 0). The maximum deviation of the first-
order solution is about 0.017 when ε reaches the boundary.
We argue that the first-order solution seems not to be a bad
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FIG. 3. The test results on the accuracy of asymptotic solutions. The experiment is conducted with the constraints of ρ = 1.0, ux = 0.05,
uy = −0.03, �xx = 0.35, and �yy = 0.40. A specific value of ε would represent a specific constraint on the off-diagonal element �xy (26). The
asymptotic solutions are calculated by adding the terms up to first, second, and third order, as well as Padé summation (33), respectively. We
take the solutions by Newton’s method as the reference solution. The deviation of f asym norms (34) is shown in (a) and the H value difference
(35) is shown in (b), where the log scale is taken in the y coordinate. The ellipse presents a more realistic range (−0.015, 0.015) for ε.

approximation. However, this numerical test is not based on
actual simulation data. It is difficult to tell whether the value
of 0.017 is good or bad to approximate the maximum entropy
state for the EMRT model. We will show more results on the
deviations based on the actual simulation data in the following
section.

We also provide the relative H value difference in Fig. 3(b)
for a reference,

EH = H asym − H ref

|H ref | , (35)

where | · | represents the absolute value, and the scaler H asym

and Hre f are the H function (5) of the asymptotic solutions
and the reference solution by Newton’s method, respectively.
The relative H value difference EH could also show how well
the approximation the asymptotic solution is making. The less
EH is, the larger entropy value the asymptotic solution would
get. We observe a similar pattern in the H value difference EH

to the deviation E f .
They present better approximations for asymptotic solu-

tions of the second and third orders and Padé summation.
Even though Padé summation exhibits a slightly lower de-
viation, we must consider the practical balance between
“accuracy” and “efficiency” when choosing the asymptotic
solution. For the simulations in this paper, we measure the
value of ε, and (−0.015, 0.015) is a more realistic range. The
solution for the second order is much more efficient than the
third order and Padé summation. Also, we do not think it
would make much difference concerning the accuracy, espe-
cially within the range (−0.015, 0.015). Therefore, we choose
to truncate the asymptotic solutions up to the second order as

Q = Q(0) + Q(1)ε + Q(2)ε2, (36)

where Q represents the higher-order moments Qxyy, Qyxx,
and Qxxyy. The coefficients of Q(0), Q(1), and Q(2) are given

in Eqs. (29), (31), and (32), respectively. The value of ε is
determined by Eq. (26).

It is interesting to discuss the small parameter ε in detail
and to see if we could find some physical interpretation of
it. When we insert the small parameter ε into the entropy
maximization problem, we assume that the off-diagonal el-
ement �

post
xy of the second-order moments is perturbed around

the value of uxuy (26) for the postcollision state. In order to
recover the desired fluid viscosity, we need to fix the relax-
ation parameter of the second-order moments to the value
of ω. Then the off-diagonal element would be computed as
�

post
xy = �xy + ω(�equ

xy − �xy) (16) during the collision step.
Also, for the off-diagonal element of the equilibrium state
�

equ
xy , it happens to be the value of uxuy (17). If we put all

these equations together, we write the small parameter ε as

ε = (1 − ω)�non−equ
xy , (37)

where ω is the relaxation parameter and �
non−equ
xy = �xy −

�
equ
xy represents the nonequilibrium part of the off-diagonal

element in the second-order moment.
When taking the Chapman-Enskog expansion on the LBM,

a critical derivation on the nonequilibrium part of the second-
order moment �

non−equ
αβ is that it is related to the rate of strain

tensor [12,19,20,22] as

�
non−equ
αβ ≈ −c2

s

ω
(∂αuβ + ∂βuα ), (38)

where cs is the speed of sound and ∂αuβ represents the par-
tial derivative of fluid velocity uα with respect to β, where
α, β = x, y. This equation does not only help us recover the
N-S equations but also develops the initial and boundary
conditions in the LBM. Krüger et al. [22,26] presented a
thorough study on this equation and took its measurements in
the simulation data. We will discuss it further in the following
section.
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Let us focus only on the off-diagonal element and put
Eqs. (37) and (38) together; it could get

ε ≈ (ω − 1)c2
s

ω
(∂xuy + ∂yux ), (39)

where all terms have the same meaning as Eq. (38). It shows
that the value of small parameter ε is proportional to the
velocity gradient. Under the small Mach number assumption,
it is reasonable to assume that the value of ε would be small in
the simulation. Thus the asymptotic solution can yield a good
approximation to the exact solution of the maximum entropy
state.

We summarize the steps, together with the corresponding
equation number, to calculate the asymptotic solutions to the
entropy maximization problem (15) in Algorithm 1 in the
Appendix, which could serve as practical guidance for imple-
menting the collision step of the EMRT model.

VII. FLOW SIMULATION

Two standard benchmark flows, the Taylor-Green vortex
and the doubly periodic shear layer, are tested. To avoid the
errors introduced by boundary conditions, we apply periodic
boundary conditions to the flow simulations in this paper.

A. Initial conditions

The initial and boundary conditions play an essential role
in the LBM. Even though we apply the periodic boundary
conditions, the errors could also be introduced into flow sim-
ulation through initial conditions. In LBM, the fluid pressure
is represented by the fluid density as p = ρc2

s , where cs is the
speed of sound. In order to initialize the distribution functions
f (x, 0), the initial pressure p(x, 0) [i.e., the density ρ(x, 0)]
is required. Usually, we only have the initial velocity field of
the flow, and the initial pressure field is missing. A simple and
common solution is to initialize the fluid density ρ to be a
constant value of 1 everywhere. However, this is equivalent
to setting the initial pressure constant everywhere, and the
information about the pressure gradient is lost [19,27]. In fact,
given the initial velocity field, we can get the initial pressure
field by solving the Poisson equations. Because the computa-
tional domain is doubly periodic and grids are uniform in this
study, applying the spectral method [28] to solve the Poisson
equation by fast Fourier transform is very convenient.

With initial fluid density ρ and velocity u, we initialize the
distribution function f to its equilibrium state f equ. However,
we lose the nonequilibrium part of the initial distribution func-
tions f non−equ. As we discussed above, the nonequilibrium
part of the second-order moments �

non−equ
αβ is related to the

rate of strain tensor (38). If we neglect the nonequilibrium
parts, some information about the velocity gradient would be
lost in the initialization. It is straightforward to derive the
velocity gradient from the initial velocity field. Therefore, we
combine the equilibrium (17) and nonequilibrium parts (38)
to recover the second-order moments �αβ .

With the value of ρ, u and �αβ , the information about
initial distribution functions f (x, 0) is still not complete, and
the nonequilibrium part of the higher-order moment is miss-
ing. How should we recover the initial distribution functions

f (x, 0) from the partial information? Skordos [19] proposed
approximating the initial distribution functions f (x, 0) based
on the Chapman-Enskog expansion (see Ref. [20] for the
discussion on the approximation).

Different from Skordos’s solution, we propose applying
the idea of the EMRT model and letting the entropy func-
tion determine the missing information on the higher-order
moments. More specifically, the distribution function f (x, 0)
could be initialized to the maximum entropy state under the
constraints of fixed ρ, u, and �αβ . In order to implement this
idea, we just need to solve the same entropy maximization
problem (15) and (18) as we discussed in the paper, which
could be solved efficiently with perturbation methods. It is
worth mentioning that the generalized KBC stabilizer [15] is
not working because the precollision state is missing in the
initial conditions. We show the test results on different initial
conditions and examine how they could affect the accuracy of
flow simulations in the following.

B. Taylor-Green vortex

The Taylor-Green vortex is a classical benchmark problem,
and it has the analytic solutions [27] to the incompressible N-S
equations as

ux(x, y, t ) = −U cos(kxx) sin(kyy)e−k2νt ,

uy(x, y, t ) = kx

ky
U cos(kyy) sin(kxx)e−k2νt ,

p(x, y, t ) = −1

4
U 2

(
cos(2kxx) +

(
kx

ky

)2

cos(2kyy)

)
e−2k2νt

+ P0, (40)

where U is the characteristic flow velocity and it should be a
small value due to the small Mach number assumption. We set
k2 = k2

x + k2
y , where kx and ky are the wave numbers in the x

and y directions, respectively. The flow viscosity is ν, and P0

is an arbitrary constant set for the pressure. The computational
domain is scaled to be 0 � x, y � 1 and the simulation time is
chosen to be ts = 1/U .

In order to explore the influence of initial conditions, we
apply two different initialization procedures: (1) the distribu-
tion functions f (x, 0) is initialized only to the equilibrium
states f equ and (2) the nonequilibrium parts are also consid-
ered (38). Because the initial pressure field is known at t = 0
(40), there is no need to solve the Poisson equation in this
problem. We choose Re = 1000, U = 0.02, and kx = ky =
2π . The simulations would run on 16×16 to 512×512 grids
for both BGK and EMRT models. The �2 norm for the relative
error is used to quantify the accuracy of ux as

Eux =
√∑ |uexact − usim|2∑ |uexact|2 , (41)

where usim is the simulation result and uexact is the exact
solutions (40). The summation is applied to all the grid nodes.

The results of convergence rates at time t = ts are shown
in Fig. 4. For the initial conditions with only the equilib-
rium part, both BGK and EMRT models have a second-order
convergence rate and reach a limit value on 256×256 grids.
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FIG. 4. The convergence rate of Taylor-Green vortex for relative
error on ux (41) at time t = ts. The flow parameters are set as U =
0.02, Re = 1000, and kx = ky. “EMRT” and “BGK” represent the
EMRT and BGK collision models, respectively. The initial density
is consistent with the initial pressure field. For the initial condi-
tions, “equ only” means the distribution function is only initialized
to its equilibrium state. Otherwise, the nonequilibrium part is also
considered, and the distribution function would be initialized to the
maximum entropy state under constraints on fluid density, velocity,
and second-order moments. The values of Ma2 and −2 slope are
provided for a reference.

However, when the nonequilibrium part is also considered for
the initial conditions, the simulations become more accurate,
and the relative error could reach the limit value just on 32×32
grids. This shows the critical role the initial conditions play in
the LBM. We always include the nonequilibrium part for the
initial conditions in the following simulations. In practice, we
also observe that there is some difference between performing
the “streaming” or “collision” step first right after initializing
the distribution functions f (x, 0). We choose to perform the
collision step first in the simulation of this paper (it would not
affect the simulation results if the distribution functions are
initialized to the equilibrium states since performing a colli-
sion step to equilibrium states would still get the equilibrium
states). When the simulation reaches the limit, the accuracy
could not be improved further by increasing the grid numbers.
We observe that this limit has the value of about Ma2, which
is the expected accuracy in the LBM.

Further, we implement the EMRT model by asymptotic
solutions, the KBC stabilizer, and Newton’s method, respec-
tively. As to the KBC stabilizer, Karlin et al. developed a
family of models based on the choice of moment represen-
tation [12]. But we implement only the model (i.e., the KBC
C model), which takes the same moment representation as we
choose for asymptotic solutions in this paper. Also, we do not
implement the generalized KBC stabilizer because we believe
Newton’s method would be a better choice if solving a 3×3
matrix is affordable. Therefore, we mean the KBC C model

by the KBC stabilizer [12], where the higher-order moments
share the same relaxation parameter in the following.

The wave numbers kx and ky would also be set to dif-
ferent values, and the resolution would be increased up to
2048×2048 grids. The results of convergence rates on fluid
velocity ux are shown in Fig. 5(a) (kx = ky = 2π ) and Fig. 6(a)
(2kx = ky = 4π ), respectively. The relative errors on ux could
reach the expected limit value of Ma2 on both wave number
settings. We observe the results from asymptotic solutions
and Newton’s method are almost indistinguishable for all
the simulations. This shows that asymptotic solutions could
give a good approximation to the maximum entropy states.
Compared to BGK models, the EMRT model by different
implementations could render a similar accuracy.

As discussed in Sec. VI, the equation of the nonequilibrium
part in the second-order moment (38) is a crucial derivation
when we take the Chapman-Enskog expansion to the LBM
[12,19,20]. It shows the relationship between a local vari-
able �

non−equ
αβ and a nonlocal variable rate of strain tensor

1
2 (∂αuβ + ∂βuα ) in the simulation. Equation (38) does not only
help us recover the N-S equations but also provides some
insights into developing the initial and boundary conditions
to the LBM. The numerical scheme of the LBM presents the
feature of “locality,” and it is interesting to check how well
the local variable �

non−equ
αβ could approximate the velocity

gradient. Krüger et al. [22,26] presented an extensive study on
this problem. They argued that the relative error on the shear
stress tensor is expected to be second-order convergence in the
BGK model but is sensitive to some error sources (e.g., the
boundary conditions). Slightly different from Krüger et al.,
we measure the �2 norm for the relative errors of �

non−equ
αβ on

both BGK and EMRT models as

E�
non−equ
αβ

=

√√√√√∑∣∣�non−equ
αβ − −c2

s
ω

(∂αuβ + ∂βuα )
∣∣2

∑∣∣−c2
s

ω
(∂αuβ + ∂βuα )

∣∣2 , (42)

where �
non−equ
αβ is computed locally on the computational

node, and the velocity gradient is computed by analytic
solutions (40). The summation is performed on all computa-
tional nodes.

The relative error of �
non−equ
xx is shown in Fig. 5(b) for

kx = ky case. The error of �
non−equ
yy is symmetric to �

non−equ
xx

and �
non−equ
xy would vanish by this setting. We observe the

second-order convergence on both BGK and EMRT models.
As different implementations of EMRT models, they present
similar relative errors on E�

non−equ
xx

. The relative errors E�
non−equ
xx

would reach the limit on 128×128 grids; however, the limit
value is not Ma2 as it is on ux. We also measure the relative
errors on �αβ for 2kx = ky case. The results of �

non−equ
xx ,

�
non−equ
yy and �

non−equ
xy are shown in Figs. 6(b), 6(c) and

6(d), respectively. The second-order convergence could also
be observed on all three components. A slightly different
pattern happens on the relative errors of �

non−equ
yy by the KBC

stabilizer, where it presents higher errors than others before
256×256 grids and converges to the limit value at higher
resolutions [see Fig. 6(c)]. The thorough investigation on
E�

non−equ
αβ

is challenging since the error sources come from the
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FIG. 5. The convergence rate of the Taylor-Green vortex for wave number kx = ky = 2π at time t = ts. The flow parameters are set as
U = 0.02, Re = 1000. “EMRT” and “BGK” represent the EMRT and BGK collision model, respectively. The EMRT model is implemented
by asymptotic solutions, KBC stabilizer, and Newton’s method, respectively. The relative errors are calculated on (a) ux (41) and (b) �non−equ

xx

(42), respectively. The values of Ma2 and −2 slope are provided accordingly for a reference.

higher-order terms being ignored, and we leave it for a future
study.

This flow problem does not have a stability issue; the
EMRT and BGK model simulation results are almost indis-
tinguishable. This demonstrates that the EMRT models could
render a similar accuracy performance to the BGK model,
which is the most commonly used model in the LBM.

C. Doubly periodic shear layer

Minion and Brown [29] studied the doubly periodic shear
layer flow by running different traditional numerical meth-
ods (non-LBM type). When the simulation is under-resolved,
the “spurious, nonphysical vortices” could be produced in
some results. Several investigators have studied this bench-
mark flow using LBM with different collision models [12,21].
They sometimes observed spurious vortices when the flow
was under-resolved. The initial velocity field of the doubly
periodic shear layer is

ux =
{

U tanh[λ(y − 0.25)], y � 0.5,

U tanh[λ(0.75 − y)], y > 0.5,

uy = δU sin[2π (x + 0.25)], (43)

where U is the characteristic flow velocity, which is small
due to the small Mach number assumption. The parameter λ

controls the thickness of the shear layers, and δ is the small
initial disturbance. The computational domain is scaled to be
0 � x, y � 1 and the simulation time is chosen to be ts = 1/U .
Unlike the Taylor-Green vortex, this problem does not have an
analytical solution.

To test the behavior of the EMRT model on under-resolved
flow, we set parameter λ = 80 (it is referred to as a thin
layer [29] where there are about five nodes in 64×64 grids
and 11 nodes in 128×128 grids within the velocity transition
region). For other parameters, we set δ = 0.05, Re = 30 000.
The simulations would run on 64×64 to 4096×4096 grids
for both BGK and EMRT models. The EMRT model would

be implemented by asymptotic solutions, KBC stabilizer, and
Newton’s method, respectively. Figure 7 shows the contour of
vorticity at time t = ts (only to 512×512 grids). For the BGK
model, the simulations fail on 64×64 and 128×128 grids. It
yields a converged solution on 256×256 grids [Fig. 7(g)].
However, we observe the spurious vorticity on this reso-
lution, which shows it might still be under-resolved. The
spurious vorticity would disappear on higher resolutions for
the BGK model [Fig. 7(k)]. On the other hand, the EMRT
model by different implementations could produce a con-
verged solution even for 64×64 grids [Figs. 7(a), 7(b) and
7(c)]. The results of EMRT by asymptotic solution and New-
ton’s method are almost indistinguishable (see second and
fourth columns in Fig. 7). Some spurious vorticity is ob-
served on lower resolution and would disappear for 128×128
grids [Figs. 7(d) and 7(f)]. The KBC stabilizer could survive
on 64×64 grids, but we observe the spurious vorticity on
128×128 grids (see the KBC C model simulation results
in Ref. [12]). In this flow simulation, the EMRT collision
model demonstrates much better stability than the BGK
model.

Let us measure the relative errors of �
non−equ
αβ with respect

to the rate of strain tensor (38). Because there is no analytical
solution to this problem, we apply the spectral method [28]
to calculate the velocity gradient based on the simulation data
(42). We choose the characteristic velocity U to be 0.01, 0.02,
and 0.04, which represent different Ma, respectively. The
results are shown in Fig. 8. The expected second-order conver-
gence rate could be observed for all the elements of �

non−equ
αβ .

The error on �
non−equ
αβ would converge to a limit value as the

resolution increases. By looking at Fig. 8 horizontally, we
observe that the limit value would increase with the increase
of Ma for each element of �

non−equ
αβ . As to the off-diagonal

element of �
non−equ
xy (see the third row in Fig. 8), the BGK

and KBC stabilizer models converge to a similar limit, and
the limit value would increase as Ma increases. However, the
EMRT models by asymptotic solutions and Newton’s method
would converge to a different limit, and we could still not
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FIG. 6. The convergence rate of the Taylor-Green vortex for wave number 2kx = ky = 4π at time t = ts. The flow parameters are set as
U = 0.02, Re = 1000. “EMRT” and “BGK” represent the EMRT and BGK collision model, respectively. The EMRT model is implemented
by asymptotic solutions, KBC stabilizer, and Newton’s method, respectively. The relative errors are calculated on (a) ux (41), (b) �non−equ

xx ,
(c) �non−equ

yy , and (d) �non−equ
xy (42), respectively. The values of Ma2 and −2 slope are provided accordingly for a reference.

observe the limit value even on 4096×4096 grids. This shows
that the relaxation of higher-order moments does have an im-
pact on the approximation on �

non−equ
αβ (38). As we mentioned

above, the error sources of the approximation (38) depend on
the higher-order terms being ignored [22]. The mathematical
analysis of the error terms is very complicated, and we hope
our observation could provide some insights for future study.

D. Discussion on different EMRT implementations

Let us compare the asymptotic solution, KBC stabilizer,
and Newton’s method for the EMRT model. We focus on how

efficient the implementations are and how well the approxi-
mation they make to the maximum entropy state.

In order to compare the efficiency of different methods,
we conduct numerical experiments on doubly periodic shear
layers. The simulation would be run on 256×256 grids for
T = 6400 time steps (we choose characteristic velocity U =
0.04 and other flow parameters are the same as in the last
subsection). We measure the cumulative CPU times of col-
lision steps in the simulation (the streaming steps are not
considered). Each test is repeated 20 times, and we take their
average as the result of collision CPU times (the standard
derivation is also provided). We also take the measurements
on the BGK model as a reference.
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FIG. 7. The plots of vorticity contour of doubly periodic shear layer at time t = ts. The flow parameters are set as λ = 80, δ = 0.05,
Re = 30 000, and U = 0.02. The first column shows the results of BGK model, and the other columns show EMRT model. The EMRT model
is implemented by asymptotic solution (second column), KBC stabilizer (third column), and Newton’s method (fourth column), respectively.
The rows represent the results on 64×64, 128×128, 256×256, and 512×512 grids, respectively. The simulation diverges for the BGK model
with 64×64, 128×128 resolution.
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FIG. 8. The plots of relative errors on approximation �
non−equ
αβ ≈ − c2

s
ω

(∂αuβ + ∂βuα ) (38). The flow parameters are set as λ = 80, δ = 0.05,
Re = 30 000. The first, second, and third columns show the results of characteristic velocity U = 0.01, U = 0.02, and U = 0.04, respectively.
The different characteristic velocity U represents different Ma in the simulation. The first, second, and third rows show the relative error of
�non−equ

xx , �non−equ
yy , and �non−equ

xy , respectively. The simulations run on the BGK and EMRT model. The EMRT model is implemented by the
asymptotic solution, KBC stabilizer, and Newton’s method, respectively. The plot of −2 slope is provided for a reference.

Table I shows the cumulative CPU times of the collision
steps. The measured results are also normalized by the CPU
times of the BGK model. We set the initial guess for Newton’s
method to be the solution to unperturbed problems (25). This
initialization could make Newton’s method converge very
fast. We find that it only takes two iterations to converge for
the most of nodes (we set a relative error of 1.0×10−8 as the
convergence criterion) and even a single iteration could make
the solution close to the maximum entropy state. The results
show that the BGK is the most efficient model, which we

expect. For various implementations of the EMRT model, the
asymptotic solution is about 11.7 times faster than Newton’s
method in the collision steps. It is a little slower (1.6 times
slower) than the BGK collision model. It is interesting to
note that the asymptotic solution is even faster than the KBC
stabilizer. This might not be that surprising: although the col-
lision step of the KBC stabilizer seems to only happen to the
regular representation, we still need to convert the distribution
function to the moment representation to evaluate the optimal
relaxation parameter in the higher-order moment [11,12]. We
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TABLE I. The measurements of collision steps on doubly periodic shear layer. The simulations are running on 256×256 grids for T =
6400 time steps. For the EMRT model, we implement it with asymptotic solutions, KBC stabilizer, single iteration in Newton’s method, and
converged solutions in Newton’s method, respectively. The CPU times are the average of 20 measurements (the standard deviation is provided
for a reference) and normalized with the BGK model. In order to evaluate the deviation E f (34) in real simulation data, we first run the BGK
model and keep all the precollision states at each node and each time step. Then we calculate the postcollision states for different models,
and evaluate deviation E f with respect to postcollision states with Newton’s method. We also evaluate if the deviation E f of postcollision state
for different models is smaller than it is in the BGK model and present it as a percentage (we define a smaller deviation E f as it is at least
1.0×10−10 smaller than the BGK model to avoid some truncation errors in memory). The same evaluation of the deviation E f is also performed
by running the EMRT model to get simulation data.

Deviation E f in �×[0, T ]

Cumulative collision CPU times BGK-based samples EMRT-based samples

Measured (sec) Normalized Average Percentage Average Percentage

BGK 17.02 ± 0.14 1.00 2.28×10−5 – 4.30×10−5 –
Asymptotic solution 26.98 ± 1.45 1.59 9.08×10−12 100% 8.94×10−12 100%

EMRT KBC stabilizer 36.65 ± 0.23 2.15 2.20×10−5 57.4% 2.43×10−5 99.3%
Single iteration in NT 175.26 ± 0.51 10.30 1.41×10−9 100% 1.40×10−9 100%

Newton’s method 316.59 ± 0.27 18.59 – – – –

should clarify that the results on cumulative CPU times of
collision steps (Table I) are only for demonstration purposes.
It is difficult to take an accurate measurement because several
factors could affect the results and vary from execution to
execution. For example, we choose the Eigen C + + library
to solve the 3×3 matrix when implementing Newton’s method
[30]. The efficiency of Newton’s method might be improved
by taking a more optimized matrix solver. Also, the results
are based on a single CPU core and would not directly reflect
general simulation wall clock times by parallel computation.
In practice, we observe that the streaming steps would take
almost the same time as the BGK model’s collision steps when
running on a single CPU core. However, it would introduce
extra cost into the streaming steps on parallel computation,
where the communication between cores might be expensive
and cannot be ignored.

When we evaluate the accuracy of asymptotic solutions in
Sec. VI, the numerical experiment (Fig. 3) is not based on the
actual simulation data. We collect the simulation data from
the doubly periodic shear layer and perform similar experi-
ments. We first simulate using the BGK model and extract
256×256×6400 precollision distribution states f (x, t ). For
each precollision distribution state f (x, t ), we compute its
postcollision state of EMRT model by asymptotic solutions,
KBC stabilizer, Newton’s method with single iteration, and
Newton’s method with converged solution, respectively. With
the desired relaxation parameter ω (2), the postcollision states
by different methods share the same density, fluid velocities,
and second-order moments. The only difference happens to
the higher-order moments, making the postcollision states
have different entropy values. We use the same equation (34)
to quantify the deviation E f between a model and Newton’s
method, where it replaces f asym with the corresponding post-
collision state. Also, we take the postcollision state by BGK
model as a baseline, where the deviation E f shows how far
away the most commonly used collision model is from the
“exact” maximum entropy state. We measure if the EMRT

model by different implementations could have a smaller de-
viation E f than BGK model in postcollision state. The results
in Table I shows that asymptotic solution could give a good
approximation to the maximum entropy state (the average
deviation E f is at 10−12 order). Taking single step in Newton’s
method is also able to give good approximation (the average
deviation E f is at 10−9 order), but it is about 6.5 times slower
than asymptotic solution. This tells us that the asymptotic so-
lution is a much better choice to implement the EMRT models
than Newton’s method. Surprisingly, the postcollision state by
the KBC stabilizer has just a slightly smaller deviation E f than
BGK model (their average deviations E f are at the same order
of magnitude, i.e., 10−5). In BGK model, the relaxation pa-
rameter in higher-order moments is always the same value as
ω; but KBC stabilizer would dynamically rescale ω based on
the approximation to instantaneous critical point. The purpose
of looking for an optimal relaxation parameter in higher-order
moments is to maximize the entropy value of the postcollision
state, but the results in Table I show there are just 57.4%
of postcollision states that have a smaller deviation E f by
KBC stabilizer than BGK model. The KBC stabilizer might
not drive the postcollision state to the maximum entropy state
more significantly than BGK model, but it demonstrates much
better stability performance for LBM. It raises an interesting
question about what role the entropy value (or the maximum
entropy state) plays in the collision step, and we leave it to
future study. The asymptotic solution and Newton’s method
always have a smaller deviations E f than BGK model. If we
run the simulation by EMRT model and extract all the precol-
lision states f (x, t ) to perform same experiments. The results
(see the column of EMRT-based samples in Table I) are very
similar to BGK-based experiments. Although the deviation E f

by KBC stabilizer is still at the same order as BGK model,
99.3% of postcollision states of KBC stabilizer have a smaller
deviation E f than of BGK model.

Finally, it is helpful to compare different implementations
of the EMRT model from the perspective of the “bases” on
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Algorithm 1 The algorithm to implement the collision step of the EMRT model by the asymptotic solutions.

Suppose f (x, t ) is the distribution function at node x and time step t , which is about to experience the collision step. The postcollision state
f post (x, t ) of the EMRT model by asymptotic solutions could be calculated as
1: Calculate the local fluid density ρ, velocities ux and uy, second-order moments �xx , �yy, and �xy (6);

2: Calculate the second-order moments of equilibrium state �equ
xx , �equ

yy , and �equ
xy (17);

3: Calculate the second-order moments of postcollision state �post
xx , �post

yy , and �post
xy (16), where the relaxation parameter ω could be

derived by the desired viscosity (2);
4: Calculate the value of small parameter ε = �post

xy − uxuy (26);

5: Calculate the asymptotic solutions for the higher-order moments Qpost
xyy , Qpost

yxx , and Qpost
xxyy based on Eqs. (29), (31), (32), and (36);

6: Calculate the postcollision state f post by transforming back from its moment representation (9b).

which their solutions are built. The asymptotic solution is
based on the “unperturbed” form (23), which is also referred
to as “generalized Maxwellian.” It is the exact solution to the
entropy maximization problem under relaxed constraints [24].
Therefore, the asymptotic solution’s starting point is close to
the maximum entropy state. The KBC stabilizer [11,15] takes
the Taylor expansion on the derivative of entropy function
around the local equilibrium state. We consider it as some-
thing built on a local equilibrium state. Krämer et al. [16]
take the Taylor expansion of the entropy function around the
global equilibrium state (i.e., the equilibrium state under the
unit fluid density and zero velocities) and make a quadratic
approximation. This method is built on the global equilibrium
state.

VIII. CONCLUSION

In this study, we propose to apply perturbation theory to
solve the entropy maximization problem (15) and (18) accu-
rately and efficiently. The advantage of asymptotic solutions
is that it presents the solutions in the analytical form, and
they can provide an excellent approximation to the exact solu-
tions. We develop an efficient algorithm to realize the idea
of the EMRT collision model. The flow simulation results
show that EMRT could render similar accuracy to the most
commonly used BGK model and exhibits much better stability
performance. Also, we measure the relative errors of �

non−equ
αβ

with respect to the rate of strain tensor (38). We observe
the expected second-order convergence rate and find that the
limit value of relative errors would increase with the increase
of Ma. Interestingly, we find that the error of off-diagonal
element �

non−equ
xy would converge to different limit values

between the BGK model (and KBC stabilizer), where the
higher-order moments share the same relaxation parameter,
and EMRT models by asymptotic solutions and Newton’s

method, where the higher-order moments have different re-
laxation parameters. It shows the relaxation of higher-order
moments does have some impact on the approximation of
�

non−equ
αβ . The mathematical analysis of error sources is com-

plicated and we hope our observation could provide some
insights into future work.

Some information about the nonequilibrium part in the
higher-order moments is missing for initialization and bound-
ary nodes. We need to figure out how to recover it and
transform it back to the distribution functions. We propose to
use the same idea of the EMRT model and assume that the
distribution functions would reach the maximum entropy state
under certain constraints for imposing the initial and boundary
conditions. In order to realize this idea, it just needs to solve
the same entropy maximization problem (15) and (18) we
have discussed in detail in this paper. We demonstrate only
the initial conditions in this study and will explore more about
the boundary conditions in the future.

Finally, this paper discusses only the 2D case for the EMRT
model. We will expand the asymptotic solutions to the 3D case
in future work.
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APPENDIX

We summarize the steps, together with the correspond-
ing equation number, to calculate the postcollision state
f post (x, t ) of the EMRT model by asymptotic solutions in
Algorithm 1, which could serve as practical guidance to im-
plement the EMRT collision step.
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