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Resolution exchange with tunneling for enhanced sampling of protein landscapes
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Simulations of protein folding and protein association happen on timescales that are orders of magnitude
larger than what can typically be covered in all-atom molecular dynamics simulations. Use of low-resolution
models alleviates this problem but may reduce the accuracy of the simulations. We introduce a replica-exchange-
based multiscale sampling technique that combines the faster sampling in coarse-grained simulations with the
potentially higher accuracy of all-atom simulations. After testing the efficiency of our Resolution Exchange with
Tunneling (ResET) in simulations of the Trp-cage protein, an often used model to evaluate sampling techniques
in protein simulations, we use our approach to compare the landscape of wild-type and A2T mutant Aβ1−42

peptides. Our results suggest a mechanism by that the mutation of a small hydrophobic alanine (A) into a bulky
polar threonine (T) may interfere with the self-assembly of Aβ fibrils.
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I. INTRODUCTION

While molecular dynamics is now commonly used to study
folding, association, and aggregation of proteins and other
biological macromolecules [1–9], biochemical processes such
as the formation of amyloid fibers from monomers [5,9,10]
often occur on timescales [10,11] that exceeds what can be
covered in all-atom simulations. Coarse graining, i.e., lower-
ing the resolution of a system [4,12–16], allows one to reduce
the computational difficulties and to access timescales not ob-
tainable to the fine-grained all-atom models [4,12], but it often
results in lower accuracy. This is because the smaller number
of degrees of freedom lowers the entropy of the system, and
it is difficult to compensate for this reduction by modifying
the enthalpic contributions accordingly [12]. Multiscale tech-
niques try to combine the advantages of fine-grained models
(that are more accurate but costly to evaluate) with that of
coarse-grained models (which are less detailed but enable
larger time steps).

One example is Resolution Exchange [17] where the
replica-exchange protocol [18] is used to induce a walk
in resolution space. In the same way that for Replica Ex-
change Molecular Dynamics (REMD) [18,19] the walk in
temperature space leads to faster sampling at low temper-
atures, does exploration of resolution space enable a faster
convergence of simulations at an all-atom level [17,20]. How-
ever, the replica-exchange step requires reconstruction of the
fine-grained degrees of freedom of a previously coarse-
grained configuration, for instance, by adding side chains to
a conformation that was previously described only by the
backbone.

Various approaches [17,20–23] have been developed to
address this problem, but often they result in high energies
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of the proposal configuration (and therefore low acceptance
rates) [20,21], or introduce biases [22,23]. This dilemma can
be alleviated by introducing a potential energy made of three
terms:

Epot = EFG + ECG + λEλ. (1)

The first term is the energy EFG of the protein system and the
surrounding environment as described by an all-atom (fine-
grained) model. The second term ECG describes the same
system by a suitable coarse-grained model. Both models are
coupled by a system-specific penalty term Eλ [24,25] that
measures the similarity between the configurations at both
levels of resolution, with the strength of coupling controlled
by a replica-specific parameter λ. Hence, Hamilton Replica
Exchange [26,27] of the above defined multiscale system
leads to an exchange of information between fine-grained
and coarse-grained models, with measurements taken at the
replica where λ = 0. However, while avoiding the problem of
steric clashes in resolution exchange, the exchange probability
is often still small [28], and the resulting need for multiple
replicas to bridge the two levels of resolution makes this
approach not appealing.

As an alternative, we propose here a Resolution Exchange
with Tunneling (ResET) approach as a way to “tunnel”
through the unfavorable proposal configuration that cause the
low acceptance rates in the above described Hamilton Replica
Exchange variant. Working and efficiency of our approach,
which requires only two replicas and replaces exchanges
by replacement moves, is tested in simulations of the Trp-
cage [29,30] miniprotein [Protein Data Bank (PDB) Identifier
1L2Y], an often used model for testing new sampling tech-
niques. As a first application, we use in the second part ResET
to compare the landscape of Aβ1−42 wild-type peptides, impli-
cated in Alzheimer’s disease, with that of A2T mutants which
seems to protect against the disease [31–33]. Our results sug-
gest a mechanism by that the mutation of a small hydrophobic
alanine (A) into a bulky polar threonine (T) may interfere
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with the self-assembly of Aβ fibrils, decreasing the chance
for formation of the disease-associated Aβ amyloids [34–36].

II. RESOLUTION EXCHANGE WITH TUNNELING

Resolution Exchange with Tunneling (ResET) utilizes two
replicas, each containing both a coarse-grained and a fine-
grained representation of the system. On each replica, both
representations evolve separately by molecular dynamics. On
the first replica, A, is the coarse-grained model in a con-
figuration ACG and has a potential energy Epot

CG (ACG) and
a kinetic energy Ekin

CG (ACG). On the other hand, the fine-
grained model is in a configuration AFG that has a kinetic
energy Ekin

FG(AFG) and a total potential energy Ebiased
FG (AFG)

which adds to the intraprotein and protein-water interaction
energy Epot

FG(AFG) a biasing term that depends on the config-
uration ACG of the coarse-grained model by Ebiased

FG (AFG) =
Epot

FG(AFG) + λ1Eλ(AFG, ACG). Hence, the two models on this
replica interact only by the term λ1Eλ(AFG, ACG) that biases
the fine-grained model, but are otherwise invisible to each
other. The effect of this biasing term is that configurations
of the fine-grained model are favored which resemble the
coarse-grained model configuration, with the strength of the
bias controlled by parameter λ1.

The opposite situation is found on the replica B. Here
lives an independent fine-grained model with configuration
BFG that has a potential energy Epot

FG(BFG) and kinetic energy
Ekin

FG(BFG), while, on the other hand, the configuration BCG of
the coarse-grained model has a kinetic energy Ekin

CG (BCG) and
a total (biased) potential energy Ebiased

CG (BCG) = Epot
CG (BCG) +

λ2Eλ(BCG, BFG) that depends on the fine-grained model by a
term λ2Eλ(BCG, BFG). This biasing term now ensures that on
replica B the coarse-grained configuration resembles the one
of the fine-grained model.

Statistical properties are calculated only from data that are
sampled from the unbiased models. Hence, for calculating av-
erages of fine-grained properties we use solely data recorded
for the (unbiased) fine-grained model on replica B, while aver-
ages of coarse-grained quantities are calculated from the data
recorded for the unbiased coarse-grained model on replica A.

While the time step for integrating fine-grained and coarse-
grained models may differ, they have to be the same for the
corresponding models on both replicas. This is because after
a certain number of molecular dynamics steps a decision is
made on whether to replace on replica B the configuration
BFG in the unbiased fine-grained model by the configuration
AFG of the auxiliary (biased) fine-grained model living on
replica A. This replacement goes together with a rescaling of
the velocities vFG(AFG) such that after rescaling Êkin

FG(AFG) =
Ekin

FG(BFG). Note, however, that ours is not an exchange move
and configuration AFG is not replaced by BFG with rescaled
velocities vFG(BFG), and neither the kinetic energy nor the
weight of the biased fine-grained model of the replica A
changes. On the other hand, while the old configuration of
the unbiased fine-grained model on replica B has a weight

pold = exp
[−β

(
Epot

FG(BFG) + Ekin
FG(BFG)

)]
, (2)

the new configuration will have, if the replacement move is
accepted, a weight

pnew = exp
[−β

(
Epot

FG(AFG) + Ekin
FG(BFG)

)]
. (3)

However, the proposal configuration AFG is derived from a
distribution skewed by the interaction with the coarse-grained
model on replica A, and the probability to get AFG as proposal
configuration is given by

q(AFG) = exp
[−β

(
λ1Eλ(AFG, ACG) + �Ekin

FG

)]
, (4)

where �Ekin
FG = Ekin

FG(AFG) − Ekin
FG(BFG) accounts for the

change in kinetic energy resulting from the rescaling of ve-
locities in the proposal configuration. The replacement of
configuration BFG by AFG is accepted with a probability
w(BFG → AFG) that can be calculated from

pold × q(AFG) × w(BFG → AFG) = pnew, (5)

leading to the Metropolis-Hastings acceptance criterion:

w(BFG → AFG) = min
(
1, exp

[−β
(
Epot

FG(AFG) − Epot
FG(BFG)

− λ1Eλ(AFG, ACG) − �Ekin
FG

])
. (6)

Note that detailed balance

pold × q(AFG) × w(BFG → AFG)

= pnew × q(BFG) × w(AFG → BFG) (7)

is preserved as

q(BFG) = exp
[−β

(
λ1Eλ(BFG, ACG) − �Ekin

FG

)]
(8)

and

w(AFG → BFG) = min
(
1, exp

[−β
(
Epot

FG(BFG) − Epot
FG(AFG)

− λ1Eλ(BFG, ACG) + �Ekin
FG

)])
. (9)

Similarly, at other times, the the coarse-grained configura-
tion ACG on replica A is replaced by the configuration BCG of
the biased coarse-grained model on replica B with probability:

w(ACG → BCG) = min
(
1, exp

[−β
(
Epot

CG (BCG) − Epot
CG (ACG)

− λ2Eλ(BFG, BCG) − �Ekin
CG

)])
(10)

with �Ekin
CG = Ekin

CG (BCG) − Ekin
CG (ACG). Reweighting the ve-

locities of configuration BCG such that Êkin
CG (BCG) = Ekin

CG (ACG)
and the Metropolis-Hastings acceptance criterion are again
used to correct for the skewed probability by which the con-
figuration BCG is proposed.

Note that the replacement moves for the (unbiased) fine-
grained model on replica B and the (unbiased) coarse-grained
model on replica A are not coupled. An update of the unbiased
coarse-grained configuration on replica A also changes the
Eλ biasing term in the ancillary fine-grained configuration on
replica A, as does the update of the unbiased fine-grained
configuration on replica B changes the corresponding biasing
term in the steered coarse-grained configuration on replica B.
Hence, in order to minimize this disturbance, we also rescale
the velocities in the biased models such that the change in
kinetic energy compensates for the change in Eλ.

The overall effect of the replacement moves is a more
exhaustive sampling of the (unbiased) fine-grained configu-
rations on replica B. This is because Eq. (6) allows for the
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TABLE I. Alternative implementation of ResET using four replicas.

Model Replica Potential energy Kinetic energy Lambda Lambda energy

Unbiased fine-grained model 0 P0 K0

Biased fine-grained model 1 P1 K1 λ1 Eλ(1, 3)
Biased coarse-grained model 2 P2 K2 λ2 Eλ(0, 2)
Unbiased coarse-grained model 3 P3 K3

occasional acceptance of configurations taken from replica A
that, being biased by the coarse-grained model on this replica,
evolve according to the timescale of the coarse-grained model,
i.e., faster than usual in a fine-grained model. As the fine-
grained configuration on the unbiased model is replaced by
another fine-grained model, the problem of reconstructing
fine-grained degrees of freedom (the main limitation of reso-
lution exchange) does not appear. Similarly, the corresponding
replacement move for the unbiased coarse-grained model on
replica A effectively increases the accuracy of the coarse-
grained simulation as it represents an influx of information
from the fine-grained degrees of freedom.

We remark that in software packages such as GROMACS
[37] it is sometimes simpler to separate the biased and un-
biased models onto different replicas. In this case one would
have four replicas, with a possible distribution of the models
sketched in Table I.

In this implementation, the replica 0 and 2, and replica
1 and 3, communicated during the molecular dynamics evo-
lution of the configurations; and the ResET move replaces
the configuration of replica 0 by that of replica 1, and/or the
configuration on replica 3 by that of replica 2.

III. MATERIALS AND METhODS

Setup of the ResET simulations

Our simulations utilize a modified version of the GRO-
MACS [37] molecular package available from the authors.
Initial tests of the working and efficiency are for the Trp-
cage protein [29,30], an often used system for evaluating
new algorithms. In order to compare our simulations with
previous studies, we follow closely the setup of Han et al.
[38] for the coarse-grained model, and that of Kouza et al.
[39] for the fine-grained model. Hence, our coarse-grained
Trp-cage protein model is described by PACE force field [4],
with the uncapped protein solvated by 1118 MARTINI [40]
coarse-grained water molecules, and buffered 0.15M Na+ and
Cl− ions, in a cubic box of length 5.18 nm, leading to a
total of 1313 coarse-grained particles. On the other hand,
in our fine grained model is the N-terminus capped by an
acetyl group and at C-terminus by methylamine, leading to
a total number of 313 atoms for the protein that are solvated
with 2645 extended simple point charge (SPC/E [41]) water
molecules in a cubic box with an edge length of 4.4 nm.
One chlorine ion (Cl−) is added to neutralize the system. In
total, the system contains 8249 fine-grained particles, with the
interactions between them described by the AMBER94 force
field [42].

As a first application, we compare in the second part of
this study the ensemble of configurations sampled by ResET
simulation of Aβ1−42 wild-type and A2T mutant peptides.

While aggregates of the wild-type Aβ-peptides are implicated
in Alzheimer’s disease, the A2T mutant appears to be protec-
tive, i.e., reducing the probability for acquiring the disease.
We use in our simulations for both wild-type and mutant the
MARTINI force field [40]. This is because this coarse-grained
model is computationally efficient and has been already used
earlier in Aβ simulations [43,44]. The main chain of each
amino acid is represented by one bead, and the side chains
by up to four beads depending on the size of the amino
acid. Our wild-type protein thus contains 91 beads, and the
mutant 92 beads. Each peptide is placed in a cubic box and
solvated with the MARTINI-CG water molecules represented
by single beads. Together with 3 Na+ MARTINI-ion beads
and a box size of 7.16 nm (wild-type) and 7.24 nm A2T
mutant) we arrive at 2925 and 3189 particles, respectively. On
the other hand, the fine-grained representations of wild-type
and mutant peptides are modeled by the CHARMM36 force
field [45] which we found in previous work to be efficient for
simulations of intrinsically disordered and amyloid-forming
proteins. The N- and C-termini are capped with acetyl and
methyl groups, respectively. The protein is placed in the center
of a cubic box using a 1 nm distance between the atoms of the
protein and box. The each system is solvated with TIP3 water
molecules [46] and neutralized with 3 Na+ ions. This leads to
a box size of 7.5 nm and a total number of 41412 particles for
the wild-type. Correspondingly, we get a box size of 7.6 nm
and a total number of 44509 particles for the mutant.

In simulations of both the Trp-cage protein and the Aβ pep-
tides we use for both fine-grained and coarse-grained models
shift functions with a cutoff of 1.2 nm in the calculations of
Coulomb and van der Waals interactions. Because of periodic
boundary conditions we employ Particle Mesh Ewald (PME)
[47] summation to account for long-range electrostatic inter-
actions. Hydrogen atoms and bond distances are constraint in
the fine-grained model by the LINCS algorithm [48]. Equa-
tions of motion are integrated using a leap-frog algorithm,
with a time step of 2 fs for both the fine-grained model and
coarse-grained model. The v-rescale thermostat [49] with a
coupling time of 0.01 ps is used to maintain the temperature
in the coarse-grained models, while a Nose-Hoover [50,51]
thermostat with the coupling time of 0.5 ps controls the tem-
perature in the fine-grained models.

A key element of the ResET sampling technique is the re-
straining potential Eλ which quantifies the similarity between
fine-grained and coarse-grained configurations, described by
the coordinates qFG of the atoms in the fine-grained model
and coordinates qCG for the ones in the coarse-grained model.
Choice of this function depends on the system under consid-
eration, and by specifying how the configurations are biased
one may affect the sampling efficiency of the approach. There-
fore, this function has to be selected carefully. In our case,
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TABLE II. Simulation details.

Trp cage Aβ1−42

Method Force field Sampling no time (ns) Force field Sampling No time (ns)

Canonical FG AMBER94 3 5000 CHARMM36 — —
REMD FG AMBER94 1 200 — — —
ResET FG+CG AMBER94+PACE 6 200(1000) CHARMM36+MARTINI v2.2 2 100(500)

we choose a function, introduced in Ref. [25] that is often
used to compare configurations in simulations of proteins. For
this purpose, a protein configuration is described by the set
of distances δ(i j) between all possible pairs of Cα atoms i
and j in a protein. Hence, the differences �(i j) = δFG(i j) −
δCG(i j) can be used to quantify the dissimilarity between
fine-grained and coarse-grained configurations. However, in

order to ensure well-behaved forces in the molecular dynamic
simulations are the �(i j) scaled for the calculation of the
restraining potential:

Eλ(qFG, qCG) =
∑

i j

Ki j (qFG, qCG), (11)

where the sum goes over all possible pairs of Cα atoms i and
j, and

Ki j (qFG, qCG) =
⎧⎨
⎩

1
2 [�2(i, j)] −ds < �(i, j) < ds
A + B

�S (i, j) + fmax�(i, j) �(i, j) > ds
A + B

�S (i, j) (−1)S − fmax�(i, j) �(i, j) < −ds
(12)

In this expression, ds is a distance threshold at which
Ki j (qFG, qCG) switches to a soft asymptote approaching
a maximum force set by the control parameter fmax as
�(i, j) → ∞, and S determines how fast this maximum value
is approached. In our case, S = 1, fmax = 0, and ds = 3 Å.
The parameters A and B are included to ensure continuity of
Ki j (qFG, qCG) and its first derivative at values where �(i, j) =
±ds, i.e., where the functional form of Eq. (12) changes.
These parameters are given by

A =
(

1

2
+ 1

S

)
ds2 −

(
1

S
+ 1

)
fmaxds

and B =
(

fmax − ds

S

)
dsS+1. (13)

In the ResET simulations is the biased fine-grained model
on replica A coupled to the unbiased coarse-grained model by
a parameter λ1 = 0.5, while on replica B the biased coarse-
grained models is coupled to the free fine-grained models
by a parameter λ2 = 2.5. These values were chosen to en-
sure that the replacement moves [Eq. (6) and Eq. (10)] are
not dominated by the λEλ term. The ResET replacement
move is tried every 250 ps, with the bias-correction factor
λ1Eλ(AFG, ACG) − �Ekin

FG limited to the interval (0,100), and
λ2Eλ(BFG, BCG) − �Ekin

CG ) to the interval (0,20), choices that
in preliminary test runs led to increased numerical stability.

Start structures for both fine-grained and coarse-grained
models are generated by heating up the experimental struc-
tures of PDB-ID: 1L2Y (Trp-cage) and PDB-ID: 1Z0Q
(Aβ1−42) [34,52] to 500 or 1000 K in short molecular dy-
namics simulations under NVT conditions (0.5 ns and 1 ns),
and cooling them down to the respective temperatures (with
the exception of the REMD simulations is this 310 K). Sim-
ulations of the various systems start from the so-generated

configurations and are performed in the NVT ensemble, with
the simulation details listed in Table II.

For most of our analysis we use GROMACS tools [37]
such as gmx-rms, which calculates the root-mean-square
deviation (RMSD) and the root-mean-square fluctuations
(RMSFs) of residues with respect to an initial configura-
tion. For visualization we use the VMD software [53], which
we also use to calculate the solvent accessible surface area
(SASA) using a probe radius of 1.4 Å. Other quantities are cal-
culated with in-house programs and defined in the manuscript.
An example are dynamic cross-correlation maps which are
calculated using the definition of [54,55]:

C(i, j) = 〈�ri.�r j〉〈
�r2

i

〉〈
�r2

j

〉 , (14)

where �ri and �r j are the displacement vectors of ith and jth
residues of the system and angle brackets represent ensemble
averages. Positive values mark correlated motions of the re-
spective residues while negative values indicate anticorrelated
motion.

IV. RESULTS AND DISCUSSION

A. Efficiency of ResET

In order to test the working and efficiency of our multiscale
approach ResET, we perform first simulations of the Trp-cage
[29,30] miniprotein, an often used model for testing sampling
techniques. Choice of this system, with which we are familiar
from previous work, therefore allows a direct comparison
with past simulations. An example are the Replica Exchange
Molecular Dynamics (REMD) simulations of Ref. [39,56],
where 40 replicas of equal volume are simulated at 40 tem-
peratures spanning a range from T = 280 K to T = 540 K.
Configurations are exchanged between neighboring tempera-

015302-4



RESOLUTION EXCHANGE WITH TUNNELING FOR … PHYSICAL REVIEW E 106, 015302 (2022)

FIG. 1. The time evolution of RMSD (a) and folding parameter Otrp (b) as measured in regular molecular dynamics simulations at T =
310 K. Trajectory 1 is drawn in purple, trajectory 2 in green and trajectory 3 in blue. A red line marks the values of the two quantities below
which we consider the configurations as native-like according to the criteria discussed in the text. The two snapshots are taken from trajectory
2 at 601.0 ns (snapshot at the bottom) and 602.3 ns (snapshot on top). Both snapshots show similar configurations while the RMSD changes
from 2.0 Å to 3.6 Å. On the other hand, no such change is seen for folding parameter Otrp; see the corresponding region in (b), marked by the
arrow. N- and C-terminal residues in the snapshots are marked in blue and red, respectively.

tures according to a generalized Metropolis criterion, leading
to a random walk in temperature that allows replicas to find lo-
cal minima (when at low temperatures) and escape out of them
(when at high temperatures). The net effect is an enhanced
sampling at the target temperature. Defining a configuration
as native-like if the RMSD to the PDB structure (PDB-ID:
1L2Y) is less than 2.5 Å, we find at T = 310 K native-like
configuration with a frequency of 87%, using the more restric-
tive criterion of a RMSD smaller than 2.2 Å, the frequency
reduces to 55%. Note that these frequencies do not change
beyond statistical fluctuations once the REMD simulation has
reached 50 ns, and we therefore neglect the first 50 ns of
our 200 ns long trajectories when calculating the frequencies.
While these frequencies are similar to the ones observed in
earlier work [39,56], we suspect that our values overestimate
the frequency of folded configurations that reside at a certain
time at T = 310 K. This is because the systems are simulated
at each temperature with the same volume. This volume, while
sufficiently large at the target temperature may at the higher
temperature suppress extended configurations, therefore arti-
ficially stabilizing folded configurations. For this reason, we
prefer instead to compare our ResET simulations directly with
regular constant temperature molecular dynamics, simulat-
ing the Trp-cage protein in three independent trajectories at
T = 310 K over 5000 ns, a value that is comparable to the
experimental measured folding times of around 4 μs [57]. The
RMSD as function of time is shown for all three trajectories in

Fig. 1(a). Visual inspection of the three trajectories points to
another problem. For a small protein such as Trp-cage is the
RMSD not good measure for similarity as configurations that
appear as similar by visual inspection may differ by relatively
large RMSD values. This can be seen, for instance, in the
second trajectory where at around 600 ns the RMSD increases
from 2.0 Å to 3.6 Å, i.e., from native-like to configurations to
one considered no longer native-like according to the above
definition of a native configuration (i.e., having a RMSD of
less than 2.5 Å). However, visual inspection shows that the
molecule keeps its native-like fold; see the corresponding
configurations in the Fig. 1(a). This contradiction between
our RMSD-based definition and visual inspection made us
consider another quantity as a measure for similarity. The two
main characteristics of the Trp-cage native structure are its
two helices (residues 2–9 and 11–14), and the contact between
residue 6W (a tryptophan) and residue 18P (a proline). Hence
we define as marker for Trp-cage folding a new quantity:

Otrp = d6−18 + 1/(nH + 1). (15)

Here d6−18 is the difference between residues 6W and 18P, and
nH the number of residues that have dihedral angles as seen in
a helix. The time evolution of this quantity in Fig. 1(b) shows
that the new coordinate allows indeed a better description of
the folding transitions, as its behavior differs less from the
visual inspection. Especially, we do not see for the second tra-
jectory at 600 ns the false signal for nonnative configurations
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FIG. 2. The time evolution of the order parameter in our ResET
simulations of the Trp-cage protein. Trajectory 1 is drawn in purple,
trajectory 2 in green, and trajectory 3 in blue.

that we see in the RMSD plot. Comparing Otrp as function of
time with visual inspection of configurations along the trajec-
tories suggests that folded configurations are characterized by
values of Otrp < 1, and we use in the following this definition
to quantify frequencies of folded configurations.

With this definition, we observe the first folding event at
t = 11.6 ns (in trajectory 2), and the systems stays folded
for about 600 ns before unfolding again. For trajectory 1
folding is observed at t = 800 ns, and no folding is observed
within 3500 ns in the third trajectory where the protein unfolds
afterwards again at about 4500 ns. As a consequence, we
find between 250 ns and 500 ns folded configurations with
a frequency of about 26% and between 750 ns and 1000 ns,
with about 49%. The frequencies increase only slowly as the
simulations proceed, and between 3000 ns and 5000 ns we
find native-like configurations with about 58%. The above
numbers are consistent with the experimentally measured
folding times of about 4 μs [57].

How does our multiscale method fit in this discussion?
The time evolution of our marker function Otrp(t ) is shown
in Fig. 2. Native-like configurations according to our criterion
are observed after around 30 ns, and between 50 ns and 100 ns
seen with a frequency of about 59%. The frequencies do
not change much as the simulation progresses, and between
150 ns and 200 ns are native-like configurations observed
with 65%. We remark that these frequencies do not depend
on the choice of parameters with which we scale the λ energy
contribution in the ResET update.

These frequencies for folded configurations are similar to
what is seen in long-time canonical runs, but require shorter
simulation times. Hence, our simulations of the Trp-cage
protein indicate that our multiscale simulation method leads
indeed to an increase in sampling efficiency. If we take as
a criterion for the comparison the time it takes to have (on
average) about 50% of configuration folded (about 800 ns for
the canonical runs and 50 ns for the ResET run) we find that
ResET is about 16 times faster than the canonical simulations.
While the gain in efficiency will depend on the specifics of
the coarse-grained model (i.e., how much faster it samples

the configuration space) and its coupling to the physical force
field, our data demonstrate the faster sampling properties of
our multiscale approach.

B. Comparing Aβ wild-type and A2T mutant

Our evaluation of the sampling efficiency of ResET re-
lies on a rather simple test case. As a more interesting first
application, we use in the second part our sampling tech-
nique to compare the ensembles of wild-type and A2T mutant
Aβ1−42 peptides. Fibrils containing Aβ1−40 or the more toxic
Aβ1−42 are a hallmark of Alzheimer’s disease and the focus
of intense research [31]. A large number of familial muta-
tions are known that worsen the symptoms of Alzheimer’s
disease or hasten its outbreak [32,33], but there have been
also mutations identified that are protective, i.e., lower the
risk to fall ill with Alzheimer’s disease. One example is the
mutant A2T where the second residue (counted from the N-
terminus) is changed from a small hydrophobic alanine (A)
into a bulky polar threonine (T) [34]. It has been not yet
established why this mutation is protective [35,36], but one
possibility is that this mutation alters the pathway for amyloid
formation, for instance, by making it more difficult to form
aggregates. In order to test this hypothesis we simulate here
Aβ1−42 wild-type and A2T mutant monomers, and compare
the ensembles of sampled configurations for their aggregation
propensities.

Under physiological conditions are Aβ-peptides intrin-
sically disordered, and we do not expect the appearance
of folded structures. Instead, we assume that the ensem-
ble of configurations contains such with transiently formed
β-strands that would encourage aggregation. We conjecture
that such transient ordering appears more often for wild-type
Aβ1−42 than for the A2T mutant peptides. In order to iden-
tify these differences in local ordering, we have measured
the RMSFs of residues for both cases, taking as reference
structure the corresponding start configuration, but discarding
for the calculation of the RMSF the first 50 ns of the simu-
lation. The RMSF is chosen because this quantity describes
the flexibility of residues or segments of the protein, and the
more flexible a segment is, the less likely will it form stable
structures. Our data are shown in Fig. 3. While for the first 20
residues there are only small differences between wild-type
and mutant, the situation is different for the C-terminal half
of the chain. For residues 21–37, the RMSF is considerably
lower for the mutant then for the wild-type. We remark that
this picture does not change if we recalculate the RMSF,
including now all heavy atoms (i.e, not only backbone but also
side-chain atoms).

The lower flexibility of the segment 21–37 in the mutant
is not correlated with increased secondary structure. Residues
take dihedral angle values as seen in a helix or a β strand with
about 10%, independent on whether wild-type and mutant.
However, there is a change in the average radius of gyration
(RGY, a measure for the volume), which with 10.6(1) Å
is larger for the mutant than for the wild-type where it is
10.5(1) Å. Similarly, the average solvent accessible surface
area (s) of the peptide is in the mutant with 38.0(1) nm2

less fluctuating than in the wild-type (38.0(3) nm2), reflect-
ing the gain in surface area resulting from the more bulky
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FIG. 3. Root-mean-square fluctuations of residues in either wild-
type (purple) or A2T mutant (green) Aβ1−42 peptides. Only heavy
atoms are considered in the calculation, and the first 50 ns of
the 100 ns trajectories discarded to allow for convergence of the
simulations.

threonine. However, the relation is different for the segment
of residues 21–37, where the wild-type has a SASA value
of 18.2(3) nm2 and the mutant a SASA of 18.1(2) nm2. The
differences for the segment result from polar residues as the

solvent accessible surface area of hydrophobic residues is with
4.1(1) nm2 the same for both mutant and wild-type. Hence,
the differences in SASA values for this segment indicate that
in the mutant polar residues, which are exposed to solvent in
the wild-type, form contacts with other residues. In order to
understand the differences between mutant and wild-type in
more detail, we have also analyzed the contacts and cross-
correlations between residues, focusing again on the final
50 ns of the trajectories for both systems. The resulting maps
for both systems are shown in Figs. 4(a) and 4(b), with the col-
oring describing the degree of correlation between residues.

Unlike in the wild-type are in the A2T mutant the
disordered N-terminus (residues 1–9) and residues 27–33 cor-
related. This correlation results from electrostatic interactions,
for instance, between the NH3+ group of residue K28 (a
lysin) with negatively charged COO- group of residue E7 (a
glutamic acid) seen in the snapshot shown in Fig. 4(d). Hence,
the replacement of the small hydrophobic alanine by a bulky
polar threonine allows for the above electrostatic interaction-
sin the mutant that do not exist in the wild-type, and whose
importance for inhibiting amyloid formation in the A2T mu-
tant has been already noticed earlier in Ref. [58]. These
interactions likely stabilize not only the segment 27–33, but
are responsible for the lower RMSF seen for residues 21–37.
The interactions between N-terminus and residues 27–33
compete now in the A2T with hydrophobic interactions be-
tween the segment formed by residues 13–21, which include
the central hydrophobic core (L17VFFA21), and the mostly

FIG. 4. Two-dimensional dynamic cross-correlation map extracted from (a) wild-type and (b) mutant Aβ1−42 ResET simulations. A
representative snapshot obtained from the wild-type simulations is shown in (c), where the central hydrophobic core L17VFFA21 and the
C-terminal hydrophobic residues G37GVVIA42 are drawn in green and orange, respectively. A corresponding snapshot from the mutant
simulation is shown in (d), where the disordered N-terminus (residues 1–10) and residues 27–31 are colored in ice-blue and orange,
respectively. N- and C-terminal residues are represented by blue and red spheres.
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hydrophobic C-terminus (residues 37–42), see the corre-
sponding snapshot in Fig. 4(c). As a result the two segments
are correlated in the wild-type but not in the mutants. These
interactions between the peptide’s two main hydrophobic do-
mains are thought to be crucial for the self-assembly of Aβ

fibrils [59,60], but are now missing in the A2T mutant, reduc-
ing the risk for aggregation.

V. CONCLUSIONS

We have described a replica-exchange-based multiscale
simulation method, Resolution Exchange with Tunneling (Re-
sET), that is designed for simulations of protein folding and
aggregation. Our approach combines the faster sampling of
coarse-grained simulations with the potentially higher accu-
racy of all-atom simulations. It avoids the problem of low
acceptance rates plaguing similar approaches, and it requires
only a few replicas. We first test for the small Trp-cage protein
the accuracy and efficiency of our approach in comparison
to long-scale (5 μs) regular molecular dynamic simulations.
In a second step, we use our method to compare the ensem-
ble of Aβ1−42 wild-type peptides, implicated in Alzheimer’s
disease, with that of A2T mutants which seems to protect
against the disease. Our ResET simulations indicate that the
replacement of a small alanine (A) by a bulky threonine (T)
as residue 2 alters the pathway for amyloid formation. In-
troducing steric constraints on the mostly polar N-terminal
residues it encourages electrostatic interactions with residues
27–33. In turn, these interactions reduce the flexibility of the
extended segment 21–37, therefore contributing to the overall
larger volume, more exposed surface and resulting higher

solubility of the mutant. At the same time do this interactions
also interfere with the hydrophobic interactions between the
central hydrophobic core (L17VFFA21), and the mostly hy-
drophobic C-terminus (residues 37–42), known to be crucial
for the self-assembly of Aβ fibrils, decreasing therefore the
chance of formation of Aβ amyloids. The enlarged exposed
hydrophobic surface area that in connection with a higher
solubility may trigger faster degradation of the mutant, could
further contributing to this mechanism, which may explain
why the A2T mutant protects against Alzheimer’s disease. We
plan to test this hypothesis by comparing the A2T mutant
with suitable double mutants that would interfere with this
mechanism.
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