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Particles on demand for flows with strong discontinuities
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Particles-on-demand formulation of kinetic theory [B. Dorschner, F. Bösch and I. V. Karlin, Phys. Rev. Lett.
121, 130602 (2018)] is used to simulate a variety of compressible flows with strong discontinuities in density,
pressure, and velocity. Two modifications are applied to the original formulation of the particles-on-demand
method. First, a regularization by Grad’s projection of particles populations is combined with the reference
frame transformations in order to enhance stability and accuracy. Second, a finite-volume scheme is implemented
which allows tight control of mass, momentum, and energy conservation. The proposed model is validated with
an array of challenging one- and two-dimensional benchmarks of compressible flows, including hypersonic and
near-vacuum situations, Richtmyer-Meshkov instability, double Mach reflection, and astrophysical jet. Excellent
performance of the modified particles-on-demand method is demonstrated beyond the limitations of other lattice
Boltzmann-like approaches to compressible flows.
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I. INTRODUCTION

The lattice Boltzmann method (LBM) is a recast of fluid
dynamics into a fully discrete kinetic system of designed
particles with the discrete velocities ci, i = 0, . . . , Q − 1,
fitting into a regular space-filling lattice, with the kinetic equa-
tion for the populations fi(x, t ) following a simple algorithm
of “stream along links ci and collide at the nodes x in discrete
time t .” Since its inception [1,2], LBM has evolved into a
versatile tool for the simulation of complex flows including
transitional flows [3], flows in complex moving geometries
[4], thermal and convective flows [5–7], multiphase and mul-
ticomponent flows [8–11], and reactive flows [12] and rarefied
gas [13], to mention a few recent instances; see Refs. [14–16]
for a discussion of LBM and its application areas.

Arguably, LBM is most advantageous for nearly in-
compressible fluid flow due to exact (lattice) propagation
combined with relatively simple discrete velocities, referred
to as standard lattices. However, the same features become an
obstacle for compressible flows. Several avenues of extending
LBM to high-speed flows have been explored. First, a number
of proposals proceed with extended sets of discrete velocities
while retaining exact lattice propagation [17–19]. LBM with
extended sets of discrete velocities demonstrates excellent
results [20,21]. However, the gain in both the temperature and
Mach number is perceived as moderate when compared to the
increased complexity of the higher-order lattices. A second
approach uses standard lattices, while LBM is augmented
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with corrections terms tailored to eliminate error terms in
momentum and energy equations [22–25]. While trans- and
supersonic flows can be captured efficiently with this ap-
proach, it, too, remained limited to moderate Mach number
and discontinuities.

Another line of research abandons the restriction of lattice-
fitting discrete velocities and proposes a less rigid off-lattice
propagation. While originally conceived for standard velocity
sets in order to gain geometrical flexibility [26–28], off-lattice
propagation schemes received some traction more recently
in the context of compressible flows. Interesting realizations
for compressible flows at moderate Mach numbers using a
semi-Lagrangian advection have recently been reported in
Refs. [29–31]. Another class of numerical schemes are finite-
volume methods, such as the discrete unified gas kinetic
scheme (DUGKS) [32,33]. Finite-difference propagation was
used in the discrete Boltzmann model targeting compress-
ible flows with applications to combustion and detonation
[34–38].

Regardless of the propagation scheme (on- or off-lattice),
a common feature of the above models is the use of fixed
discrete velocities which amounts to choosing the reference
frame “at rest.” While the latter is viable and even advanta-
geous (due to lattice propagation) for nearly incompressible,
slow flows, it impedes the use of kinetic-theory-based solvers
for high Mach number situations. Examples of a better refer-
ence frame are readily available. For instance, in Ref. [39],
the formulation of LBM in a comoving Galilean reference
frame demonstrated excellent performance for predomi-
nantly unidirectional compressible flows. Subsequently, the
particles-on-demand (PonD) method [40] addressed the prob-
lem of finding the optimal reference frame. In PonD, the
discrete particle velocities are constructed relative to the local
reference frame, which is defined by the local flow velocity
and temperature and which varies in space and time. This
necessitates an off-lattice propagation scheme, together with a
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reference frame transformation to resolve the implicitness of
the PonD scheme.

In this work, we aim at a further development of PonD
in order to enable simulations at extreme cases of com-
pressible flows. First, the reference frame transformation is
supplemented with a regularization procedure based on Grad’s
projection. In the framework of PonD, regularization was
recently suggested in Ref. [41], with the purpose of reducing
the computational cost. Here we show that a carefully tailored
moment system, serving as a basis for the transformation,
enables PonD to simulate flows with strong discontinuities.
Second, in addition to the semi-Lagrangian realization, we
propose a finite-volume version of the PonD, based on the
appropriate extension of the DUGKS method. This enables
a tight control of the conservation laws which becomes es-
pecially important for flows with near-vacuum components.
It is noted that high Mach number flows, with near-vacuum
regions and strong discontinuities, remain active area of re-
search in classical computational fluid dynamics (CFD), with
recent development of higher-order schemes such as targeted
essentially nonoscillatory, besides more established shock-
capturing methods [42–44]. The proposed model is able to
capture complicated flows robustly and accurately, without
the need of positivity preserving schemes and sophisticated
limiters [43].

The paper is organized as follows. In Sec. II, the two-
population kinetic model is introduced and the reference
frame transformation is explained. Subsequently, in Sec. III
the semi-Lagrangian and the finite-volume discretization
schemes are presented. In Sec. IV, the model is validated
against extreme one-dimensional Riemann problems and
various two-dimensional benchmarks. Finally, concluding re-
marks are provided in Sec. V.

II. MODEL DESCRIPTION

A. Discrete velocities

Without a loss of generality, we consider discrete speeds in
two dimensions formed by tensor products of roots of Hermite
polynomials ciα ,

ci = (cix, ciy ). (1)

The model is characterized by the lattice temperature TL and
the weights Wi associated with the vectors (1),

Wi = wixwiy, (2)

where wiα are weights of the Gauss-Hermite quadrature. In
this work we use the D2Q16 velocity set, where D = 2 stands
for two dimensions and Q = 16 is the number of the dis-
crete velocities. The discrete velocities and the associated
weights are shown in Table I. With the discrete speeds (1),
the particles’ velocities vi are defined relative to a reference
frame, specified by the frame velocity uref and the reference
temperature Tref ,

vi =
√

Tref

TL
ci + uref . (3)

The optimal reference frame is the comoving reference frame,
which is specified by the local temperature Tref = T (x, t ) and

TABLE I. Lattice temperature TL , roots of Hermite polynomials
ciα , and weights wiα of the D = 1 Gauss-Hermite quadrature and
nomenclature

Model TL ciα wiα D = 2

D1Q3 1 0, 2/3 D2Q9
±√

3 1/6

D1Q4 1 ±
√

3 − √
6 (3 + √

6)/12 D2Q16

±
√

3 + √
6 (3 − √

6)/12

the local flow velocity uref = u(x, t ).

B. Kinetic equations

In this paper, we restrict our consideration to a single re-
laxation time, two-population kinetic model for ideal gas with
variable adiabatic exponent [20],

∂t fi + vi · ∇ fi = � f ,i = 1

τ

(
f eq
i − fi

)
, (4)

∂t gi + vi · ∇gi = �g,i = 1

τ

(
geq

i − gi
)
, (5)

where f eq
i and geq

i are local equilibrium populations and τ is
the relaxation time. Local conservation laws for the density ρ,
momentum ρu, and the total energy ρE are

ρ =
Q−1∑
i=0

fi =
Q−1∑
i=0

f eq
i , (6)

ρu =
Q−1∑
i=0

vi fi =
Q−1∑
i=0

vi f eq
i , (7)

ρE =
Q−1∑
i=0

v2
i

2
fi +

Q−1∑
i=0

gi =
Q−1∑
i=0

v2
i

2
f eq
i +

Q−1∑
i=0

geq
i , (8)

where the total energy of ideal gas is

ρE = CvρT + ρu2

2
, (9)

with Cv the specific heat at constant volume. In the comoving
reference frame, the equilibrium populations depend only on
the density and temperature,

f eq
i = ρWi, (10)

geq
i =

(
Cv − D

2

)
T ρWi. (11)

The single relaxation time Bhatnagar-Gross-Krook (BGK)
model (4) and (5) results in a Prandtl number equal to 1.
This restriction is adopted in the present study for the sake
of presentation since the benchmark cases considered below
refer to nondissipative compressible flow. Extension of the
present model to a variable Prandtl number can be found in
Refs. [20,45].
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C. Regularized reference frame transformation

Let us consider a reference frame λ defined by a reference
temperature T and frame velocity u,

λ = {u, T }. (12)

Discrete velocities relative to the reference frame λ (12) are
defined as

vλ
i =

√
T

TL
ci + u. (13)

In order to keep the notation simple, we shall consider f pop-
ulations (g populations are considered in the same fashion).
A key element of PonD is the transformation of populations
f λ
i , defined with respect to a λ reference (12), to a different

reference frame λ′,

λ′ = {u′, T ′}, (14)

with the discrete velocities vλ′
i ,

vλ′
i =

√
T ′

TL
ci + u′. (15)

Below, the transformation proposed in Ref. [40] is supple-
mented by a regularization procedure [41,46]. Specifically, the
transformed populations f λ′

i are sought as a third-order Grad’s
projection,

f λ′
i = Wi

[
a0 + a1 · ci

TL
+ a2 · (ci ⊗ ci − TLI)

2T 2
L

+ a3 · (ci ⊗ ci ⊗ ci − TLci ⊗ I)

6T 3
L

]
, (16)

where overline denotes symmetrization, coefficients ak are
tensors of rank k = 0 to k = 3, while the dot stands for
the full contraction. Let us denote Mλ

k a moment tensor of
order k,

Mλ
k =

Q−1∑
i=0

f λ
i vλ

i ⊗ vλ
i · · · ⊗ vλ

i︸ ︷︷ ︸
k

. (17)

Then the regularized transformed populations are defined by
the condition of invariance of the moments of orders k =
0, 1, 2, 3 with respect to the reference frame:

Mλ′
k = Mλ

k , k = 0, 1, 2, 3. (18)

On substitution,

Mλ′
k =

Q−1∑
i=0

f λ′
i vλ′

i ⊗ vλ′
i · · · ⊗ vλ′

i︸ ︷︷ ︸
k

, k = 0, 1, 2, 3,

and using (16) and (15), the linear system (18) is solved to
find Grad’s coefficients ak , k = 0, 1, 2, 3 in terms of the new
frame velocity u′, reference temperature T ′, and the moments
in the old reference frame Mλ

k ,

a0 = Mλ
0 , (19)

a1 =
(

T ′

TL

)−1/2(
Mλ

1 − Mλ
0 u′), (20)

a2 =
(

T ′

TL

)−1[
Mλ

2 − Mλ
0 T ′I −

(
T ′

TL

)1/2

u′ ⊗ a1− Mλ
0 u′ ⊗ u′

]
,

(21)

a3 =
(

T ′

TL

)−3/2[
Mλ

3 −
(

T ′

TL

)
u′ ⊗ (M0TLI + a2)

− T ′
(

T ′

TL

)1/2

a1 ⊗ I −
(

T ′

TL

)1/2

a1 ⊗ u′ ⊗ u′

− Mλ
0 u′ ⊗ u′ ⊗ u′

]
. (22)

Thus, the regularized transformation of the f popula-
tions from a reference frame λ to a reference frame λ′ is
uniquely defined by the third-order Grad’s projection with
the coefficients (19), (20), (21), and (22). For the regularized
transformation of the g populations, it is sufficient to use a
second-order Grad’s projection of the form (16) where the
third-order term is dropped while the coefficients a0, a1, and
a2 are defined by (19), (20), and (21), respectively, with the
corresponding moments Mλ

k , k = 0, 1, 2, of the populations
gλ

i . A discussion is in order.
(i) A rationale for using Grad’s projection for regularized

transformation is to essentially impose a moment hierarchy in
the new reference frame: The low-order moments retained in
Grad’s projection [Mk , k = 0, 1, 2, 3 in the case of Eq. (16)]
are independent and can be identified as “slow” moments.
The remaining higher-order moments are considered as “fast”
moments, enslaved by the slow ones and given by Grad’s
closure [47].

(ii) Grad’s projection is not a unique regularization strat-
egy. For instance, another possibility is to set the higher-order
moments to equilibrium following the construction proposed
in Ref. [45]: Let us denote Mq = {M0, M1, M2, M3} the
subset of slow moments, where q is the dimension of the
subspace, q = 10 for D = 2 and q = 20 for D = 3, while
MQ−q stands for the fast moments. Moment vector of the f
populations MQ can be considered as an element of a direct
sum,

MQ = Mq ⊕ MQ−q. (23)

In the new reference frame λ′, consider a moment vector
Mλ→λ′

Q using the λ frame to evaluate the slow moments, Mλ′
q =

Mλ
q , as before, while equilibrating the fast moments in the λ′

reference:

Mλ→λ′
Q = Mλ

q ⊕ (
Mλ′

Q−q

)eq
. (24)

The regularized transformed populations are obtained by mo-
ment inversion,

f λ′ = Mλ′−1Mλ→λ′
Q , (25)

where Mλ′ is the Q × Q matrix of the populations-to-
moments transform in the λ′ reference frame. The difference
between the two regularization methods is that, with Grad’s
projection, the fast moments are slaved to the nonequilibrium
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slow moments, MGrad
Q−q = MQ−q(Mq), while in the equilibration

case they are Meq
Q−q = Meq

Q−q(M0, M1). While both approaches
are on equal footing, Grad’s projection appears to be more
economic as it does not need a matrix inversion (25) and shall
be used below in this paper.

(iii) In two dimensions, the D2Q16 lattice is the min-
imal product-form lattice based on Hermite roots that has
a linearly independent third-order moment tensor M3 and
therefore enables the third-order Grad’s projection (16). While
some previous realizations of PonD method for compressible
flows used the standard D2Q9 lattice [40,48,49], inclusion of
M3 into the list of slow moments appears to be necessary in
order to simulate hypersonic flows with very strong disconti-
nuities and near-vacuum components such as those presented
in Sec. IV B.

III. SEMI-LAGRANGIAN AND FINITE
VOLUME REALIZATIONS

In this section, we present two methods for the nu-
merical discretization of the proposed PonD model. First,
we review the semi-Lagrangian scheme, as formulated in
Refs. [40,48,49]. A finite-volume method, based on the
DUGKS numerical scheme [32], is subsequently presented.

A. Semi-Lagrangian realization

The semi-Lagrangian realization follows the spirit of LBM,
where the governing continuous equations (4) and (5) are inte-
grated along the characteristics and a variable transformation
is used to eliminate the implicitness of the scheme [5,50],

f̃i = fi − δt

2τ

(
f eq
i − fi

)
, (26)

g̃i = gi − δt

2τ

(
geq

i − gi
)
. (27)

The final equations, which describe the propagation and col-
lision steps, can be expressed only through the f̃ and g̃
populations. For simplicity, we lift in this section the tilde
notation. The spatiotemporal flexibility of the reference frame
leads to an off-lattice propagation, which requires the recon-
struction of the populations at any point x and time t . In this
work, we use the following formula [40]:

fi(x, t ) =
m∑

s=1

	(x − xs) f λ
i (xs, t ), (28)

gi(x, t ) =
m∑

s=1

	(x − xs)gλ
i (xs, t ), (29)

where xs are the collocation points and 	 is the interpolation
kernel and it is assumed that regularized populations at the
collocation points, f λ

i (xs, t ) and gλ
i (xs, t ), are transformed

into the same reference frame λ, as explained in Sec. II C.
Below, we use a four-point stencil (m = 4) with a B-spline
interpolation kernel in a combination with limiters, as detailed
in Ref. [51].

We consider the propagation step at a monitoring point x
and time t . Semi-Lagrangian advection is performed at the
departure points of characteristic lines x − vλ0

i δt ,

f λ0
i = fi

(
x − vλ0

i δt, t − δt
)
, (30)

gλ0
i = gi

(
x − vλ0

i δt, t − δt
)
. (31)

The reference frame λ0 = {u0, T0} is initialized using the local
flow velocity and the local temperature, which are available
from the previous time step, u0 = u(x, t − δt ), T0 = T (x, t −
δt ). Equations (30) and (31) constitute the predictor prop-
agation step. The density, momentum, and temperature are
consequently computed by

ρ1 =
Q−1∑
i=0

f λ0
i , (32)

ρ1u1 =
Q−1∑
i=0

vλ0
i f λ0

i , (33)

ρ1E1 =
Q−1∑
i=0

(
vλ0

i

)2

2
f λ0
i +

Q−1∑
i=0

gλ0
i . (34)

The computed velocity (33) and temperature (34) define the
corrector reference frame λ1 = {u1, T1} at the monitoring
point and the propagation step (30) and (31) is repeated with
the updated reference frame. The predictor-corrector process
is iterated until convergence with the limit values,

ρ(x, t ), u(x, t ), T (x, t ), f λ(x,t )
i = lim

n→∞ ρn, un, Tn, f λn
i ,

defining the density, velocity, temperature, and the precol-
lision populations at the monitoring point x at time t . The
predictor-corrector iteration loop ensures that the propagation
and the collision steps are performed at the comoving refer-
ence frame, in which the local equilibrium populations (10)
and (11) are exact.

The collision step follows the BGK collision model,

fi(x, t ) = f λ(x,t )
i + 2β

[
ρ(x, t )Wi − f λ(x,t )

i

]
, (35)

gi(x, t ) = gλ(x,t )
i + 2β

[
ρ

(
Cv − D

2

)
T (x, t )Wi − gλ(x,t )

i

]
,

(36)

where the relaxation parameter β is related to the kinematic
viscosity by ν = T ( 1

2β
− 1

2 )δt . The thermal conductivity is

κ = Cp( 1
2β

− 1
2 )ρT δt , which yields Prandtl equal to 1.

B. Finite-volume realization

The semi-Lagrangian propagation, coupled with a local
collision step, is a simple and efficient numerical scheme for
the realization of PonD. It should be noted, however, that this
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method is not strictly conservative. While there exist strate-
gies to partially alleviate this problem [51–53], we propose a
finite-volume discretization scheme which naturally restores
the conservation. Specifically, we reformulate the DUGKS
algorithm [32,33,54] in a comoving reference frame.

1. Updating rule

The evolution of the populations is governed by the follow-
ing equations in the DUGKS framework [32]:

f̃i(x j, tn+1) =
(

2τ − δt

2τ + δt

)
f̃i(x j, tn)

+
(

2δt

2τ + δt

)
f eq
i (x j, tn) − δt

Vj
Ff ,i(x j, tn+1/2),

(37)

g̃i(x j, tn+1) =
(

2τ − δt

2τ + δt

)
g̃i(x j, tn)

+
(

2δt

2τ + δt

)
geq

i (x j, tn) − δt

Vj
Fg,i(x j, tn+1/2).

(38)

The update equations are derived from the integration of the
continuous equations (4) and (5) in a control volume centered
at x j , with volume Vj , from time tn to tn+1 = tn + δt , using
the midpoint rule for the convection term and the trapezoidal
rule for the collision term [32]. To remove the implicitness,

the DUGKS scheme adopts the variable transformation from
the standard LBM practice [5,50],

φ̃i = φi − δt

2
�φ,i = φi − δt

2τ

(
φ

eq
i − φi

)
, (39)

where φ stands for the f and g populations and �φ,i are the
collision BGK kernels defined in Eqs. (4) and (5). The fluxes
of the populations Fφ,i(x j, tn+1/2) across the surface of the
control volume are defined as

Fφ,i(x j, tn+1/2) =
∫

∂Vj

(vi · n)φi(x, tn+1/2)dS, (40)

where n is the outward unit vector normal to the surface.
Finally, we remark that within the finite-volume context,
the populations and the collision terms are cell-averaged
quantities,

φi(x j, tn) = 1

Vj

∫
Vj

φi(x, tn)dx. (41)

2. Evolution in the comoving reference frame

In this section, we present the implementation of DUGKS
with an adaptive reference frame formulation. We con-
sider a cell with center x j , at time tn. The populations
f λ
i (x j, tn), gλ

i (x j, tn) are known from the previous time step (or
initial conditions) and they are expressed in the local reference
frame λ = {u(x j, tn), T (x j, tn)}. With the exact equilibria (10)
and (11), the update equations become

f̃ λ
i (x j, tn+1) =

(
2τ − δt

2τ + δt

)
f̃ λ
i (x j, tn) +

(
2δt

2τ + δt

)
ρ(x j, tn)Wi − δt

Vj
Fλ

f ,i(x j, tn+1/2), (42)

g̃λ
i (x j, tn+1) =

(
2τ − δt

2τ + δt

)
g̃λ

i (x j, tn) +
(

2δt

2τ + δt

)(
Cv − D

2

)
ρ(x j, tn)T (x j, tn)Wi − δt

Vj
Fλ

g,i(x j, tn+1/2). (43)

The fluxes (40) featured in the update equations (42) and (43)
are evaluated in the next section.

3. Flux evaluation in the comoving reference frame

The key element of the update equations (42) and (43) is
the evaluation of the flux term, Fφ,i(x j, tn+1/2), which contains
the unknown populations φi(xb, tn+1/2) at the cell interface
xb and time tn+1/2. Integrating Eqs. (4) and (5) along the
characteristics for half-time step shows that the requested
populations are connected with the known populations at time
tn through the following equation [32]:

φ̄i(xb, tn+1/2) = φ̄+
i (xb − viδt/2, tn), (44)

where

φ̄i = φi − δt/2

2
�φ,i, (45)

φ̄+
i = φi + δt/2

2
�φ,i. (46)

Equation (44) is essentially a half-time step semi-Lagrangian
advection step, as in LBM, with the final point located at the
interface xb, at tn+1/2. Following the spirit of PonD, we realize
this step in the comoving reference frame, with the following
iterating procedure.

The reference frame λ0 = {u0, T0} (predictor reference
frame) at the cell interface xb is initialized with the fluid
velocity and temperature from the previous step, u0 =
u(xb, tn−1/2), T0 = T (xb, tn−1/2). The populations φ̄

+,λ0
i and

the spatial gradients σλ0
i = ∇φ̄

+,λ0
i are subsequently evaluated

in the neighboring cells of the interface, at time tn. In this
work, Van Leer and minmod slope limiters were used for the
computation of the spatial derivatives [55,56]. We also note
that the regularized reference frame transformation is applied,
to express the required populations from their original refer-
ence frame to the target reference frame λ0. The populations
are reconstructed at the departure point x′ = xb − vλ0

i δt/2,
with the MUSCL scheme [57],

φ̄
+,λ0
i (x′, tn) = φ̄

+,λ0
i (x j, tn) + (x′ − x j ) · σλ0

i (x j, tn). (47)

According to Eq. (44), we obtain the φ̄
λ0
i populations at the

interface xb and time tn+1/2 by

φ̄
λ0
i (xb, tn+1/2) = φ̄

+,λ0
i (x′, tn). (48)
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FIG. 1. Density (top), velocity (middle), and pressure (bottom)
profiles for Sod’s shock tube, at t = 0.2. Dashed line: Semi-
Lagrangian (SL) scheme. Solid line: Finite-volume (FV) scheme.
Thick solid line: Reference from an exact Riemann solver.

The density, momentum, and temperature are finally com-
puted by

ρ1 =
Q−1∑
i=0

f̄ λ0
i (xb, tn+1/2), (49)

ρ1u1 =
Q−1∑
i=0

vλ0
i f̄ λ0

i (xb, tn+1/2), (50)

ρ1E1 =
Q−1∑
i=0

(
vλ0

i

)2

2
f̄ λ0
i (xb, tn+1/2) +

Q−1∑
i=0

ḡλ0
i (xb, tn+1/2). (51)

FIG. 2. Density (top), velocity (middle), and pressure (bottom)
profiles for Lax problem at t = 0.14. Dashed line: Semi-Lagrangian
(SL) scheme. Solid line: Finite-volume (FV) scheme. Thick solid
line: Reference from an exact Riemann solver.

The computed moments define the corrector reference
frame λ1 = {u1, T1}. We repeat the above half-time step
semi-Lagrangian advection step with the updated λ1 and the
predictor-corrector loop is continued on reference frame con-
vergence λb = limk→∞ λk (xb, tn+1/2). With this procedure we
enforce the execution of the advection at the optimal comov-
ing reference frame. With the completion of the advection,
Eq. (45) is used to obtain the populations φ

λb
i (xb, tn+1/2),

where the equilibria that are needed are the exact comoving
equilibria (10) and (11). The flux of the populations across
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FIG. 3. Density profile for the Shu-Osher problem at t = 1.8.
Dashed line: Semi-Lagrangian (SL) scheme. Solid line: Finite-
volume (FV) scheme. Thick solid line: Reference solution [61],
obtained with characteristic-based fifth order WENO, RK4 temporal
integration and resolution of 5000 points. Middle: A zoom into the
high-frequency wave region. Bottom: FV scheme with high resolu-
tion L = 2400.

the interface of the cell x j , in the local reference frame λ, can
then be computed as

Fλ
φ,i(x j, tn+1/2) =

∑
c

(
vλ

i · nc
)
φλ

i

(
xb,c, tn+1/2

)
, (52)

where xb,c designates the center of the cth face of the cell and
nc is the outwards normal vector.

FIG. 4. Density (top), velocity (middle), and pressure (bottom)
profiles for the strong shock tube problem at t = 0.012. Solid line:
Finite-volume (FV) scheme. Dashed line: Reference from an exact
Riemann solver.

4. Summary of the algorithm

Based on the previous steps, we summarize the evolution
procedure from time tn to tn+1:

(1) Initialization of the populations
Loop over cell centers x j : The populations φ̃i(x j, tn)

are expressed according to local reference frame, λ =
{u(x j, tn), T (x j, tn)}.

(2) Calculation of the fluxes
Loop over cell centers x j : Calculation of the φ̄+

i (x j, tn)
populations, according to Eq. (46).
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FIG. 5. Density (top), velocity (middle), and pressure (bottom)
profiles for the two blast wave problem, at t = 0.038. Solid line:
Finite-volume (FV) scheme. Dashed line: Reference solution [42].

Loop over cell faces xb: Calculation of the populations
φi(xb, tn+1/2) at the comoving reference frame, according to
the iteration procedure in Sec. III B 3.

(3) Population update
Loop over cell centers x j : Computation of the fluxes to

the local reference frame of the cell Eq. (52) and update the
populations through Eqs. (42) and (43).

It is interesting to underline the differences between the
proposed formulation in the optimal reference frame and the
original DUGKS scheme [32]. First we note that in the pro-
posed scheme, the reference frame is adaptive in space and

FIG. 6. Density (top), velocity (middle), and pressure (bottom)
profiles for the double rarefaction problem, at t = 0.1. Solid line:
Finite-volume (FV) scheme. Dashed line: Reference from an exact
Riemann solver.

time and the regularized transformation (Sec. II C) is applied
when it is necessary to connect different reference frames.
The key point of the current scheme is the computation of
the fluxes in the comoving reference frame. This construc-
tion, enforced by the predictor-corrector iterative procedure,
ensures Galilean invariance and avoids any errors originating
from truncanted equilibria. While the computational cost is in-
creased relative to the original DUGKS, the operational range
of a given lattice is extended greatly without increasing the
number of discrete speeds. As shown in the results, extreme
compressible flows can be accurately and robustly captured

015301-8



PARTICLES ON DEMAND FOR FLOWS WITH STRONG … PHYSICAL REVIEW E 106, 015301 (2022)

FIG. 7. Density (top), velocity (middle), and pressure (bottom)
profiles for the Le Blanc problem, at t = 6. Solid line: Finite-volume
(FV) scheme. Dashed line: Reference solution [42].

with the D2Q16 lattice in a comoving reference frame, which
is not feasible if a uniform reference frame is imposed. A
comparison of the runtimes between the proposed model and
original DUGKS is further discussed in Sec. IV B 6.

IV. RESULTS AND DISCUSSION

In this section we validate our model through one-
dimensional (1D) and 2D benchmarks. First we test the model
with 1D Riemann problems, involving up to moderate dis-
continuities. Flows with low density-near vacuum regions and
very strong discontinuities are investigated subsequently with

FIG. 8. Density (top), velocity (middle), and pressure (bottom)
profiles for the Sedov blast wave problem, at t = 0.001. Solid line:
Finite-volume (FV) scheme. Dashed line: Reference solution [42].

the finite-volume scheme (Sec. III B). In these flows, where
the mass conservation is of high importance, we compare the
performance of the two discretization schemes. We conclude
the results with classical high Mach 2D problems. Unless
stated otherwise, the numerical parameters of the simulations
are the following. The time step δt is such that the Courant-
Friedrichs-Lewy (CFL) number is CFL = max |viα|(δt/δx) =
0.2, where δx is the grid resolution. The adiabatic exponent is
γ = 1.4. Additionally, the viscosity is low enough such that
the results remain invariant [typically μ ∼ O(10−3–10−2)].
Finally, we note that the formulation of the initial and bound-
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ary conditions are based on nondimensional variables, scaled
with appropirate reference density, velocity, and pressure.

A. One-dimensional gas dynamic problems
with weak to moderate discontinuities

1. Sod’s shock tube

In the first case we simulate Sod’s shock tube [58], which
is a typical benchmark Riemann problem for a compressible
flow solver. The initial conditions are

(ρ, u, p) =
{

(1, 0, 0.15), 0 � x < 0.5,

(0.125, 0, 0.015), 0.5 � x � 1.
(53)

The resolution of the computational domain is L = 600. The
results for the density, velocity, and pressure profiles at time
t = 0.2 are shown in Fig. 1, indicating very good match with
the exact solution.

2. Lax problem

We continue with the Lax problem [59], with the following
initial conditions:

(ρ, u, p) =
{

(0.445, 0.698, 3.528), 0 � x < 0.5,

(0.5, 0, 0.571), 0.5 � x � 1.
(54)

The simulation is performed with L = 600, until t = 0.14.
The results, shown in Fig. 2, compare very well with the exact
solution, with the exception of minor oscillations. The pres-
ence of numerical oscillations at the contact wave has been
also reported at thermal compressible DUGKS simulations,
being sensitive to the numerical limiter used for the spatial
reconstruction [33].

3. Shock density-wave interaction

In this case, also known as Shu-Osher problem [60], a
Mach 3 shock wave interacts with a perturbed density field.
The interaction leads to discontinuities and the formation of
small structures. The initial conditions are

(ρ, u, p) =
{

(3.857, 2.629, 10.333), 0 � x < 1,

(1 + 0.2 sin(5(x − 5)), 0, 1), 1 � x � 10.

(55)
The results for the density profile, at t = 1.8 and L = 800, are
shown in Fig. 3. It is clear that the shock location and the high-
frequency waves are captured very well, apart from a small
underestimation of the amplitudes of the postshock waves.
The density profile for a simulations with high resolution of
L = 2400 are also shown in Fig. 3, indicating an excellent
match with the reference solution [61].

B. One-dimensional gas dynamic problems
with very strong discontinuities

In this section we validate the model against flows with
very strong discontinuities. We continue with the finite-
volume discretization, the conservative properties of which
are important for this regime. A comparison between the
semi-Lagrangian and the finite-volume scheme is discussed
in the following Sec. IV B 6.

FIG. 9. Comparison of semi-Lagrangian (SL) and finite-volume
schemes (FV). Top: Strong shock tube. Middle: Le Blanc problem.
Bottom: Evolution of mass for the Le Blanc problem.

1. Strong shock tube

We consider the case of a strong shock tube [62], where the
ratio between the temperature of the left and right side is 105.
The initial conditions for this problem are

(ρ, u, p) =
{

(1, 0, 1000), 0 � x < 0.5,

(1, 0, 0.01), 0.5 � x � 1.
(56)

This problem, characterized by the strong temperature
discontinuity and a high Mach number of 198, probes the
robustness and accuracy of the numerical methods. The results
of the simulation, at t = 0.012 and L = 800, are shown in
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FIG. 10. Two-dimensional Riemann problem with three different resolutions, [125,125] (left), [250,250] (middle), and [750,750] (right).
The top row shows plots of the density fields, at t = 0.25. The bottom row represent 30 equidistant density contours.

Fig. 4. Overall, a very good agreement with the exact solution
is noted.

2. Two blast waves interaction problem

The next test case is the two-blast-wave interaction prob-
lem, proposed by Woodward and Colella [63]. The following
initial conditions are imposed for this problem:

(ρ, u, p) =
⎧⎨
⎩

(1, 0, 1000), 0 � x < 0.1,

(1, 0, 0.01), 0.1 � x < 0.9,

(1, 0, 100), 0.9 � x < 1.

(57)

The resolution is L = 1600 and reflective boundary con-
ditions (BCs) are applied at x = 0 and x = 1. The results at
t = 0.038, shown in Fig. 5, are in very good agreement with
the reference solution from Ref. [42].

3. Double rarefaction problem

We continue with a near-vacuum test case, which is known
as the double rarefaction problem [64]. The initial conditions
are as follows:

(ρ, u, p) =
{

(1,−2, 0.1), 0 � x < 0.5,

(1, 2, 0.1), 0.5 � x � 1.
(58)

The results are compared with the exact solution at t = 0.1
and L = 800, as shown in Fig. 6. It can be seen that as
the two rarefaction waves propagate toward opposite direc-
tions, a near-vacuum is formed in the center of the domain.
Nonetheless, a good agreement to the reference solution can
be observed.

4. Le Blanc problem

The Le Blanc problem is considered next [65], which in-
volves very strong discontinuities and is initialized with the
following conditions:

(ρ, u, p) =
{

(1, 0, 2/3 × 10−1), 0 � x < 3,

(10−3, 0, 2/3 × 10−10), 3 � x � 9.
(59)

In this problem, the adiabatic exponent is fixed to γ = 5/3.
Figure 7 shows the results at t = 6 and L = 4000. With the
exception of minor oscillations, a very good agreement of the
present scheme with the reference solution [42] is observed.

5. Planar Sedov blast-wave problem

The final 1D test case is the planar Sedov blast-wave prob-
lem [66]. The initial conditions for this case are as follows:

(ρ, u, p)=
{

(1, 0, 2.56 × 108), 2 − 0.5δx � x � 2 + 0.5δx,
(10−3, 0, 4 × 10−13), otherwise.

(60)

The initial conditions of this problem approximate a δ

function of pressure, concentrated at the center of the
domain and almost vanishing everywhere else. For the
implementation, a steep Gaussian distribution of density was
imposed, with the same energy input as implied by (60). The
blast wave emanating from the center propagates outwards,
creating a postshock region of very low density. It is noted
that the initial ratio of pressure between the center and the
surroundings is 21 orders of magnitude. The results are shown
in Fig. 8, at t = 0.001 and L = 1600, demonstrating very
good agreement with the reference solution [42].

6. Comparison of semi-Lagrangian and finite-volume schemes

We compare in this section the two numerical schemes
that were used in this work. As mentioned above, the key
distinction between the two methods is that the finite-volume
discretization is strictly conservative, whereas the semi-
Lagrangian method is not. While there exist conservative
formulations [52], they have not been the focus of the current
work. To highlight the effect trough our test cases, we com-
pare the strong shock tube and the Le Blanc problem. The
former is characterized by strong discontinuities in pressure
and temperature but the density is of the same order. In
contrast, the Le Blanc problem involves large variations in the
density. Figure 9 compares the results of the two numerical
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schemes for these problems. For the case of the strong shock
tube, an almost identical profile is attained, with minor
oscillations being more pronounced for the semi-Lagrangian
scheme. On the other hand, the performance of the two
schemes deviates for the case of the Le Blanc problem. Here
we notice that the finite-volume discretization leads to a very
accurate comparison with the reference solution. However, a
discrepancy in density is observed for the semi-Lagrangian
scheme. In particular, an under prediction in the density as
well as a mismatch of the shock location are present. This
behavior is expected for problems involving low densities,
since the effect of the conservation error is more pronounced.

We conclude the comparison with a comment regarding
the computational efficiency of the two schemes. Comparing
the two algorithms, one can notice that per time-step one
semi-Lagrangian step is included in the flux calculation for
the finite-volume realization. Therefore, the computational
cost of the finite-volume scheme, per time step, is in general
higher than the semi-Lagrangian scheme. However, the added
cost to ensure strict conservation remains reasonable. In
particular, we compared the runtimes of the two schemes,
for a given level of accuracy (same L2 error) for the
Shu-Osher problem and observed only 20% increase for the
finite-volume implementation. We need to stress, however,
that a comprehensive study of the computational performance
of the two schemes, including efficiency, stability, and
numerical dissipation, requires further in-depth investigations
and is left for future work.

Finally, we compare the computational efficiency of the
finite-volume PonD model with the original DUGKS scheme.
The reference frame transformations as well as the predictor-
corrector iterations during the flux calculation result in a
computational overhead compared with the standard DUGKS
scheme. For a quantitative discussion, we measure the run-
times of the schemes, using the Shu-Osher problem. With the
same numerical parameters, the runtime of the PonD model
is 3.7 times larger than the DUGKS scheme. However, we
observe that the PonD model is 2.1 times faster than DUGKS
if we compare the two models with the same level of accuracy
(same L2 error).

C. Two-dimensional cases

1. Two-dimensional Riemann problem

As a first validation in two dimensions we simulate a
2D Riemann problem, which is a classical benchmark for
compressible flow solvers [67]. A square domain (x, y) ∈
[0, 1] × [0, 1] is divided into four quadrants, each of which
is initialized with constant values of density, velocity, and
pressure as follows:

(ρ, ux, uy, p) =

⎧⎪⎨
⎪⎩

(0.5313, 0, 0, 0.4), x > 0.5, y > 0.5,

(1, 0.7276, 0, 1), x � 0.5, y > 0.5,

(0.8, 0, 0, 1), x � 0.5, y � 0.5,

(1, 0, 0.7276, 1), x > 0.5, y � 0.5.

(61)
At the boundaries, a zero-gradient BC was imposed ∂n f = 0,
where n is the outwards unit normal vector. Three simu-
lations with increasing resolution, L = 125, 250, 750, were
performed. The results of the density field, as well as den-

FIG. 11. Top: The configuration of the 2D explosion in a box.
Bottom: Thirty equally spaced density contours in the range ρ ∈
[0.52, 3.8] and at t = 0.5 are shown.

sity contours near the center of the domain, are depicted in
Fig. 10. The specified initialization of the Riemann problem
leads to shock waves interacting and propagating toward the
upper right quadrant, while a complex pattern is formed in the
opposite direction. The results show a very good agreement
with the reference solutions in Refs. [67,68]. Moreover, the
refinement of the mesh leads to an increasing resolution of the
finer structures near the origin.

2. Two-dimensional explosion in a box

We consider here an unsteady explosion enclosed in a 2D
box. The configuration of this case is shown schematically in
Fig. 11. The computational domain [0, 1] × [0, 1] is initial-
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FIG. 12. RMI problem, with the shock wave traveling from the
light medium toward the heavy one. Top: Density field at times: t =
0, 0.06, 0.3, 1.15. Bottom: Amplitude growth of the instability and
comparison with Ref. [71].

ized with the following conditions:

(ρ, ux, uy, p) =
{

(5, 0, 0, 5), |(x, y) − (0.4, 0.4)| < 0.3,

(1, 0, 0, 1), otherwise.
(62)

The domain was discretized with 256 points per direction
and reflective BCs were imposed on the walls of the box.
With this setup, the circular shock waves expand toward the
boundaries of the box and the reflected waves interact in a
complicated manner. A snapshot from the evolution at t = 0.5
is shown in Fig. 11, which depicts 30 density contours. A
comparison with the results obtained from a block-structured
adaptive mesh refinement solver in Ref. [69] demonstrates an
excellent agreement between the observed patterns in the den-
sity field.

3. Richtmyer-Meshkov instability

We proceed further with the validation of our model and
consider the simulation of the Richtmyer-Meshkov instability
(RMI) [70]. In the RMI problem, a shock wave collides with
the interface of two fluids with different densities. In the
following, we will compare our results with a numerical study
of the RMI from Ref. [71].

The first type of RMI problem to consider is the case
of a shock wave, with Mach number of 1.2, traveling
from the light medium to the heavy one. The computational

(a)

(b)

(c)

(d)

FIG. 13. RMI problem, with the shock wave traveling from the
heavy medium toward the light one. Top: Density field at times: t =
0, 0.02, 0.08, 0.16. Bottom: Amplitude growth of the instability and
comparison with Ref. [71].

domain [0, 0.6] × [0, 0.1] is initialized with the following
conditions:

(ρ, ux, uy, p)

=
⎧⎨
⎩

(1.34161, 0.361538, 0, 0.151332), 0 � x < 1/6,

(1, 0, 0, 1), 1/6 � x < 1/4,

(5.04, 0, 0, 1), otherwise.
(63)

Additionally, a sinusoidal perturbation with amplitude of
0.008 is imposed on the interface. The simulation was
performed with a grid [600,100]. The numerical setup is con-
cluded with inflow BC on the left boundary, outflow BC on
the right boundary and zero-gradient BC at the bottom and
top boundaries. The temporal evolution of the instability is
captured in Fig. 12, which shows the density field at different
times. The simulation compares very well with the corre-
sponding results from Ref. [71]. A quantitative comparison
is demonstrated in Fig. 12, which shows the change of the
perturbation amplitude with time.

In the second type of the RMI problem, a shock wave with
2.5 Mach number, travels from the heavy medium to the light
one. This configuration is achieved with the following initial
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FIG. 14. The double Mach reflection problem. Top: Density field. Bottom: Pressure field.

FIG. 15. The double Mach reflection problem. Comparison of 43 density contours of current results (left) with reference [75] (right).
Reference figure reprinted from Ref. [75] with permission from Elsevier.
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FIG. 16. Density (left), velocity (middle), and pressure (right) profiles for the 1D Riemann “jet,” at t = 0.06. Solid line: Finite-volume
(FV) scheme. Dashed line: Reference from exact Riemann solver.

conditions:

(ρ, ux, uy, p) =
⎧⎨
⎩

(3.33, 2.07, 0, 7.125), 0 � x < 1/12,

(1, 0, 0, 1), 1/12 � x < 1/6,

(0.138, 0, 0, 1), otherwise.
(64)

Apart from the initial conditions, the numerical setup is the
same as in the previous RMI simulation. The results, shown
in Fig. 13, are in very good agreement with Ref. [71].

4. Double Mach reflection

The double Mach reflection problem is an important
benchmark for compressible solvers, which has been stud-
ied extensively experimentally, theoretically and numerically
[63,72,73]. In this setup, a Mach 10 shock wave collides with
a reflecting wall, which is inclined 30◦ counterclockwise with
respect to the shock propagation direction. The computational
domain is a [0, 4] × [0, 1] rectangle discretized with a resolu-
tion [1000,250].

Following the conventional configuration [74], the simula-
tion is initialized with a shock inclined 60◦ to the horizontal,
intersecting the bottom boundary at x = 1/6. The undisturbed
state of the gas is (ρ, ux, uy, p) = (1.4, 0, 0, 1) and the post-
shock state (ρ, ux, uy, p) = (8, 4.125

√
3,−4.125, 116.5). At

the bottom boundary, the fixed postshock conditions are
imposed along x ∈ [0, 1/6] and reflecting BCs along x ∈
[1/6, 4]. At the left boundary, the fixed postshock conditions
are also imposed and on the right boundary zero gradient BCs.
At the top boundary, time-dependent BC are specified, which
track the motion of the initial Mach 10 shock wave [63].

The results for the density and pressure fields at t = 0.2 are
shown in Fig. 14, with the flow characteristics being in very
good agreement with corresponding results from the litera-
ture. Following the impact of the shock wave on the reflecting
wall, a self-similar structure is formed and growing along the
propagation of the shock. The key features of the flow are
distinguished in the results, including the two Mach stems,
two triple points, a prime slip line, and a fainted secondary slip
line as well as the jet formation near the wall. A comparison
of the density and pressure fields with references from the
literature [63,74,75], shown in Fig. 15, demonstrate very good
match in terms of the feature locations and the magnitude of
the hydrodynamic fields.

5. Astrophysical jet

As a final test case, we consider an astrophysical jet of
Mach 80, without radiative cooling [43]. This case is an
example of actual gas flows revealed from images of the
Hubble Space Telescope and therefore is of high scientific
interest. Following Ref. [76], we first present a 1D “jet” Rie-
mann problem in a domain [0,2.0], with the following initial
conditions:

(ρ, u, p) =
{

(5, 30, 0.4127), 0 � x < 0.1,

(0.5, 0, 0.4127), 0.1 � x < 2.
(65)

The results of the simulation with a resolution of 1500 points
and γ = 5/3 are shown in Fig. 16. We continue with the
2D case, according to the configuration in Ref. [43]. The
computational domain [0, 2] × [−0.5, 0.5] is initialized with
the following conditions,

(ρ, ux, uy, p)

=
{

(5, 30, 0, 0.4127), if x = 0, −0.05 � y � 0.05,

(0.5, 0, 0, 0.4127), otherwise.
(66)

Outflow BCs are used around the domain, except the left
boundary, where the prescribed fixed conditions are imposed.
The simulation was performed with resolution [1000,500].
The density, pressure, temperature, and Mach number are
shown in Fig. 17, where the bow shock propagating into the
surrounding medium is captured.

V. CONCLUSION

In this work, we have presented a PonD model with a re-
vised reference frame transformation using Grad’s projection
to enhance stability and accuracy. The resulting scheme was
discretized using both a semi-Lagrangian approach as well
as a finite-volume realization. For validation, we have se-
lected a number of challenging 1D and 2D test cases to probe
accuracy and robustness for flows including very strong pres-
sure and temperature discontinuities, large Mach numbers,
and near-vacuum regions. The results show that the proposed
kinetic scheme, which is tightly connected to the classical
LBM, can indeed capture the highly complex and nonlin-
ear dynamics of high-speed compressible flows with strong
discontinuities.

With these encouraging results, a number of possible direc-
tions for future work arise. For instance, using an adaptively
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FIG. 17. Astrophysical jet problem. The following fields are plotted: Density (top left), pressure (top right), temperature (bottom left), and
Mach number (bottom right).

refined velocity space, in the spirit of Ref. [45], will not only
increase efficiency but also extend the scheme to nonequi-
librium flows. Furthermore, performance in three dimensions
and for flows involving complex geometries shall be assessed
in future work.
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