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A paradigm shift in the physics of laser-plasma interactions is approaching with the commissioning of
multipetawatt laser facilities worldwide. Radiation reaction processes will result in the onset of electron-positron
pair cascades and, with that, the absorption and partitioning of the incident laser energy, as well as the energy
transport throughout the irradiated targets. To accurately quantify these effects, one must know the focused
intensity on target in situ. In this work, a way of measuring the focused intensity on target is proposed based
upon the ionization of xenon gas at low ambient pressure. The field ionization rates from two works [Phys. Rev.
A 59, 569 (1999) and Phys. Rev. A 98, 043407 (2018)], where the latter rate has been derived using quantum
mechanics, have been implemented in the particle-in-cell code SMILEI [Comput. Phys. Commun. 222, 351
(2018)]. A series of one- and two-dimensional simulations are compared and shown to reproduce the charge
states without presenting visible differences when increasing the simulation dimensionality. They provide a way
to accurately verify the intensity on target using in situ measurements.
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I. INTRODUCTION

There has been tremendous progress towards the con-
struction of multipetawatt (PW) class laser facilities [1,2],
providing extreme powers to target [3,4]. Equally intense
lasers will be built in the United Kingdom [5], France [6],
the United States [7,8], South Korea [9], China [10], and the
Russian Federation [11]. Focused laser intensities greater than
1023 W/cm2 will determine which theoretical model for radi-
ation reaction (RR) applies to laser-plasma interactions such
as relativistic tunneling, quantum electrodynamics cascades
[12], and prolific pair production [13,14], naming only a few
[15].

Historically, the focused intensity has been diagnosed
by separately measuring the pulse’s spatial and temporal
parameters at low power and then extrapolating to the re-
quired, higher, peak power [16]. However, realistic wavefront,
spectral phase, and temporal distortions make the peak in-
tensities achieved in experiments to be drastically different
from their theoretically expected values [17]. This is due to
the spatiotemporal couplings (STCs) from a beam pulse of a
O(10) PW laser facility: they become increasingly significant
as the beam diameter increases and the pulse’s duration de-
creases. The ELI-NP (Apollon) beam diameter is 550 mm [18]
(400 mm [17]). To illustrate this effect [19], Fig. 1 shows the
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degradation of a beam-pulse intensity as a function of pulse
front tilt (PFT). For a beam with a PFT of 0.2 fs/mm (where
0.1 fs/mm corresponds to an angular deviance in the paral-
lelism of the compressor gratings of around 20 μrad [17])
this corresponds to as much as one order of magnitude re-
duction in the actual peak intensity to target. This will prevent
researchers from distinguishing between different theoretical
models in the laser-plasma interaction with confidence.

There is no easy way to account for chromatic aberrations
and frequency chirps, constraining conventional (direct) meth-
ods for ultra-high-power laser pulse characterization; indirect
methods have to be used. Work done towards such approaches
can be categorized into three main groups: Thomson scat-
tering [20–25], ponderomotive scattering of charged particles
from the focus of the laser [26–30], and laser-field ionization
of high-Z low-density targets [31–34].

This article describes a method to diagnose the peak in-
tensity, based on laser-field ionization of a rarefied high-Z
noble gas, self-consistently modeled using a fully relativistic
particle-in-cell (PIC) simulation code. Evidence is provided
that computationally efficient one-dimensional (1D) PIC sim-
ulations are accurate enough to infer an ultra-high-power
laser’s peak intensity. In contrast to [32–34], the effect of
radiation reaction has been included. The validity of the ap-
proach was confirmed by comparison with two-dimensional
(2D) simulations: increasing the dimensionality of the PIC
simulations enables new effects to appear. Considerations
about the practical realization of the diagnostic and how this
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FIG. 1. Ratio of the focused peak intensity of a beam pulse of
central wavelength 800 nm and bandwidth of 50 nm having PFT
degradation to the focused peak intensity of the STC-free beam pulse
(thus called reduction), as a function of the beam’s diameter for fixed
degradation or as a function of the degradation’s magnitude for fixed
diameter.

can be used in high-repetition-rate systems are included. Par-
ticular attention is paid to the transition between the tunnel
ionization regime (TI) and the barrier suppression ionization
regime (BSI) (having two subregimes, each described by a
different ionization rate). The simulations have been imple-
mented in the SMILEI open-source PIC code [35], along with
the piecewise defined rate describing the three regimes based
upon state-of-the art research on field ionization [12,36–38].

II. LASER-FIELD IONIZATION RATES

Experiments confirming TI rates have already been per-
formed, with the assumption that the laser intensity is known
so that fits of the collected results were made based upon the
theoretical rates [39–43].

The well-known Keldysh parameter [44] is

γK = EK

El
= ωL

√
2me IPi

e El
, (1)

where me is the electron’s rest mass, IPi the ionization poten-
tial (IP) of the atom, ωL the frequency of the light, e the funda-
mental unit of charge, and El the peak electric field of the laser
pulse. γK dictates in which regime the ionization takes place:
multiphoton (MPI) if γK > 1 or tunnel (TI) if γK < 1. For
current state-of-the-art laser-matter interaction experiments,
where γK � 1, the Perelomov, Popov, and Terent’Ev (PPT)
theory for field ionization rates [45,46] is often used. Follow-
ing [36], the PPT static electric field ionization rate is

wlm = ωa κ2 C2
κl∗ (2l + 1)

(
2

F

)2n∗−|m|−1

× (l + |m|)!
2|m|(|m|)!(l − |m|)! exp

(−2

3F

)
,

C2
κl∗ = 22n∗

n∗�(n∗ + l∗ + 1)�(n∗ − l∗)
, (2)

where l and m are the orbital and magnetic quantum
numbers of the electron, respectively, ωa the atomic unit of
frequency, κ2 = IPi/IPH with IPH = mee4/(2h̄2) ≈ 13.6 eV,
F = E/(κ3Ea) with E the local value of the electric field and
Ea the atomic unit of electric field, n∗ = Z/κ , l∗ = n∗ − 1,
with Z the ion charge number, and �(x) the Gamma function.
This PPT rate was already implemented in SMILEI, and it
approaches the Ammosov-Delone-Krainov (ADK) rate [47]
when n∗ � 1.

SMILEI resolves the fast temporal oscillations of the laser
electric field, thus Eq. (2) does not need to be averaged over
one laser period.

However, quantum tunneling occurs only when the po-
tential barrier caused by the combined atomic and laser
fields is higher than the initial unperturbed energy level
of the electron. If this is not the case, the electron classi-
cally escapes above the potential barrier [48]: BSI happens
for E � Ecr = Ea κ4/(16Z ). For E > Ecr the tunnel rates
strongly deviate from numerically calculated rates [49], as
expected. The transition region between TI and BSI is cor-
rectly described by the Bauer-Mulser (BM) rate wBM =
2.4ωa(E/Ea)2(IPH/IPi )2, proven to work for E ∼ Ecr [38].
Furthermore, wBM deviates from numerically calculated rates
as E � Ecr [36,38]. Derived both classically and quantum
mechanically (in the motionless and free electron approxima-
tion), the rate dependence on E for E � Ecr is linear [36]:
wBSI = p ωa(E/Ea)

√
(IPH/IPi ). The coefficient p ranges

from 0.62 to 0.87, depending on the potential used in
the derivation: for the three-dimensional (3D) Coulomb po-
tential p ≈ 0.8. Numerically integrating the time-dependent
Schrödinger equation shows that both approximations used in
the quantum derivation are indeed applicable [36]. wlm, wBM,
and wBSI are grouped into a piecewise-defined rate [37] which
describes the whole range of possible E values at the location
of the atom:

w(E ) ≈
⎧⎨
⎩

wlm , E � E1

wBM , E1 < E � E2 ,

wBSI , E > E2

(3)

where E1 and E2 are found by imposing continuity on w at
the transition points. This piecewise-defined rate has been
implemented as a functionality in SMILEI.

III. NUMERICAL SIMULATIONS

A. One-dimensional particle-in-cell simulations

For a fixed value of the laser’s normalized vector poten-
tial a0 = eEl/meωLc, a 1D PIC simulation shows how the
proportion of the different charge states evolves during the
passage of the laser pulse. Running 1D simulations to cover
the range a0 ∈ [6.8, . . . , 2162.8] (∼I ∈ [1020, . . . , 1025] PW
for a plane wave), the ionization behavior as I is varied can be
obtained. Fifteen thousand 1D simulations were run to finely
sample this intensity range. Xenon (Xe), atomic number 54,
was used, and the initially neutral gas density was chosen such
that the electron number density for the fully ionized gas, ne,
is low enough to make both collective effects and relativistic
self-focusing negligible. The first condition led to us setting
the plasma frequency ωp =

√
(ne e2/me ε0) to be such that the

plasma oscillation period is significantly longer than the laser

015205-2



IONIZATION STATES FOR THE MULTIPETAWATT … PHYSICAL REVIEW E 106, 015205 (2022)

FIG. 2. Xe charge states in a 1D PIC simulation. The gas density
was low enough to allow neglecting collective plasma effects and
relativistic self-focusing.

pulse [of O(10) fs at ultra-high-power laser facilities]. The
second condition led to us setting ne to be such that PL =
10 PW < Pcr = 17(ωL/ωp)2GW. To meet both constraints,
the neutral Xe number density n0 = 1.98 × 1012 cm−3 was
chosen.

Typical results of a 1D simulation are shown in Fig. 2.
The charge state dynamics are displayed as a function of time
during the simulation. The y axis represents the deposited
weights from a particle binning diagnostic for different ion
charge states, as a fraction of the total Xe species population’s
deposited weight. Loosely speaking, one value of any of the
cn curves represents what fraction from the total number of
the ions that particular charge state represents, at that par-
ticular time during the simulation. The electrons resulting
from ionization were injected into the simulation as a separate
species which had its RR module turned on. The laser had
a wavelength λL = 800 nm and a Gaussian temporal profile
with a full-width at half-maximum (FWHM) of six optical
cycles (6 TL). The extent of the laser’s temporal profile was
limited to 10 TL. The simulation box was 12 λL long, and
the spatial resolution was 8. On both sides, Silver-Müller
boundary conditions were chosen for the fields, and periodic
boundary conditions were chosen for the particles. The sim-
ulations lasted for 22 TL, and the number of particles per cell
(ppc) for Xe was 32. The same simulations, but with 128 ppc,
gave the same results as for those with 32 ppc.

The results for the whole range of intensities appear in
Fig. 3. Each data point from one cn curve corresponds to
the fraction of the deposited weight of the charge state Xen+

relative to the total deposited weights of all states at the end
of one simulation at a particular input intensity. The charge
states values at the end of each simulation are plotted against
the corresponding intensities.

B. Focal averaging and two-dimensional
particle-in-cell simulations

To diagnose I , the numerically-estimated functions cn(I )’s
shown in Fig. 3 are used to infer the number of Xe ions

FIG. 3. Xe representative charge states’ populations at the end
of 15 000 1D PIC simulations. These cn(I ) curves can be used to
calculate the number of ions produced in the focus.

expected to originate from the focus of the laser pulse. A
suitable model for I (	r ) is chosen, and the number of Xe ions
of charge state n+ is obtained from an integral over the focal
volume:

N (Xe n+) = n0

∫∫∫
cn[I (	r )]d3r. (4)

where

I (	r) = Im

1 + z2

z2
R

exp

(
−2ρ2

w2
z

)
(5)

and ρ =
√

x2 + y2, Im is the peak intensity, zR = πw2
0/λL is

the Rayleigh range, w0 = 3 μm is the beam waist, and wz =
w0

√
1 + (z2/z2

R).
To numerically calculate the integral from Eq. (4), linear

1D interpolators are used to obtain the values of cn at I values
not simulated using the PIC code but required by the integra-
tion routine. For I values outside the PIC-simulated range of
[1020, . . . , 1025] W/cm2, manual extrapolation for the highly
charged states (i.e., c47 to c54 ones) is done. From physical
considerations (confirmed by Fig. 3), any highly charged state
is not excited for I < 1020 W/cm2. Additionally, only the
fully ionized state remains for I > 1025 W/cm2.

A midpoint rule in two dimensions (z and ρ) is employed
(details are given in Appendix A).

To verify that the reduced dimensionality of the simula-
tions was not impacting the results, the relationship between I
and charge state distribution in two-dimensional (2D) simula-
tions was investigated. For a beam with a Gaussian transverse
mode, a 3 μm radius at focus, and the same λL and tem-
poral profile as above, the charge states at the end of the
simulation for 1000 different a0 values are presented in the
left panel of Fig. 4. The middle panel of Fig. 4 shows the
spatial distribution of a representative beam’s squared electric
field from one such 2D simulation. The simulation box was
12 λL along x and 20 λL along y, with Silver-Müller boundary
conditions along x and periodic boundary conditions along y.
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FIG. 4. (a) Xenon representative charge states’ populations at the end of 1000 2D Gaussian beam PIC simulations. (b) Squared electric
field at one time step, across the 2D PIC simulation box, for a simulation with a0 = 707.19. (c) Results of the integration of the 1D charge
states across the 2D PIC simulation box.

To check the consistency of the results between the 1D and
2D simulations, a 2D version of the 3D integral from Eq. (4)
of the cn was performed, while keeping the grid size the same
as the 2D simulation box. The right panel of Fig. 4 confirms
that the charge states at the end of a 2D simulation reproduce
the 1D results.

One needs to estimate the numerical errors of the midpoint
rule to ensure the veracity of the results. When done as in
Appendix A, the error bars are too small to be visible on the
plot of N (Xe n+)’s from Fig. 5.

The ionization-induced defocusing effect [50,51] is taken
into account by default by the self-consistent modeling of the
interaction performed by the PIC code. For the gas densities
which are proposed to be used, this effect does not invalidate
our method.

FIG. 5. Number of xenon ions produced in the focus of the Gaus-
sian beam from Eq. (5). One data point on each curve corresponds to
the number of ions arising from one, fixed, peak intensity Im value in
Eq. (5). Results on the y axis are numerical calculations for N (Xe n+)
from Eq. (4).

IV. DETECTION OF THE IONS ORIGINATING
FROM THE FOCUS OF THE BEAM

The curve N (Xe n+) as function of I was fitted using a
relevance vector machine (RVM) [52], as explained in Ap-
pendix B. The method can be applied to any curve from
Fig. 5. For N (Xe 54+), only eight scalar quantities are needed
for the posterior predictive distribution, and the mean-squared
error obtained is ∼9 × 10−3 when log10 was taken for both
N (Xe 54+) and I and then standardized for higher robustness
of the algorithm to numerical instabilities.

To count the ions, filtering based on their charge-to-mass
ratio is needed, and this is normally done using a Thomson
spectrometer. A reasonable estimate for the minimum number
of ions of a given charge state to be collected for a clear
differentiation of that charge state is Nmin = 50. One therefore
needs to calculate the minimum initial gas density to allow
Nmin ions to be collected, taking into account realistic dis-
tances from the spectrometer pinhole to the interaction point.

The ions are assumed to expand isotropically from the
focus (confirmed by the 2D PIC simulations). A circular
aperture of diameter D = 500 μm gives a solid angle of 
 =
(πD2/4)/R2 (the planar area of the aperture is used because its
dimensions need to be at least one order of magnitude smaller
than the source-aperture distance R based on experimental
considerations). The total number of Xe ions produced in the
focus is read from Fig. 5 for any charge state and is denoted as
Nn+

total for charge state n+. Nn+
total corresponds to the full 4π sr

for an isotropic ejection of the ions.
Only NTh = Nn+

total 
/(4π ) ions will be actually collected
by the pinhole, for any n+. For 50 ions of each charge
state to pass through the pinhole, the aperture has to be
placed at around or less than R = 0.1 cm from the beam’s
focus if the focused intensity is around 1023W/cm2. This
is not realizable in practice. One needs to increase the in-
teraction point-pinhole distance. Doing so, multiple shots
are needed to collect enough statistics for a good dif-
ferentiation of the parabolas. Increasing D decreases the
spectrometer’s capability to discriminate between different
charge states. While providing a higher ion flux at the
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detector, a very large aperture is not suitable for the envisioned
experiments.

The solution for a single-shot experiment is to increase
the neutral gas number density n0. However, one needs to
avoid relativistic self-focusing: it would provide an artificially
high estimate of the peak intensity. The results presented so
far are for simulations with n0 = 1.98 × 1012 cm−3 for Xe.
These were repeated for n0’s up to three orders of magnitude
higher. No self-focusing was observed in the 2D simulations.
Increasing n0 leads to a higher number of ions produced in the
focus: a single-shot measurement of the peak intensity using
Xe is more easily achieved. Depending on the experimental
constraints, one can run additional simulations to check when
self-focusing appears and choose the most suitable n0 for the
optimum source-pinhole distance.

The prepulse of the laser does not influence the results
obtained via our diagnostic. For a contrast ratio of 108:1,
shooting a pulse at 1023 W/cm2, the pedestal is of 1015

W/cm2 and laser-field ionization only starts to develop: only
charge states from the lower end will be populated. Reference
[32] demonstrated that any initial state of the target, as long
as it contains nonzero populations only in the lower end of the
charge states, produces the same charge state distribution after
the passage of the laser pulse.

Simulations for argon were also performed, and they show
that it is completely ionized at ∼IAr

max = 3 × 1021 W/cm2. For
facilities delivering ultra-high power pulses at high repetition
rates, assuming the beam leaks through a mirror after the
compressor, this method is suitable to be an in situ diag-
nostic for the peak intensity. Alternatively, a reflection from
a blast-shield glass plate or transmission through a turning
mirror are equally well suited to transport the beam into a sec-
ondary chamber to perform ionization measurements there.
This allows measuring the peak intensity regardless of the
experiment conducted in the main interaction chamber.

V. CONCLUSION

To conclude, a method to diagnose the peak intensity of
ultra-intense laser pulses has been presented. It can be easily
implemented and requires modest computational resources
and access to the open-source modified SMILEI PIC code
[53]. The numerical experiments run on an Intel i7-7500U
in one day of wall clock time. This work allows transition-
ing from currently performed commissioning experiments on
O(10) PW laser facilities to the community’s first experiments
by providing an accurate assessment of the true intensity on
the target.
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APPENDIX A: NUMERICAL INTEGRATION DETAILS

A 2D integration scheme is used because Gaussian beams
are symmetric with respect to the azimuthal dimension. A 2D
cylindrical integral is thus performed, being then multiplied
by 2π to calculate the full 3D integral.

The integration ranges are obtained by considering that
below a threshold intensity the c47 to c54 charge states are not
excited. From Fig. 3, Ithr = 1020 W/cm2.

The integral in z is performed across [−zmax, zmax], with
zmax = zR(Im/Ithr − 1)0.5.

At each step along z, the integration along ρ is performed
across [0, ρmax], where ρmax is obtained by imposing that the
intensity at that particular z and ρmax equals Ithr, thus

ρmax =
√

−w2
z

2
ln

[(
1 + z2

z2
R

)
Ithr

Im

]
. (A1)

The number of steps in z was Nz = 212 and the number of
steps in ρ, for each z value, was Nρ = 212.

One needs to estimate the numerical errors of the com-
putational method to ensure the veracity of the results. The
N (Xe n+)’s from Eq. (4), obtained using the 2D midpoint rule,
are presented in Fig. 5. There integral estimates in the theory
of converging sequences of numerical approximations [55]
are shown (after being multiplied by n0). The result estimate
for one integral is denoted as IM , where M is the highest
number of points the laptop can accommodate, M = 212 for
both z and ρ axes. The same integral, with half the number
of points along both z and ρ, was performed and stored as
IM/2. The numerical error on a result IM was determined to be
|IM − IM/2|. After being multiplied by n0, these approxima-
tions to the numerical errors are too small to be visible on the
plot.

APPENDIX B: FIT FOR THE NUMBER OF IONS
ORIGINATING FROM THE FOCUS OF THE LASER BEAM

It is possible to train a regressor on the curves from our
Fig. 4 and then query it on unseen examples. Curve fitting
when the underlying data-generating distribution is unknown
is more and more prevalent nowadays in the form of machine
learning.

Bayesian thinking was adopted: this framework naturally
penalizes heavily complex models which overfit drastically
when tested on the hold-out set. The resulting fitting equa-
tion is envisioned to be practical, thus Bayesian linear
regression with the basis functions being the simple polyno-
mials was performed. Our regressor acquires a mean-squared
error on the test set of around 2 × 10−3 when the targets
have been standardized (mean made to be equal to 0 and
variance made to be equal to 1). This is comparable to results
which have been obtained using state-of-the-art ML algo-
rithms, such as the XGBoost [56] version of the ensemble
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of weak learners (i.e., boosted trees). The optimization algo-
rithms implemented in Optuna [57] were used for setting the
hyperparameters of the XGboost (in particular an algorithm
based on the evolutionary optimization strategy CMA-ES and
an algorithm based on trees called TPE). These algorithms
were let run to try to find suitable values for the hyperparam-
eters for 15 000 trials, and the objective of their minimization
was the mean-squared-error (MSE) on the validation set.

The data set is the hardest-to-model curve from our Fig. 4,
i.e., the one containing the fewest data points: the fully ionized
ions. It is denoted as D = {(xi, ti ): i = 1, 2, . . . , N}, where
N = 681, xi represents the intensity, and ti represents the
number of ions from the focus. The usual over-top arrow
for vectors is used, and a vector will be expressed through
a lower-case letter, while a matrix will be expressed as an
upper-case letter. Anything written in normal font and lower-
case letters is a real-valued scalar. The noise is modeled as
Gaussian, i.e., it comes from a normal distribution with mean
0 and variance 1/β2. The polynomial features are expressed,
for one input example xn, as 	φ(xn) = [1, xn, x2

n, . . . , xM
n ]. The

2-dimensional design matrix  contains across its rows the
	φ(xn)’s, for n ∈ {1, 2, . . . , N}. Although non-linear in the in-
put x, the model is linear in the fit parameters:

p(t |x, 	θ ) = N
(

t | 	wT 	φ(x),
1

β2

)
, (B1)

where 	θ is a generic notation for the parameters of the
model and 	w is a column vector with M elements. The
likelihood of the data 	t = [t1, t2, . . . , tN ]T and Xi = [xi] for
i ∈ {1, 2, . . . , N} (thus X is shape N × 1), i.e., the joint like-
lihood, given the assumption that the data points are drawn in
an i.i.d. fashion (identically and independently distributed), is

p(	t |X, 	w, β ) =
N∏

i=1

p(tn|xn, 	w, β ), (B2)

thus a Gaussian probability distribution function. A prior on
the weights 	w is put as

p( 	w|	α) =
M∏

i=1

N
(

wi | 0,
1

αi

)
, (B3)

where 	α = [α0, α1, α2 . . . , αM]T . The posterior on the
weights, from the Bayes’ rule, is proportional to the product of
the joint likelihood and the prior on the weights. As both of the
terms are Gaussian, the resulting product is again Gaussian:

p( 	w|	t, X, 	α, β ) = N ( 	w | 	m, �), (B4)

where

	m = β�T 	t, � = (A + βT )−1, (B5)

where A = diag(	α) (thus shape M × M). For an infinitely
broad prior, αi → 0 for i ∈ {1, 2, . . . , M}, the mode of the
posterior 	wMAP = arg max 	w p( 	w|	t, X, 	α, β ) tends to the max-
imum likelihood estimate of type I for the weights, 	wMLE,
commonly used in simple fits of data (which almost always
tend to overfit, especially in the small-data-set regime).

The priors on 	α and β are obtained through Empirical
Bayes (maximum likelihood type II). They are those values

which maximize the marginal (log) likelihood, i.e., the inte-
gral of the likelihood against the prior on the weights across
all the parameters space 	w:

p(	t |X, 	α, β ) =
∫

	w
p(	t |X, 	w, β )p( 	w|	α) d 	w. (B6)

This integral is the correlation of two Gaussians and
using the “Bayesian-Gaussian identity”:

∫
	z N (	y | W 	z +

	b, �y) N (	z | 	μz, �z ) d	z = N (	y | W 	μz + 	b, �y + W �yW T ),
we obtain that

p(	t | X, 	α, β ) = N (	t | 	0,C), (B7)

where

C = β−11 + A−1T , (B8)

with 1 being the identity matrix. This marginal likelihood
has to be maximized w.r.t. 	α and β, and this is a nonconvex
optimization problem. One could perform the expectation-
maximization (EM) algorithm [58] on it, but Refs. [52,59]
have been followed here: 	α and β have been iteratively up-
dated as below, up until a convergence criterion was achieved:

αnew
i = γi

m2
i

, (βnew)−1 = ||	t −  	m||2
N − ∑

i γi
, (B9)

where γi = 1 − �ii, mi is the ith component of 	m and ||	a||2 =∑
i a2

i for a real-valued 	a and where the sum runs over all
elements of 	a. In practice, the EM algorithm tends to provide a
slower convergence than what we used [52]. The hierarchical
Bayesian inference model has been stopped here: the opti-
mization algorithm was simply started from very small values
of 	α and β. We mention that one could put a hyperprior on
	α and β as well in order to be even more Bayesian (Gamma
distributions, which in turn have parameters, but set by hand
to fixed values), an idea known in the literature [52].

After the optimization routine has run, it is found that
some of the elements of 	α were increased dramatically, up to
infinity. This translates into the fact the the posterior on those
weights wi for which the αi → ∞ is centered at 0 and has a
virtually 0 variance [52,59]. The explanation for this is that
the model prunes the basis functions corresponding to these
wi’s: they have no predictive power for the problem we are
trying to solve, given our data set. In this way the model nat-
urally balances complexity with the avoidance of overfitting,
beautifully incorporating the Occam’s razor idea. Instead of
using regularizers and expensive k-fold-cross-validation (CV)
runs, this Bayesian approach to learning achieves (loosely
speaking) what l1 and l2 regularizations, for example, achieve.
Details can be found in [59].

During the run of the optimization routine we were con-
fronted with numerical instabilities because of those αi which
shoot up to ∞, especially when the maximum order of the
polynomial was really high (>30, for example). The original
procedure [52] has been followed, and as explained in Ap-
pendix B 1 from that paper, the columns of  corresponding to
those values of αi which became large during the optimization
routine were removed: in particular, when γi < ε, where ε is
the machine precision, that element i from the vector 	α is
removed, similarly with column i from . These removals
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cause no harm for the remaining steps of the optimization
routine running to maximize the marginal likelihood (details
are found in the same Appendix).

Having found the optimal 	α and β values, denoted as 	α∗
and β∗, the predictive distribution of the model is again a
Gaussian and reads

p(t |x, X, 	t , 	α∗, β∗) =
∫

	w
p(t |x, 	w, β∗)p( 	w|X, 	t, 	α∗, β∗) d 	w

= N [t | 	mT 	φ(x), σ 2(x)], (B10)

where

σ 2(x) = (β∗)−1 + 	φ(x)T � 	φ(x), (B11)

with � from Eq. (B5) with β set to β∗ and A arising from 	α∗.
Because it is envisioned that the fitted equation shall be

practical, the maximum order of the polynomial which is
proposed cannot be high. In order to choose which model to
use, the Bayesian view was again adopted and the model evi-
dence has been used to rank the models. That is, models with
M ∈ {1, 2, 3, . . .} were tried: Empirical Bayes was applied to
each of them, and then the model evidence was calculated for
each of them. The model evidence is the normalizing constant
(the denominator) from the Bayes’ rule for the parameters 	w:

p( 	w|D,H) = p(D| 	w,H)p( 	w|H)

p(D|H)
. (B12)

For no a priori preference for a particular model, given a set of
models {H j : j = 1, 2, . . . , J}, p(H j ) = 1/J . The Bayes’ rule
reads

p(H j |D) ∝ p(D|H j )p(H j ), (B13)

and the ranking of two competing models is done based on
the Bayes’ factor, which is equal to the ratio of posterior
probabilities of the models in light of the data D, in turn equal
to the models’ evidence for no a priori preferences over them:

Bab = p(Ha|D)

p(Hb|D)
= p(D|Ha)

p(D|Hb)
. (B14)

Calculating a generic model evidence is a complicated task
and is well known in literature. In the model presented here,
because everything is analytical, the model evidence is in
closed form: usage of Markov-chain Monte Carlo (MCMC) or
simplifying approximations, such as the Laplace one, or any
of the information criteria appearing in the literature (Akaike,
Bayesian, Schwarz, etc.) which are used for model compari-
son, has not been made. The log of the marginal likelihood,
that is, the log of the model evidence, from Eq. (B7), reads,
for one model,

ln p(	t | X, 	α∗, β∗) = − 1
2 [ N ln(2π ) + ln |C| + 	tT C−1 	t ],

(B15)
where C is evaluated from Eq. (B8) with β ← β∗ and 	α ← 	α∗
and |C| represents the determinant of the matrix C.

The obtained log-model evidence [from Eq. (B15)] as a
function of the polynomial order of the model is shown in
Fig. 6.

Because of how the RVM algorithm is designed, it removes
and does not count on the basis functions which make the
model infer a complexity penalty greater than the benefit

FIG. 6. Model evidence as a function of the polynomial order at
the start of the training procedure.

obtained from a better fit to the training data. This is what
has been explained above when αi → ∞.

Because the fitting equation has to be practical, the maxi-
mum polynomial order, that is, M, which was chosen is one
for which the number of remaining (nonpruned) weights is
less than a reasonable number, which translates in the ability
to list all the nonzero elements from the resulting 	α∗. That rea-
sonable number was chosen to be 7. For this, M = 14 in our
case. There might be the case that as M increases significantly
more than what was chosen, there will be so many pruned
basis functions in those high-M models that the number of the
remaining ones would be less than our reasonable number.
This issue is raised because for those large M’s, the model ev-
idence might be higher than the model evidence for what was
chosen (M = 14). This was studied, and in the current work,
the remaining number of basis functions greatly exceeds our
reasonable number, making it clear that any of those higher-M
models cannot be reported.

The choice of the polynomial order can be analyzed also
from the point of view of the MSE on the test-set diagnostic.
The test set contained 103 examples. The MSE values as a
function of the polynomial order are presented in Fig. 7. Al-
though a stochastic quantity suffering from noise (especially
in the low amounts of data regime), this MSE on the test set
provides an insight into the performance of the model and is
widely used in the frequentist view of model selection (albeit
with expensive cross-validation runs).

We emphasize that the model evidence and the MSE on
the test set cannot be simply thought to be perfectly anti-
correlated: the maximum of the model evidence does not
necessarily mean the minimum MSE on the test set, for any
given data set D. It can be shown that if the data were in-
deed generated from one of the models analyzed, on average
the Bayes’ factor between the correct model and any of the
other models favors the correct model (giving it maximum
evidence among them all). This is because the average Bayes’
factor can be written as a KL divergence, which is always
>0 unless one of the distributions is identically 0. Still, there
might be some data sets on which this does not happen: the
“correct” model might not be favored. This is why Bayesian
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FIG. 7. Test-set mean-squared error as a function of the polyno-
mial order at the start of the training procedure.

model averaging should be done (i.e., predictions shall be
done using all the ranked models, each of the contributions
being weighted by the corresponding evidence), but in this
work a pointwise approximation to this has been used and the
model with the highest evidence was chosen, understanding
the limitations this approach poses, but also the benefits it
offers. The relationship between Bayesian model selection
and frequentist approaches is beyond the scope of the work
from this Appendix [60].

The predictive distribution [Eq. (B10)] for one unseen ex-
ample x is again written in order to emphasize that one only
needs 	α∗, β∗ and the train dataset in order to predict new
values:

p(t |x, X, 	t , 	α∗, β∗) =
∫

	w
p(t |x, 	w, β∗)p( 	w|X, 	t , 	α∗, β∗) d 	w

= N [t | 	mT 	φ(x), σ 2(x)], (B16)

where

	m = β∗�T 	t, (B17)

with

� = (A + β∗T )−1 (B18)

and

A = diag(	α∗), (B19)

σ 2(x) = (β∗)−1 + 	φ(x)T � 	φ(x). (B20)

FIG. 8. Predicted response as a function of the input for the
model for which we list the values of 	α∗ and β∗. The two-sigma
deviation is highlighted in blue and represents the 95% uncertainty
in the predictions, as from Eq. (B10).

As mentioned earlier in this Appendix, the data set has
been standardized to have mean 0 and variance 1. This is
a common technique to make the algorithms which will be
deployed on the data set more robust to numerical instabilities.
Before subtracting the mean and dividing by the standard
deviation, the logarithm in base 10 of both the response but
also of the predictors was taken, thus again of the whole
data set. This was because the data set spans many orders of
magnitude (intensity between 1020 W/cm2 and 1025 W/cm2

and the number of ions between 10−3 and 106, or even 108,
depending on the considered charge state).

Thus when predicting the response at unseen examples, the
input to the regressor shall be scaled accordingly, similarly for
the obtained response.

The obtained nonzero elements of 	α∗ and the scalar β∗ are
now listed to two significant digits:

α∗
0 = 4.7 × 101, α∗

1 = 2.2, α∗
3 = 1.6 × 102,

α∗
4 = 1.1 × 103, α∗

5 = 3.3 × 103, α∗
11 = 9.4 × 104,

α∗
12 = 3.7 × 105, β∗ = 5.9 × 103. (B21)

The plot of the predictions on the test set is presented in
Fig. 8, where it is highlighted in blue the two-sigma uncer-
tainty of the predicted quantity [the posterior predictive is a
Gaussian; see Eq. (B10)].
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