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One-component plasma of a million particles via angular-averaged Ewald potential:
A Monte Carlo study
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In this work we derive a correct expression for the one-component plasma (OCP) energy via the angular-
averaged Ewald potential (AAEP). Unlike Yakub and Ronchi [J. Low Temp. Phys. 139, 633 (2005)], who
had tried to obtain the same energy expression from a two-component plasma model, we used the original
Ewald potential for an OCP. A constant in the AAEP was determined using the cluster expansion in the limit
of weak coupling. The potential has a simple form suitable for effective numerical simulations. To demonstrate
the advantages of the AAEP, we performed a number of Monte Carlo simulations for an OCP with up to a
million particles in a wide range of the coupling parameter. Our computations turned out at least two orders of
magnitude more effective than those with a traditional Ewald potential. A unified approach is offered for the
determination of the thermodynamic limit in the whole investigated range. Our results are in good agreement
with both theoretical data for a weakly coupled OCP and previous numerical simulations. We hope that the
AAEP will be useful in path integral Monte Carlo simulations of the uniform electron gas.
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I. INTRODUCTION

A one-component plasma (OCP) is an important and well-
studied model with a long history [1–7]. An OCP is usually
defined as a system of point ions immersed in a uniform neu-
tralizing background [8]. An OCP is a good approximation of
a two-component plasma (TCP) if the ions can be considered
classical (their de Broglie wavelength is much less than the
interionic distance) and the electrons are highly degenerated.
Such conditions correspond to the interior of Jupiter (for hy-
drogen ions), white dwarfs (for helium, carbon, and oxygen
ions), and neutron star crusts (e.g., for iron ions) and can also
be obtained in laser experiments [3]. A quantum-mechanical
analog of the OCP is the well-known “jellium” model intro-
duced by Wigner in 1938 [9] that has received much attention
in the last decade [10–13].

Contrary to a classical TCP, an OCP satisfies the so-called
H-stability condition classically; the thermodynamic limit
exists for its thermodynamic properties in both the micro-
canonical and canonical ensembles [14]. Another advantage
of the OCP is the dependence of all its properties only on
a dimensionless coupling parameter � [1, Sec. II], [15, §31,
Problem 1], [8].

On the other hand, the long-range Coulomb interaction
between the ions should be taken into account. This causes
significant difficulties in both analytical and numerical stud-
ies. In particular, the electrostatic energy of an infinite OCP
is a conditionally convergent series, so the summation re-
sult depends on the order of the terms [16]. For crystalline
Coulomb systems, the solution to this problem was proposed
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by Ewald [17]. Adding to and subtracting from the original
sum a system of normally distributed screening charges, one
may transform the sum into two rapidly converging series.
This procedure defines an anisotropic short-ranged Ewald po-
tential [1,3,8], which is used in further analysis.

In computer simulations, a cubic box with periodic bound-
ary conditions is often used, so a system without a long-range
order acquires a translational symmetry. The Ewald’s summa-
tion technique is also valid in this case; therefore, almost all
Monte Carlo (MC) or molecular dynamics (MD) studies of an
OCP are based upon this approach.

Many different approaches have been developed to imple-
ment the Ewald’s technique in computations. The traditional
Ewald summation (5) requires the computational cost of the
order O(N2). The grid-based Ewald methods, such as particle-
mesh Ewald [18], smoothed particle-mesh Ewald [19], and
particle-particle-particle mesh [20, Chapter 8], allow one to
reduce the complexity to O(N log N ). In our work and most of
the ones cited below, the traditional Ewald approach is used.

In 1966 the first extensive numerical investigation of an
OCP was carried out by Brush, Sahlin, and Teller using a
MC method [8]. The authors calculated thermodynamic prop-
erties and radial distribution functions (RDFs) in the range
0.05 � � � 100, which corresponds to the fluid state. How-
ever, a small number of particles N � 500 was used, being
especially critical at � � 1 when the Debye length becomes
large [7]; the thermodynamic limit was not considered.

In 1973 the well-known work by Hansen [1] was pub-
lished, in which the equation of state of a fluid OCP was con-
structed using MC simulation data in the range 1 � � � 160.
The number of particles in the cell was also small, N � 250;
the thermodynamic limit was not investigated. The anisotropic
part of the Ewald potential was approximated by an optimized
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expansion in Kubic harmonics; its accuracy was criticized in
Ref. [2, Sec. II]. Also, a detailed examination shows that there
are some misprints in the formulas in Ref. [1, e.g., Eq. (7) or
(B3)].

In Ref. [2], Slattery, Doolen, and DeWitt used a more
precise approximation for the Ewald potential compared to
[1,8]. The authors examine both the fluid and solid phases
of an OCP (1 � � � 300). Using N = 128, they built the
equation of state for both phases and estimated the fluid-solid
transition point as �m = 168 ± 4. The N dependence was
considered by the same authors only in the following paper
[21]. In Ref. [21] a linear dependence on N−1 is assumed. The
thermodynamic limit was found by the extrapolation of MC
data. Nevertheless, the authors state that they do not know the
correct dependence on N , although the proposed dependence
fits the MC data well. In Ref. [21] the authors present a
significantly different value of �m = 178 ± 1.

As we see, the convergence of the results on N is the
major question of all such studies, including the calculation
of �m. This important aspect is discussed in [22], where
N � 1024 was used. The “center-of-mass correction” of the
OCP energy is considered. This correction was applied, e.g.,
in [1, Eq. (16)], [21]. The authors conclude that this correction
cannot be justified for the fluid OCP but is necessary for the
solid phase.

Significant progress in the accuracy of MC simulation
results was made in the works by Caillol et al. [7,23–27].
Starting from [23], they developed a method for modeling
an OCP on the sphere surface of different dimensions. They
demonstrated in detail the ability of this approach by simu-
lating a 2D OCP [24] using N � 256 in the 0.5 � � � 200
region. In [25] Caillol discusses the difference between sim-
ulations in a cubic cell and on a sphere surface from a
theoretical point of view.

Using this method, the most reliable result for the OCP
energy was obtained in [26] for 1 � � � 190 and in [7] for
0.1 � � � 1. The authors consider the thermodynamic limit
in both papers; N � 3200 is used in [26] and N � 51 200
in [7]. To reduce the statistical error, a record number of
configurations (108-109) were used in MC simulations.

It can be seen from the above that over time, more and
more attention has been paid to the problem of the N depen-
dence in OCP MC simulations. Modern computers made it
possible to increase the number of particles in OCP MC simu-
lations from N = 102 in 1966 [8] to N = 5 × 104 in 2010 [7],
respectively, as well as significantly decrease the statistical
error. We also see that the statement in [3, bottom of p. 19]
about a weak dependence of the OCP energy on N is simply
wrong.

As for the MD, it is mainly applied to investigate the dy-
namic and transport properties of an OCP [27–29], including
in the presence of external fields [30–32]. The first reference
to such a simulation was given in [8], and the first “extensive”
study was done by Hansen et al. [33,34]. In these works, the
authors present the computations of the velocity autocorrela-
tion function and the dynamical structure factor. The thermal
conductivity and viscosity of an OCP are calculated in [35]
using the Kubo formula. The OCP internal energy can also be
obtained from MD simulations [36], as well as the estimations
of the fluid-solid transition point �m [37].

Using MD simulations one may investigate the OCP sys-
tem with the Yukawa potential (YOCP) [38,39], including the
low screening limit [40]. In such a regime the YOCP results
tend to the OCP ones [41].

Two main theoretical approaches for an OCP have been
developing: the theory of integral equations for an RDF, g(r),
and the expansion of the internal energy on �. Starting from
the Debye and Hückel [42] result, in which the expansion of
the internal energy up to the term �3/2 was obtained, there has
been significant progress. In Ref. [43] the diagram technique
was used for this purpose. According to Caillol [7], further de-
velopment by Ortner [44] produced no significant difference
from the result of [43]. Nevertheless, these studies have made
the expansion applicable at � � 0.3, whereas the result by
Debye and Hückel is reliable only at � � 0.01. The work by
Brilliantov [45] derives the approximate “first-principle” OCP
equation of state, demonstrating the error of 2%–5% in the
range 0 � � � 250.

Nevertheless, the expansion on � does not produce rela-
tively accurate results even at � = 1 [7, Fig. 1], [3, p. 27].
At higher �, the theory of integral equations for an RDF was
applied. In particular, the hypernetted chain (HNC) approx-
imation [46] gives quite accurate results for the energy at
�� 1, as was shown in [7, Fig. 1] and [3, Sec. 3.7]. As well
as for an OCP, this theory can be implemented for a YOCP,
using the Rogers-Young, Ballone-Pastore-Galli-Gazzillo, and
variational modified HNC [47] and the soft mean spherical
[48] approximations. However, at stronger interaction, inte-
gral equations should be corrected to agree with MC or MD
results [49–51].

Thus, despite the development of various theoretical meth-
ods, numerical modeling is indispensable in the study of
an OCP. As a consequence, there is a request for fast and
efficient calculation methods that can produce highly accu-
rate results. To reduce the amount of computations in the
usual Ewald technique, Yakub and Ronchi [52] proposed an
angular-averaged Ewald potential (AAEP) for the simulation
of an isotropic Coulomb TCP. Indeed, as the Ewald potential
is anisotropic, it seems redundant to apply it to isotropic
plasma systems. The AAEP was correctly presented for a TCP
without a clear derivation [52]. It was successfully used in
computations [53–64], including the simulation of quantum
systems [11–13]. Recently we have succeeded in finding a
step-by-step derivation of the AAEP for a TCP [65]. Yakub
and Ronchi computed the OCP energy from the TCP one; the
AAEP in the case of an OCP was not presented. However,
the energy expression given in [66, Eq. (8)], [53, Eq. (8)] is
wrong and has no step-by-step derivation either. This confu-
sion stimulated us to derive a correct expression for the OCP
AAEP by the direct averaging of the Ewald potential (6). This
paper is devoted to solving this problem. Also we obtain the
correct expression for the OCP energy. Finally, we perform
MC simulations for a fluid OCP using up to a million particles
to obtain precise values of energy.

The paper is organized as follows. Section II contains the
problem statement and the derivation of the AAEP for the case
of the OCP. In Sec. III we make the correction of the AAEP
and obtain the correct expression for the OCP energy. Sec-
tion IV is devoted to the applications of the new potential
including MC simulations of the OCP energy with up to a
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million particles in a wide range of the coupling parameter.
We discuss our computational results in Sec. V. The conclu-
sion is formulated in Sec. VI.

II. AVERAGING THE OCP EWALD POTENTIAL

In this section, we derive an expression for the AAEP in
an OCP, examine its main properties and make it suitable for
numerical calculations.

A. Problem statement

Consider a cubic cell with a side length L. This cell
contains N positively charged particles at positions ri,
i = 1, . . . , N . All the particles have equal charge Ze > 0,
e > 0, and Z is a charge number. Negative charge with density
−NZe/L3 uniformly distributed throughout the cell ensures
electroneutrality. We call this cell the main cell. The cell
repeats itself in the three mutually perpendicular directions;
each ith particle has an infinite number of images with po-
sitions ri + nL. Here n is an integer vector n = (nx, ny, nz ),
nx, ny, nz ∈ Z. Then the negatively charged uniform back-
ground occupies the entire space with the same charge density.
We call such an infinite electroneutral system the OCP. Now
at some point r ∈ R3, we have the following charge density
w(r):

w(r) = Ze
N∑

i=1

∑
n

δ(r − ri − nL) − N
Ze

L3
. (1)

Here δ(r − ri ) is the Dirac δ function, and
∑

n denotes a
summation over all integer vectors n. An interaction potential
between positively charged particles φ(r) satisfies the Poisson
equation (in Gaussian units):

�φ(r) = −4πw(r), (2)

where � is the Laplacian.
The excess thermodynamic properties of the OCP depend

only on the dimensionless parameter � [1, Sec. II], [15, §31,
Problem 1]:

� = (Ze)2

kBTa
, (3)

where a3 ≡ 3
4πρ

is the “ion-sphere radius,” ρ = N/L3 is the
number density, T is the temperature of the system, and kB is
the Boltzmann constant. The value of � denotes the ratio of
a characteristic potential energy to a characteristic kinetic en-
ergy of particles. The � � 1 regime corresponds to a weakly
coupled OCP in which the kinetic energy dominates over the
potential one. From the definitions of a and ρ, there is a useful
relationship between L and N :

(L/a)3 = 4πN/3. (4)

We use a as the unit of length in all subsequent formulas.
The energy of the OCP can be written in terms of

the effective interaction potential between particles in the
main cell. This pair potential v(r) is given in [1, Eq. (5)],
[8, Eqs. (11)–(13)]; it takes into account the presence of the

negatively charged background. Then the ratio of the OCP
total potential energy EEw to kBT , U ≡ E/(kBT ), reads

U Ew(�) = U0(�) + �

2

N∑
i=1

N∑
j=1
j �=i

v(ri j ), (5)

v(r) = v1(r) + v2(r), (6)

Lv1(r) = erfc(
√

πr/L)

r/L
− 1, (7)

Lv2(r) =
∑
n �=0

[
erfc(

√
π |r/L+n|)

|r/L + n| + e−πn2

πn2
cos

(
2π

L
r · n

)]
,

(8)

where ri j = ri − r j , n = |n| = (n2
x + n2

y + n2
z )1/2, r = |r|.

The potential v(r) is called the Ewald potential. Summation∑
n �=0 means that the term n = (0, 0, 0) ≡ 0 is omitted. The

potential v(r) consists of a spherically symmetrical v1(r) and
angular dependent v2(r) parts. Since the right-hand sides of
Eqs. (7) and (8) are dependent on the ratio r/L we introduce
the notation:

x ≡ r/L, x ≡ r/L. (9)

The energy expression (5) contains the summation over
N particles only. The interaction between all the periodic
particle images is included in the Ewald potential (8). Thus,
a particle in the main cell interacts only with N − 1 other
particles in the main cell or with the nearest “images” in one
of the neighboring cells. Such a procedure corresponds to the
“minimum-image convention.” As a result, for fixed particle
positions, each particle interacts with N − 1 particles that are
located in a cube centered at that particle [8, Sec. III], [65,
Sec. IV].

The first term U0 in (5) denotes the self-interaction energy
between particles with their replicas. This term depends on the
potential v(r) [8, Eq. (10)]:

U0(�) = �

2
N lim

|r|→0

(
v(r) − 1

r

)
= −1

2
N2/3�Msc. (10)

Here Msc = 1.760118884 is the Madelung constant of a sim-
ple cubic lattice. The last equality in Eq. (10) is valid only
for the Ewald potential (6). Note that the formula for the
self-interacting term given in [1, see Eq. (7)] is false.

B. Averaging the Ewald potential

In disordered media, the angular dependence of v2(r) leads
to needless calculations since all orientations are equivalent.
First, we directly apply the approach of Yakub and Ronchi,
which was used earlier for a TCP [52,65], to average v2(ri j )
over all directions at a distance ri j :

va
2 (ri j ) = 1

4π

∫ 1

−1
d (cos θ )

∫ 2π

0
v2(ri j ) dψ. (11)

The module in the first term of v2(r) in Eq. (8) has the
following form (n · x = nx cos θ ):

|x + n| =
√

x2 + n2 + 2nx cos θ. (12)
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Now we can integrate it over angles:

1

2

∫ 1

−1
d (cos θ )

erfc(
√

π |x + n|)
|x + n| = f (|n − x|) − f (|n + x|)

2πnx
,

(13)
where

f (n) = e−πn2 − πnerfc
(√

πn
)
. (14)

Averaging the second term in Eq. (8)

1

2

∫ 1

−1
d (cos θ ) cos (2πxn cos θ ) = sin (2πxn)

2πxn
, (15)

we obtain the angular-averaged pair potential va
2 (x):

Lva
2 (x) = 1

2πnx

∑
n �=0

[
f (|n − x|) − f (|n + x|)

+ e−πn2

πn2
sin(2πnx)

]
. (16)

Further we are going to consider only the case of x < 1
(see the explanation below and [65, Sec. IV]). Since the min-
imum value of n is 1, we will reveal the module as follows:
|n − x| = n − x. Next, we expand va(x) = v1(x) + va

2 (x) into
the converging series by x at x = 0:

Lva(x) = erfc(
√

πx)

x
− 1 + Lva

2 (x)

= 1

x
− C0 + 2πx2

3
+

∞∑
k=2

Ckx2k . (17)

The coefficient C0 is related to the Madelung constant of a
simple cubic lattice, Msc:

C0 = 3 −
∑
n �=0

(
erfc(

√
πn)

n
+ e−πn2

πn2

)

= − lim
x→0

(
Lv(x) − 1

x

)
= Msc(4π/3)1/3. (18)

The general formula for the series coefficients (for k � 1) is
derived in Appendix A and given in Eq. (A14). We rigorously
prove in Appendix B that Ck = 0 for k � 2. Thus, the expres-
sion for the OCP AAEP is

va(r) = 1

r

[
1 − Msc

r

rm
+ 1

2

(
r

rm

)3
]
, (19)

where

rm =
(

3

4π

) 1
3

L = N1/3 < L (20)

is the radius of the sphere 4πr3
m/3 = L3 with equivalent vol-

ume L3. The last relation is obtained using Eq. (4). Note that
L/2 < rm. The expression for the AAEP in case of an OCP
was not presented in the original works [53,66].

The AAEP reaches its minimum value va(rm) =
[ 3

2 − Msc]/rm at r = rm, ∂va(r)/∂r|r=rm = 0. For L > r > rm,
the potential increase; this behavior is incorrect (see [65,
Sec. IV]). Thus, one must consider Eq. (19) up to a point

r = rm; we redefine va(r) by zero for r > rm:

va(r > rm) = 0. (21)

Each particle is affected by Ns − 1 particles in the sphere of a
radius rm. Here Ns is the full number of particles in the sphere
with a center at some ion; this number is dependent on the
position (more details are given in our previous paper [65,
Secs. IV, V]). Below we show that the average value of N̄s

during the MC simulation matches the value N (see Fig. 3).
The term −Mscr/rm in Eq. (19) is responsible for the

background negative charge. Our calculations show that the
coefficient Msc leads to the divergence of the potential en-
ergy per ion as the number N increases. The reason for such
behavior is assumed to be related to the angular averaging.
Therefore, the coefficient Msc must be changed. Below we
obtain the correct value for the coefficient from the cluster
expansion.

III. CORRECTION AND SHIFTING OF THE POTENTIAL

In this section, we correct the constant coefficient in the
AAEP and obtain the final OCP energy expression (38), which
can be used in applications.

A. Correction of the AAEP

Now we consider the AAEP (19) with an unknown coef-
ficient: Msc → C. The excess part of the canonical partition
function for a system of N particles interacting through po-
tential (19) is [1, Sec. III]

QN (�) =
∫

· · ·
∫

exp

[
−�

∑
i< j

va(ri j )

]
d3r1 · · · d3rN

=
∫

· · ·
∫ ∏

i< j

exp [−�va(ri j )]d
3r1 · · · d3rN . (22)

Here the integration region over each coordinate is a volume
L3 = 4πN/3. We define the Mayer f function,

exp [−�va(ri j )] = 1 + fi j, (23)

and rewrite the partition function:

QN (�) =
∫

· · ·
∫ ∏

i< j

(1 + fi j ) d3r1 · · · d3rN . (24)

Providing the cluster expansion∏
i< j

(1 + fi j ) = 1 +
∑
i< j

fi j + · · · , (25)

we get in the first order of fi j

QN (�) ≈
∫

· · ·
∫ (

1 +
∑
i< j

fi j

)
d3r1 · · · d3rN

=
(

4π

3
N

)N

+
∑
i< j

∫
· · ·

∫
fi j d3r1 · · · d3rN .

(26)
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After the integration, the last term has the form

∑
i< j

∫
· · ·

∫
fi j d3r1 · · · d3rN

= − N (N − 1)

2

(
4π

3
N

)N

+ N (N − 1)

2

(
4π

3
N

)N−2

I (�, N ), (27)

where I (�, N ) is the following integral:

I (�, N ) =
∫

dri

∫
exp [−�va(|r j − ri|)]d (r j − ri )

=
∫

dri

∫ rm

0
exp [−�va(u)]4πu2 du

= 3

(
4π

3
N

)2

K (�, N ), (28)

K (�, N ) =
∫ 1

0
exp [−�va(srm)]s2 ds, (29)

va(srm) = 1

rm

(
1

s
− C + s2

2

)
. (30)

Thus, we get the final expression for the excess part of the
canonical partition function in the first order of the cluster
expansion:

QN (�) ≈
(

4π

3
N

)N{
1 + N (N − 1)

2
[3K (�, N ) − 1]

}
.

(31)

The potential energy Ecl then reads

Ecl

NkBT
(�) = − 1

�

1

QN (�)

∂QN (�)

∂�

≈ − 1

�

1

2/3

N (N − 1)
+ K (�, N ) − 1/3

∂K (�, N )

∂�
.

(32)

With � → 0, the derivative

∂K (�, N )

∂�
= − 1

rm

∫ 1

0

(
1

s
− C + s2

2

)

× exp

[
2 ln s − �

rm

(
1

s
− C + s2

2

)]
ds (33)

must tend to zero since � → 0 corresponds to the ideal gas
and Ecl/(NkBT )(0) = 0 for any N . From this condition, we
find the unknown value of C:

∂K (� → 0, N )

∂�
= 0 ⇒ C = 9/5. (34)

The final expression for the AAEP (19) should be used with
Msc → C = 9/5. The self-interaction energy U0 also should

be changed to U0a in accordance with (10):

U0a(�) = �

2
N lim

r→0

(
va(r) − 1

r

)
= −1

2
N2/3�C. (35)

B. Shifting the potential

Discontinuity of va(r) at the point r = rm results in a
discontinuity in the energy. Such behavior leads to different
problems during numerical simulations [67, p. 302]. Thus, it
is reasonable to shift the average potential to make it zero at
r � rm. The contribution of the two-particle interaction to the
internal energy is the following:

�

2

N∑
i=1

N∑
j=1
j �=i

[va(ri j ) − va(rm) + va(rm)]

= N (N − 1)�

2
va(rm) + �

2

N∑
i=1

N∑
j=1
j �=i

ṽ(ri j ), (36)

where the pair potential ṽ(r)|r � rm = va(r)|r � rm − va(rm) has
the form

ṽ(r) =
{

1
r

{
1 + 1

2

(
r

rm

)[(
r

rm

)2 − 3
]}

, r < rm

0, r � rm

. (37)

Since the number of ions in the sphere differs from N , we
replace

∑N
j=1
j �=i

ṽ(ri j ) with
∑Ns,i

j=1
j �=i

ṽ(ri j ) in (36). Here Ns,i is the

number of ions in the sphere centered at an ith ion. The full
potential energy then reads

U (�) = Ũ0(�) + �

2

N∑
i=1

Ns,i∑
j=1
j �=i

ṽ(ri j ). (38)

The constant term in (38)

Ũ0(�) = U0a(�) + N (N − 1)�

2
va(rm)

= −N2/3�C

2
+ N (N − 1)

2rm

(
3

2
− C

)
�

= − 3

20
N2/3�(N + 5) (39)

includes both the effects of self-interaction and shifting of
AAEP. Here we used C = 9/5 (34) and rm = N1/3 (20).

So, to calculate the OCP energy, one needs to evaluate the
interaction of any ion placed in the center of a sphere with a
radius rm with all other ions inside this sphere and then sum
up all such interactions. Each ith particle interacts only with
Ns,i − 1 particles that are located in a sphere centered at the
ith particle.

One may notice that the radius of interaction rm > L/2;
thus, the influence of some ions should be taken twice. This
was explained in more detail in [52, Sec. III], [54, Sec. 2], and
[65, Sec. V].

The potential (37) can also be applied in MD simulations.
Since ṽ(r) is a smooth function, we calculate a force f (r)
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between two particles as follows:

f (r) = − (Ze)2

a2
∇ṽ(r) = (Ze)2

a2
r ×

⎧⎨
⎩

1

r3
− 1

r3
m

, r < rm

0, r � rm

,

(40)

where ∇ is the gradient operator.
In Ref. [66, Eq. (8)], the formula for the OCP potential

energy is given without derivation. For clarity, we reproduce
the wrong formula [66, Eq. (8)] here (in the Gaussian units):

U (OCP)
N = −0.9

NQ2

rm
+ 1

2

N∑
i=1

N∑
j=1
j �=i

Q2ṽ(ri j ). (41)

It has the same form as Eq. (38), but the constant term Ũ0(�) is
incorrect. Nevertheless, Yakub and Ronchi published correct
results for the Madelung constants and the OCP energy. The
correct formula (38) with a rigorous derivation from the Ewald
potential is the main result of this paper.

In Ref. [65] we derive the TCP energy expressed through
the averaged TCP Ewald potential. Replacing in this formula
the summation over negatively charged particles with the inte-
gration over a uniformly distributed background, it is possible
to obtain the OCP energy (38). We provide such a derivation
in Appendix C.

IV. APPLICATIONS

Below we demonstrate accurate calculations for the OCP
with the AAEP. We calculate the Madelung constants for
two lattices, examine the performance of the calculation al-
gorithm, and present the results of MC simulations with one
million particles.

A. Madelung constant

In this subsection, we use the AAEP (19) to calculate the
Madelung constant M of body-centered cubic (bcc) and face-
centered cubic (fcc) lattices to verify our procedure of energy
calculation. The expression for M in case of (38) takes the
following form:

M = − 3

20
N−1/3(N + 5) + 1

2

Ns∑
j=1
j �=i

ṽ(ri j ). (42)

The results can be seen in Tables I and II for bcc and fcc
lattices, respectively. Even though the number of ions in the
sphere Ns differs from N and the ionic configuration is not
spherically symmetric at all, we observe the convergence of
M with increasing N for both lattices. Note that Ns as well as
M is independent of i.

We observe the convergence and reach the accuracy of six
significant digits for ∼ 109 particles in both lattices. This anal-
ysis confirms the usability of the AAEP to calculate the energy
of even ordered structures. The accuracy may be improved
still more with the increase of the single parameter—the num-
ber of ions N .

TABLE I. Madelung constant for bcc lattice calculated with
Eq. (42) with increasing number of ions N . Nc denotes the number of
primitive cells in the supercell, N = 2N3

c . Exact: −0.8959293.

Nc N Ns − N M Difference, %

1 2 −1 −0.8333856 −6.98088
3 54 5 −0.9036126 0.85759
4 128 9 −0.8998543 0.43810
8 1024 −59 −0.8941086 −0.20322
17 9826 15 −0.8956311 −0.03327
37 101 306 243 −0.8959880 0.00655
79 986 078 −543 −0.8959281 −0.00013
171 10 000 422 203 −0.8959254 −0.00043
369 100 486 818 763 −0.8959294 0.00002

B. Performance

It is of practical importance to compare the efficiency
of computations between the exact Ewald formula and the
AAEP. To demonstrate the calculation performance via the
AAEP, we determine the Madelung constant of the bcc lattice
for a different number of particles N in the supercell and
measure the computational time. For comparison, we obtain
M using the Ewald (6) and averaged (37) potentials. For the
Ewald potential, we have taken into account several terms in
the sum over n with nx, ny, nz = −6, . . . , 6. All the calcula-
tions were sequential and performed with a CPU Intel Core
i7-7700HQ 2.8 GHz. The results are shown in Fig. 1. Both
time dependencies are linear as N increases. The ratio of the
slopes is ≈230; it means that the calculation of M is 230
times faster with the AAEP than with the Ewald potential.
In addition, va(r) is independent of any external parameters.
This makes it a perspective tool for numerical simulations of
Coulomb systems.

The calculation of the sum
∑Ns,i

j=1
j �=i

ṽ(ri j ) in Eq. (38) can be

parallelized. We simply distribute the terms of this sum over
various processes during an MC simulation, which allows us
to effectively speed up the computation. A similar approach
was considered in [54] for TCP calculations.

Next, we perform MC simulations of the OCP in a wide
range of parameter �. We demonstrate the possibility of a
simulation with 1 million particles in the supercell.

TABLE II. Madelung constant for fcc lattice calculated with
Eq. (42) with increasing number of ions N . Nc denotes the number of
primitive cells in the supercell, N = 4N3

c . Exact: −0.8958736.

Nc N Ns − N M Difference, %

1 4 −3 −0.8504467 −5.07068
2 32 11 −0.8971610 0.14370
4 256 −7 −0.8947975 −0.12012
8 2048 45 −0.8962085 0.03738
17 19 652 −175 −0.8957744 −0.01107
37 202 612 89 −0.8958525 −0.00235
79 1 972 156 −169 −0.8958673 −0.00070
171 20 000 844 −207 −0.8958733 −0.00003
369 200 973 636 505 −0.8958739 0.00003
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FIG. 1. Calculation time of the Madelung constant for a bcc lat-
tice as a function of N . Both methods are linear in N ; the calculation
with the AAEP is 230 times faster than with the Ewald potential. The
slope of the curve obtained with the Ewald potential is 0.521 ms; that
obtained with the averaged one is 2.39 × 10−3 ms.

C. MC simulations

We performed MC simulations using (38) for � =
0.01, 0.05, 0.1, 1, 10, 100. We demonstrate the capabilities of
the AAEP using a million particles in a simulation cell for
� = 0.01-1. Such an amount of particles is important since
the Debye length λD = 1/

√
3� diverges as � → 0. Also, to

obtain a reliable thermodynamic limit, it is necessary to know
the value of energy at a significantly large N . Therefore one
should consider a large simulation cell to obtain correct data.

A very good description of a MC simulation procedure can
be found in [8, Sec. IV] and [68, Chapter 5]. Here we briefly
describe the algorithm that we used.

We start from an initial ion configuration of N particles in a
cubic supercell with random positions and calculate its energy
Uinit with Eq. (38). Then some ion i at a position ri is randomly
chosen. Next, we calculate the potential u(ri ) = ∑Ns,i

j=1
j �=i

ṽ(ri j )

at a point ri created by other particles (in the sphere of
radius rm). Now, this particle is moved as it is described
in [8] producing a new ion position r′

i. Again, we calculate
the potential energy u(r′

i ) and the total change in energy
�U = [u(r′

i ) − u(ri )]�. This trial move is accepted accord-
ing to the Metropolis et al. algorithm [69] as is described
in [8]. Now we have a new ionic configuration with energy
Uinit + �U ; some ion is randomly selected again and the
whole procedure repeats itself. Thus, we obtain a sequence
U (m), where m denotes the ionic configuration number (or
the trial move number). During the simulation we maintain
the acceptance rate near 50% (if it is possible) according to
Algorithm 5.1 in [68]. It is stated in [68, Sec. 5.1.2, p. 192]
that such an algorithm increases the efficiency of a simulation.

Since we start from a randomly distributed ions posi-
tion, which is not an equilibrium ionic configuration for
a given � and N , we need to discard the starting sec-
tion of the simulation. After reaching the equilibrium,
we perform mtot = 107 steps for N = 102, 103, 104, 105, 106

TABLE III. Parameters of MC simulations with AAEP.

� N mtot nb

0.01 102, 103, 104, 5 × 104, 105, 106 107 5
0.05 102, 103, 104, 105, 106 107 5
0.1 102, 103, 104, 105, 106 107 5
1 102, 103, 104, 105, 106 107 5
10 102, 103, 104, 105 108 50
100 102, 150, 103, 104, 105 108 50

at � = 0.01, 0.05, 0.1, 1. To decrease the statistical error,
at � = 10, 100 we performed mtot = 108 MC steps with
N = 102-105. We also had to perform simulations for N =
150, � = 100 because the result for N = 100 is out of normal
dependence [see Fig. 4(d) below]. As only large enough N
can be used in a low-� regime, we performed simulation for
N = 5 × 104 and � = 0.01. All the simulation parameters are
collected in Table III.

To calculate the averaged energy value and its statistical
error, we use the standard block averaging [70, Chapter 11.4].
The entire equilibrium section is divided into several nb blocks
(see Fig. 2). Each such block contains mtot/nb = 2 × 106 val-
ues of energy. We calculate an average energy value for each
block, obtaining nb energy values Ū (l ). The average energy
value U/N is calculated as the average of Ū (l ). The statistical
error σ is estimated as the root of the variance of these mean
values:

σ =
√√√√ 1

nb − 1

nb∑
l=1

(
Ū (l )

N
− U

N

)2

. (43)

To obtain the energy in the limit N → ∞, which is often
called the thermodynamic limit, we fit the dependence U/N
on 1/N and evaluate the limit as 1/N → 0. In [7,26] it is
stated that with N → ∞, the dependence U/N (1/N ) has the

FIG. 2. OCP energy dependence U (m)/N with 106 particles at
� = 0.1. The vertical dashed red line shows the beginning of the
equilibrium section. Green solid vertical lines show the partitioning
of the equilibrium section into blocks.
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FIG. 3. The number of ions in a spherical cell and energy on the
equilibrium section of MC simulation, N = 103, � = 1. (a) Energy;
(b) number of ions in a spherical cell.

following form:

U

N
(1/N ) − U

N
(0) ∼ (1/N )2/3, � → 0. (44)

For �  1 the authors of [7,26] use a linear fit U/N (1/N ) =
U/N (0) + b(1/N ) and a quadratic analog. In our work we use
the following fitting function for all � and N :

U

N
(1/N ) = U

N
(0) + b(1/N )γ . (45)

The values U/N (0), b, γ are obtained from the fitting. We
do not provide any theoretical background for this approxi-
mation; nevertheless, it works well. The obtained values of
U/N (0) are shown in Table IV.

Also, we perform simulations with the traditional Ewald
potential (6) generating mtot = 107 configurations for all
� = 0.1-100 and N = 102-104 to compare. Only the terms
with nx, ny, nz = −6, . . . , 6 are taken into account during the
calculation of the sum over n in Eq. (8). The results are
presented in Table V and in Fig. 4 below.

It is not difficult to reach the equilibrium section with
N � 105. For one million particles, we used the following
technique to speed up this simulation stage.

To reach equilibrium with N = 106, we generated the ini-
tial configuration as follows. We performed an additional
simulation for a small cell with N = 15 625 to obtain one
equilibrium configuration. Then we constructed a larger cell
consisting of 23 small cells, which resulted in an intermediate
cell of N = 125 000 ions. Repeating this procedure, we got
an initial cell with N = 106 particles; it consisted of 26 = 64
identical small cells with N = 15 625. Nevertheless, the equi-
libration process required quite a long simulation. We provide
a graph of U (m) for � = 0.1 and N = 106 (Fig. 2). One can
see that at least ∼106 steps should be discarded. We discarded
3 × 106 first steps.

V. RESULTS AND DISCUSSION

First, we consider the number of interactions during MC
simulation. As we mentioned earlier, the number of ions Ns

in the sphere around a chosen ion can be different from N .
Let Ns(m) be the number of ions in a sphere with the center
at a randomly chosen ion at its initial position; here m is
the trial move number. It turns out that the average number
N̄s = 1

mtot

∑mtot
m=1 Ns(m) during MC simulations is close to N .

The dependencies of Ns(m) and U (m) on the equilibrium sec-
tion are shown in Fig. 3 for a simulation with N = 103, � = 1.
In this simulation, N̄s = (1.000 ± 0.009) × 103 is close to
N = 103.

We obtained a numerical dependence of energy U/N on
the number of ions N for 0.01 � � � 100 (see Table VI).
To calculate the thermodynamic limit, we use Eq. (45). The
results of our MC simulations and fitted curves are present in
Table VI and Fig. 4.

Paper [7] gives the OCP energy values for � = 0.1, 1 ob-
tained by solving the HNC integral equation; this method was
outlined in [46]. According to [7], it is the most accurate
theoretical result for the OCP energy in a low-� regime. In
such a regime the Ortner � expansion [44] gives quite ac-
curate results. For comparison, we provide MC results from
[7,26] and obtained with the Ewald potential (5). The digits in
parentheses correspond to one standard deviation.

Approximation (45) quite accurately describes the depen-
dence on 1/N over a wide range of N and �, which varies by
several orders of magnitude. However, for unknown reasons,
at � = 100, the point N = 100 is out of dependence. This
point was excluded from the fitting procedure.

TABLE IV. Thermodynamic limit of MC results for −U/N at � = 0.01, 0.05, 0.1, 1, 10, 100. The results obtained using the AAEP agree
very well with Caillol et al. at � = 1, and with the theoretical values at � = 0.01-0.1. At � = 10, 100 we observe a small difference compared
to [26]. The third row represents the thermodynamic limit of data from [26] obtained by Eq. (45). The digits in parentheses correspond to one
standard deviation.

� 0.01 0.05 0.1 1 10 100

MC (AAEP, this work) 0.000 8611(42)a 0.009 395(13) 0.025 6975(35) 0.571 414(24) 7.998 170(16) 87.523 82(55)
MC (Caillol et al. [7,26]) — — 0.025 127(34) 0.571 403(22) 7.997 974(45) 87.526 93(24)
Caillol’s data, fit (45) — — — 0.571 654(88) 7.997 996(39) 87.524 42(75)
Ortner [44, Eq. (94)] 0.000 861 93 0.009 386 0.025 699 174 1.665 188 — —
Debye-Hückel,

√
3�3/2/2 0.000 866 03 0.009 682 0.027 386 128 0.866 025 — —

HNC 0.000 861 98b 0.009 387b 0.025 688 548 0.570 45534 — —

aOnly N � 104 were used for fitting (45).
bObtained from HNC fit [7, Table 1].
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TABLE V. MC results for −U Ew/N at � = 0.1, 1, 10, 100 as a function of N using the Ewald potential (5), nx, ny, nz = −6, . . . , 6. The
digits in parentheses correspond to one standard deviation.

�
���

N
102 150 103 104

0.1 0.029815(34) — 0.026178(61) 0.025737(35)
1 0.57646(21) — 0.57197(24) 0.57153(28)
10 8.0031(11) — 7.99955(70) 7.9977(12)
100 87.5327(77) 87.524(12) 87.5278(77) 87.5208(45)

TABLE VI. MC results for −U/N at � = 0.1, 1, 10, 100 as a function of N using the AAEP. The digits in parentheses correspond to one
standard deviation.

�
���

N
102 150 103 104 5 × 104 105 106

0.01 0.0020724(45) — 0.0011814(96) 0.000917(12) 0.000875(11) 0.000866(15) 0.000863(14)
0.05 0.012662(30) — 0.009855(38) 0.009439(31) — 0.009405(54) 0.009409(31)
0.1 0.029951(50) — 0.026144(11) 0.025756(63) — 0.025704(21) 0.025691(37)
1 0.57682(21) — 0.57201(15) 0.57144(21) — 0.57149(34) 0.57142(14)
10 8.0043(14) — 7.9985(13) 7.9982(14) — 7.9982(14) —
100 87.485(11) 87.645(11) 87.5295(62) 87.5248(50) — 87.5235(33) —

(a)

10-6 10-5 10-4 10-3 10-2
-0.034

-0.032

-0.030

-0.028

-0.026

-0.024

Γ = 0.1
MC, AAEP, this work,

MC, Ewald, UEw, this work:

mtot = 10
7

nb = 5

Fit, γ = 0.972(19)
Caillol, Gilles, N = 51200

U
/N

1/N

This work -0.0256975(35)
Ortner -0.025699174
Caillol, Gilles -0.025127(34)

(b)

10-6 10-5 10-4 10-3 10-2
-0.578

-0.576

-0.574

-0.572

-0.570

Γ = 1
MC, AAEP, this work,

MC, Ewald, UEw, this work:

mtot = 10
7

nb = 5

Fit, γ = 0.959(28)
Caillol, Gilles, N = 51200

U
/N

1/N

This work -0.571414(24)
Caillol, Gilles -0.571403(22)

(c)

10-5 10-4 10-3 10-2
-8.010

-8.008

-8.006

-8.004

-8.002

-8.000

-7.998

-7.996

Γ = 10
MC, AAEP, this work:

mtot = 10
8

nb = 50

MC, Ewald, UEw, this work:

mtot = 10
7

nb = 5

Fit, γ = 1.246(33)
Caillol, N = 3200

U
/N

1/N

This work -7.998170(16)
Caillol -7.997974(45)

(d)

10-5 10-4 10-3 10-2
-87.75

-87.70

-87.65

-87.60

-87.55

-87.50

-87.45

Γ = 100
MC, AAEP, this work:

mtot = 10
8

nb = 50

MC, Ewald, UEw, this work:

mtot = 10
7

nb = 5

Fit, γ = 1.60(12)
Caillol, N = 3200

U
/N

1/N

This work -87.52382(55)
Caillol -87.52693(24)

FIG. 4. Results of MC simulations at � = 0.1, 1, 10, 100 (points with bars) together with the numerical fit (45) (solid lines). Error bars
are calculated with Eq. (43). Thermodynamic limit energy values from [7,26] are shown for comparison. Blue stars represent MC data for
the largest N in [7,26]. Purple stars correspond to our MC simulations with the Ewald potential (5). Digits in parentheses correspond to one
standard deviation.
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At � � 1, the power-law index changes weakly and is
close to γ = 1. As � increases, the index γ also increases.

From approximation (45), we find energy values in the
thermodynamic limit as 1/N → 0. Table IV presents the re-
sults of our extrapolation in comparison with the MC, HNC
results by Caillol et al. [7,26], and the Ortner expression
[44, Eq. (94)]. For � = 1, our result is the same as that of
Caillol et al. In the case of � = 0.01-0.1, our result coin-
cides with the HNC and Ortner values. It speaks in favor
of our method in comparison to MC of [7]. In the case of
� = 10 and � = 100, we observe a difference of 2 × 10−3%
and 4 × 10−3%, respectively, from the Caillol result, which
exceeds the statistical error.

We fitted the Caillol [26] MC data by Eq. (45); the result
is presented in Table IV (third row). We observe, that for
� = 1, 100 the energy value significantly changes. In contrast
to the original Caillol result, these values coincide with ours
at � = 100 and differ at � = 1. So the thermodynamic limit
depends on the fitting function. Let us note that Caillol used
different fitting functions at various � (see Table II in [26]).
The extrapolation 1/N → 0 with different dependencies on N
at various � is a disadvantage of [26]. In our paper, only one
extrapolation dependence (45) is used.

In Fig. 4 we provide the MC data for the largest N in
[7,26] (blue stars). Despite the fact that λ3

D is much less than
the system volume, we believe that for the stated accuracy
N = 3200 is not enough. This circumstance may increase the
final error in [26].

The results of MC simulations via the Ewald potential are
presented in Table V and in Fig. 4 (purple stars). One can
see that the traditional Ewald simulation and the one via the
AAEP give close results for N � 103. At the same time, at
N = 102 there are differences; the biggest one is for � = 100.

We calculate the RDF, g(r), from MC simulations via
the traditional Ewald potential (5) and the AAEP (38) for
� = 0.1, 1, 10, 100 and N = 104. The results are represented
in Fig. 5. For the calculation of g(r) 104 configurations are
chosen from the MC chain. The curves obtained by both
methods coincide with each other for all �.

At � = 100 and N = 102 we observe differences in g(r)
starting from the second maximum (see Fig. 4). This behavior
causes the difference in energy between the exact and angular-
averaged Ewald potential. Nevertheless, both functions for
� = 100, N = 102 are shifted from the correct g(r). If the N
convergence is observed, the RDFs obtained with the Ewald
and AAEP potentials coincide.

Thus, we demonstrate the applicability and high accuracy
of the OCP AAEP for the calculation of energy in the broad
range of the � parameter. Also, the AAEP shows impressive
effectiveness in comparison with the exact Ewald potential.
Unfortunately, it is not possible to make a direct performance
comparison with the works [7,26]. In Ref. [7] it is stated
that they require “one month for 10 000 configurations” for
N = 51 200. In our study, we generated 107 configurations
in 46 h and in 3 wk for N = 105 and N = 106, respectively.
This means that a similar calculation for N = 50 000 and 104

MC steps would take 46/2/107 × 104 = 0.023 h. Thus we
estimate that the speed of our calculation is about 30 thousand
times greater than in [7]. Due to this fact the AAEP can be
applied to a very large number of particles in a supercell.

0 1 2 3 4 5 6 7 8 9 10 11 12
0.0

0.5

1.0

1.5

2.0

2.5

g
(r
)

r

Ewald potential

AAEP

N = 10

10 configurations used

Step of r: 0.05

Γ = 100, N = 10 :
Ewald potential

AAEP

Γ = 0.1

Γ = 1
Γ = 10

Γ = 100

1.0 1.5 2.0 2.5

FIG. 5. RDF, g(r), calculated from MC simulations via the tra-
ditional Ewald potential (5) (black solid line) and the AAEP (38)
(red dash line) for � = 0.1, 1, 10, 100 and N = 104. Only 104 con-
figurations are used to calculate g(r). The calculations via both
methods agree very well. Green and blue lines represent g(r) for
� = 100, N = 102 computed with both potentials; a significant dif-
ference is observed.

We believe that the OCP energy can be calculated with this
method to refine and verify previous results for the OCP.

VI. CONCLUSION

A correct expression for the angular-averaged Ewald po-
tential (AAEP) in an OCP was obtained. For this purpose we
considered an exact anisotropic Ewald potential introduced
especially for an OCP and constructed the power series of
the angular-averaged potential. Using the Fourier transform,
Taylor expansion, and Poisson formula, we rigorously demon-
strated that all coefficients of the power series are identically
zero except for the first two. Then with the cluster expansion
in the limit � → 0 we corrected the potential to avoid the di-
vergence of potential energy. Finally, we shifted the potential
so that the resulting AAEP completely vanished at r > rm.
We also derived the correct expression for the OCP energy
expressed through the AAEP. With the correct expression for
the AAEP, it was shown that the same expression for the OCP
energy can be obtained from the TCP energy.

Our calculations of the Madelung constant demonstrated
that the AAEP turned out to be about 230 times more effective
than the original Ewald potential at a comparable accu-
racy. We also performed OCP MC simulations in the range
0.01 � � � 100 with up to a million particles in a compu-
tational cell. Our result at � = 0.01-0.1 is very close to the
HNC [7] and Ortner [44] values. At � = 1 our MC data agree
very well with Caillol et al. [7].

Thus, the AAEP turned out to be very effective and ac-
curate in the simulations of classical Coulomb systems. We
anticipate that the main advantage of the AAEP will be shown
in simulations of quantum systems such as jellium (uniform
electron gas) or degenerate TCP [11–13].
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APPENDIX A: COEFFICIENTS OF TAYLOR EXPANSION

Our goal now is to obtain the coefficients of the Taylor
expansion (17). A direct Taylor expansion of (16) can not
be used, since we have the noncentral terms f (n + x) and
f (n − x) [ f (x) is defined in Eq. (14)]. This difficulty compli-
cates the derivation compared to a TCP [65, Eqs. (12), (13)],
where these terms can be excluded.

Let us decompose f (n + x) into a Fourier integral of the
variable n:

f (n + x) =
∫ +∞

−∞
Fn[ f (x + n)](ω)e−iωn dω, (A1)

where Fn[ f (n)](ω) is a Fourier transform:

Fn[ f (n)](ω) = 1

2π

∫ +∞

−∞
f (n)eiωn dn. (A2)

Using the following property of the Fourier transform:

Fn[ f (x + n)](ω) = e−iωxFn[ f (n)](ω), (A3)

we get

f (n + x) =
∫ +∞

−∞
e−iωxFn[ f (n)](ω)e−iωndω. (A4)

Thus, expression f (n − x) − f (n + x) transforms into

f (n − x) − f (n + x) = 2i
∫ +∞

−∞
Fn[ f (n)](ω) sin(ωx)e−iωn dω. (A5)

Now we can expand sin(ωx) into the Taylor series at x = 0:

f (n − x) − f (n + x) =
∞∑

k=0

(
2i

∫ +∞

−∞
Fn[ f (n)](ω)

(−1)kω2k+1

(2k + 1)!
e−iωn dω

)
x2k+1, (A6)

or, using the inverse Fourier transform notation, we rewrite Eq. (A6):

f (n − x) − f (n + x) =
∞∑

k=0

2i(−1)k

(2k + 1)!
F−1

ω [ω2k+1Fn[ f (n)](ω)](n)x2k+1. (A7)

The Fourier transform Fn[ f (n)](ω) is

Fn[e−πn2 − πnerfc
(√

πn
)
] = −e− ω2

4π

ω2
+ iπδ′(ω). (A8)

Since we multiply (A8) by ω2k+1, the second term has zero impact for k � 1. Thus,

F−1
ω

[
ω2k+1

(
−e− ω2

4π

ω2

)]
(n) = i21+2kπ k+ 1

2 n�

(
k + 1

2

)
e−πn2

M

(
1 − k,

3

2
, n2π

)
, (A9)

where M(a, b, x) is the confluent hypergeometric function defined by the series

M(a, b, x) =
∞∑

s=1

a(s)

b(s)s!
xs, (A10)

where a(s) denotes the rising factorial:

a(0) = 1, a(s) = a(a + 1)(a + 2) · · · (a + s − 1). (A11)

Also, �(k) identifies the � function. Then, expanding sin(2πnx) in Eq. (16) at x = 0, we obtain for the second part of the pair
AAEP va

2 (x) the following formula:

Lva
2 (x) = (3 − C0) +

∞∑
k=1

(−1)k
∑
n �=0

e−πn2

[
−21+2kπ k− 1

2

(2k + 1)!
�

(
k + 1

2

)
M

(
1 − k,

3

2
, n2π

)
+ 22kπ2k−1n2k−2

(2k + 1)!

]
x2k . (A12)

Expanding the erfc function at x = 0 in Eq. (7), we get the expression for Ck in Eq. (17) (if k � 1):

Ck = (−1)k
∑
n �=0

e−πn2

[
22kπ2k−1n2k−2

(2k + 1)!
− 21+2kπ k− 1

2

(2k + 1)!
�

(
k + 1

2

)
M

(
1 − k,

3

2
, n2π

)]
− 2(−1)kπ k

(2k + 1)k!
. (A13)
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By adding and subtracting the contribution at n = 0 and using the � function property �(k + 1/2) = (2k)!
√

π/(22kk!), we get
the final expression for Ck :

Ck = (−1)k
∑

n

e−πn2

[
22kπ2k−1n2k−2

(2k + 1)!
− 21+2kπ k− 1

2

(2k + 1)!
�

(
k + 1

2

)
M

(
1 − k,

3

2
, n2π

)]
+ 2π

3
δ1,k, k � 1, (A14)

where δ1,k is the Kronecker symbol.

APPENDIX B: ZEROING THE COEFFICIENTS

We are going to prove the equality

22kπ2k−1

(2k + 1)!

∑
n

e−πn2
n2k−2

= 21+2kπ k− 1
2

(2k + 1)!
�

(
k + 1

2

) ∑
n

e−πn2
M

(
1 − k,

3

2
, n2π

)
,

(B1)

from which it follows that Ck = 0 for k � 2. To do this, we
use the Poisson formula:

∑
n

e−πn2
n2k−2 =

∑
q

Fk (q), (B2)

where

Fk (q) =
∫

e−πn2
n2k−2e−2π in·q d3n

= 2π
1
2 −k�

(
k + 1

2

)
e−πq2

M

(
1 − k,

3

2
, q2π

)
(B3)

is a Fourier transform. Substituting (B3) in the left-hand side
of Eq. (B1) turns Eq. (B1) into an identity. Thus, Ck = 0 for
k � 2.

APPENDIX C: DERIVATION OF THE OCP AAEP
FROM THE TCP ONE

In Refs. [52], [65, Eq. (59)] the energy of TCP was ob-
tained by the angular averaging of the TCP Ewald potential.
We consider a plasma with two sorts of particles with charges
Q+ = +Ze and Q− = −Ze. Then the internal energy reads

U

�
= −

N∑
i=1

3z2
i

4rm
+ 1

2

N∑
i=1

zi

N∑
j=1
j �=i

z j ṽ(ri j ). (C1)

Here � = (Ze)2/(kBTa), zi is a charge sign and ṽ(r) is defined
by Eq. (37). Below we obtain Eq. (38) for the OCP energy
from Eq. (C1). The main idea is to separate the summation in
Eq. (C1) for positive and negative ions; then consider a transi-
tion from the summation over point charges to the integration
over a uniformly distributed charge.

We separate positive and negative ions:

N = N+ + N− = 2N+ = 2N−, (C2)

where N+ and N− denote the number of positive and neg-
ative ions, respectively. Let us consider the first term in
Eq. (C1):

−
N∑

i=1

3z2
i

4rm
= −

N−∑
i=1

3z2
i

4rm
−

N+∑
i=1

3z2
i

4rm
. (C3)

For positive ions, we keep this term as a discrete sum with
zi = 1:

−
N+∑
i=1

3z2
i

4rm
= −3N+

4rm
. (C4)

Now we consider each negative ion as a space element with
an infinitesimal charge

zi → −ρ dV, (C5)

where ρ = N+/L3 = N−/L3 is the number density and dV
denotes a space element. Then we replace the summation over
negative charges with an integral over space:

N−∑
i=1

zi → −
∫

ρ dV. (C6)

The first term in Eq. (C3) contains z2
i , while the summation

is performed once. As we proceed to integration, this term has
an infinitesimal contribution to the energy of the system:

−
N−∑
i=1

3z2
i

4rm
→ 0. (C7)

Next, we consider the two-particle contribution to the en-
ergy. This term results in three sums:

N∑
i=1

zi

N∑
j=1
j �=i

z j ṽ(ri j ) =
N−∑
i=1

zi

N−∑
j=1
j �=i

z j ṽ(ri j ) + 2
N+∑
i=1

zi

N−∑
j=1

z j ṽ(ri j )

+
N+∑
i=1

zi

N+∑
j=1
j �=i

z j ṽ(ri j ). (C8)
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The last term in Eq. (C8) remains unchanged. We change the
second term into the integral over space:

2
N+∑
i=1

zi

N−∑
j=1

z j ṽ(ri j ) → −2
N+∑
i=1

zi

∫
ρṽ(|r j − ri|) dr j

= −2
N+∑
i=1

zi

∫
ρṽ(|r j − ri|) d (r j − ri )

= −2
N+∑
i=1

zi

∫
ρṽ(u) du, (C9)

where u = r j − ri. We calculate this integral in spherical co-
ordinates:

−2
N+∑
i=1

zi

∫
ρṽ(u) du = −2

N+∑
i=1

zi

∫ rm

0
4πu2ρṽ(u) du

= −2N+4πρr2
m

1

10
. (C10)

Since

ρ = N+
L3

= N+
4π
3 r3

m

, (C11)

we obtain the expression

2
N+∑
i=1

zi

N−∑
j=1

z j ṽ(ri j ) → − 6

10

N2
+

rm
. (C12)

The first term in Eq. (C8) is also replaced with an integral:

N−∑
i=1

zi

N−∑
j=1
j �=i

z j ṽ(ri j ) → −
N−∑
i=1

zi4πρ

∫ rm

0
u2ṽ(u) du. (C13)

We calculate this integral and get

−
N−∑
i=1

zi4πρr2
m/10. (C14)

This sum also should be integrated. Since the integrand is
constant, we obtain

−
N−∑
i=1

zi4πρr2
m/10 → ρ × 4π

3
r3

m × 4πρr2
m/10. (C15)

Using Eq. (C11), we get

N−∑
i=1

zi

N−∑
j=1
j �=i

z jφ(ri j ) → 3

10

N2
−

rm
= 3

10

N2
+

rm
. (C16)

Substituting Eqs. (C4), (C7), (C8), (C12), and (C16) in
(C1), we get the OCP energy:

U

�
= −3N+

4rm
− 1

2

6

10

N2
+

rm
+ 1

2

3

10

N2
+

rm
+ 1

2

N+∑
i=1

N+∑
j=1
j �=i

ṽ(ri j )

= − 3

20

N+(N+ + 5)

rm
+ 1

2

N+∑
i=1

N+∑
j=1
j �=i

ṽ(ri j ). (C17)

This expression is the same as Eq. (38) obtained from the OCP
AAEP.
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