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Fast particles overtaking shock front in two-dimensional Yukawa solids
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High-speed particles overtaking the shock front during the propagation of compressional shocks in
two-dimensional (2D) Yukawa solids are investigated using molecular dynamical simulations. When the com-
pressional speed is lower, all particles around the shock front are almost accelerated synchronously. However,
when the compressional speed is much higher, some particles penetrate the shock front to enter the preshock
region. Around the shock front, it is found that the particle velocity profile at the first peak of the dispersive
shock wave (DSW) is able to be described using the Gaussian distribution, so that the amplitudes of the DSW
can be well characterized. As the compressional speed increases, the particle velocity corresponding to these
DSW’s amplitudes increase more substantially than the shock front speed. These amplitudes of the DSW are
found to be able to predict the occurrence of the fast particles. Combined with the previous study of the DSW’s
period, it is demonstrated that the properties of the DSW are nearly not affected by the conditions of the 2D
Yukawa systems, but only related to the compressional speed.
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I. INTRODUCTION

A dispersive shock wave (DSW) exhibits the periodic
structure, consisting of a series of envelopes with the mono-
tonically decreasing amplitudes [1], where the dispersive
effect is much greater than the dissipative one [2]. The DSWs
have been investigated in various physical systems, such as
the nonlinear optics [3,4], fluids [5–7], the Bose-Einstein con-
densates [8,9], and dusty plasmas [10–13]. DSWs typically
occur where the weak dispersion and weak nonlinearity are
dominant [14].

Laboratory dusty plasma typically refers to the mixture
of free electrons, free ions, neutral gas atoms, and charged
micron-sized dust particles [15–28]. Because of their high
charge Q and low charge-to-mass ratio, these dust particles
are strongly coupled, so that the collection of thousands of
dust particles typically exhibits the properties of either liquids
[29–32] or solids [33–36]. In the typical laboratory conditions,
tens of thousands of dust particles can be suspended in the
plasma sheath, forming a two-dimensional (2D) suspension,
i.e., a 2D dusty plasma [22,23,37]. Due to the low frictional
gas drag [38], the motion of these dust particles in the plasma
is underdamped. The interaction between particles can be
modeled as the Yukawa repulsion [39–41]. The motion of
individual dust particles within this 2D plane can be directly
recorded using video imaging, so that the diagnostic of in-
dividual particle tracking can be employed [42]. Now, dusty
plasma has been developed to an excellent model system, in
which various fundamental physics processes can be inves-
tigated at the kinetic level [43]. Quite a few shock-related
experiments have been performed in dusty plasmas, such as
the mach cones generated by supersonic particles [44], the
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shock melting generated by an electric pulse [45], and the
compressional shock generated by a moving exciter [46].

Using computer simulations of dusty plasmas, more
quantitative analyses can be accurately performed to inves-
tigate properties of compressional shocks [10–13,47–50]. In
Ref. [10], compressional shocks are generated by a inward
moving boundary in 2D Yukawa systems, so that the thermo-
dynamic and kinetic properties are obtained. In Refs. [11,12],
from the shock Hugoniot curve, thermodynamic quantities of
the pressure and energy in the postshock region are analyt-
ically derived. The presence of fast particles ahead of the
shock front is revealed from these simulations [10,11]. In
fact, these fast particles have also been observed in the shock
wave propagation in the three-dimensional (3D) dusty plasma
experiment performed on the international space station [51].
However, from our literature search, the underlying mecha-
nism of these fast particles has still not been well understood
yet. Under some conditions, the DSW has been observed
around the shock front of compressional shocks [10], which
is further confirmed in Refs. [11–13]. In Ref. [13], it is found
that the DSW’s period is almost only related to the compres-
sional speed of the boundary, nearly independent from the
conditions of 2D Yukawa systems. However, the property of
the DSW’s amplitude in this system is still unknown yet. Here,
we explore the mechanism of the DSW’s amplitude, and also
look for the connection between the DSW’s amplitude and the
so-called fast particles.

In this paper, we study the high-speed particles which over-
take the shock front during the propagation of compressional
shocks in 2D Yukawa solids using molecular dynamical (MD)
simulations. In Sec. II, we briefly introduce our MD simula-
tion method to mimic compressional shocks in 2D Yukawa
solids. In Sec. III, we investigate the DSW by characterizing
its amplitude under various conditions. Then, comparing the
obtained DSW’s amplitude with the shock front speed derived
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from the shock Hugoniot curves, we provide our interpretation
of the fast particles around the shock front and also predict
the occurrence of these fast particles under various conditions.
Finally, a summary is given in Sec. IV.

II. SIMULATION METHOD

To mimic dynamics of compressional shocks in 2D dusty
plasmas, we perform MD simulations of 2D Yukawa systems
using LAMMPS [52] as in Refs. [11–13,47–50]. The simulated
N = 16 384 particles are confined in a 2D plane with the
initial size of 486.6a0×105.6a0, where a0 is the Wigner-Seitz
radius of the initial undisturbed 2D Yukawa system. The
interaction between particles is the Yukawa repulsion φi j =
Q2 exp(−ri j/λD)/4πε0ri j , where λD is the Debye length, Q
is the particle charge, and ri j is the distance between the
particles i and j. To describe our 2D Yukawa system, two
dimensionless quantities are used, which are the coupling pa-
rameter �0 = Q2/(4πε0a0kBT ) and the screening parameter
κ0 = a0/λD, respectively, where T is the kinetic temperature
of particles. The initial coupling parameter is always specified
as �0 = 2000 for all 2D Yukawa solids studied here. Note
that we use the symbols with the subscript 0 to represent the
physical quantities of the undisturbed preshock region, as in
Refs. [11,12].

Besides the interparticle interaction, in the x direction,
two inward confining forces from the left and right bound-
aries are also applied in our simulations, respectively. Here,
the magnitude of the confining force is Fi = 50 exp[−(x −
xb)2/0.25a2

0]ma0ω
2
pd, where xb refers to the location of the

boundary, and ωpd is the nominal 2D dusty plasma frequency
[53,54]. To generate compressional shocks generated in a 2D
Yukawa solid, the left boundary is specified to move to the
right with various constant speeds of vleft , while the right
boundary is stationary. In the y direction, the periodic bound-
ary conditions are applied. Other details of our MD simulation
method are the same as in Ref. [50]. After obtaining the posi-
tions and velocities of the simulated 16 384 particles, we are
able to perform the corresponding data analysis, as presented
next.

III. RESULTS AND DISCUSSION

To study the particle motion around the shock front during
the shock propagation, we prepare the typical particle trajecto-
ries with two different compressional speeds of vleft/a0ωpd =
0.636 and 1.061 in Fig. 1. Here, we plot the trajectories of par-
ticles around the shock front within the region of 50a0 × 40a0,
nearly 4% of the entire simulation box, when 113 � tωpd �
127 after the left boundary starts to compress the 2D Yukawa
solid. Note that the initial conditions of our simulated 2D
Yukawa solid in Fig. 1 are �0 = 2000 and κ0 = 0.75.

Figure 1 clearly shows two different types of particle
motion around the shock front during the propagation of com-
pressional shocks. After the left boundary starts to compress
the 2D Yukawa solid, particles in the postshock region are
accelerated significantly by the generated shock. For the lower
compressional speed in Fig. 1(a), all particles at the shock
front are almost accelerated synchronously, and the shock
front speed is higher than the speed of the particle motion.
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FIG. 1. Calculated particle trajectories around the shock front for
the compressional speeds of (a) vleft/a0ωpd = 0.636 and (b) 1.061
in the 2D Yukawa solid of �0 = 2000 and κ0 = 0.75. Clearly, the
collective motion of particles around the shock front exhibits two
different behaviors during the propagation of compressional shocks.
For the higher compressional speed of vleft/a0ωpd = 1.061 in panel
(b), a few particles penetrate the shock front and then enter the
preshock region. However, for the lower compressional speed of
vleft/a0ωpd = 0.636 in panel (a), the motion of all particles around the
shock front is almost synchronized, so that none of them penetrate
the shock front to enter the preshock region. Note that only 4% of
the simulated region and 3% of the simulated duration are shown
here.

However, from Fig. 1(b), when the compressional speed is
higher, a few of particles penetrate the shock front and then
enter the preshock region. In this paper, we follow the tradition
of Ref. [10] to name these particles overtaking the shock front
as “fast particles.” In fact, these fast particles have also been
observed in the previous shock simulations [10,11], while the
detailed investigation is still lacking.

To effectively quantify these fast particles around the
shock front, we prepare the one-particle distribution function
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f1(ζ , vx ), as in Refs. [10–13]. Here, ζ is the Lagrange co-
ordinate ζ = x − (Dt − 240) moving with the shock front,
where D is the shock front speed derived from the shock
Hugoniot curve [11]. First, we divide the ζ − vx plane into
bins in the both ζ and vx directions. For the horizontal axis
of ζ , we divide it into bins with the width of 0.5a0. While
for the vertical axis of vx, we divide it into bins with the
width of 0.01a0ωpd. Then we count the particle number in
each cell, and divide it by the total particle number in all cells
to obtain the distribution function, as shown in Figs. 2(a) and
2(c). Besides the distribution function, we also calculate the
corresponding velocity profiles at the first peak of the DSW,
as shown in Figs. 2(b) and 2(d), respectively. The velocity
profile provides the distribution of the particle velocity vx at
the first peak of the DSW with the width of 1.0a0. Note that
the initial conditions of Figs. 2(a) and 2(c) are the same as
those of Figs. 1(a) and 1(b), respectively.

In fact, while preparing Fig. 2, the shock front speed D in
the Lagrange coordinate ζ is derived from the shock Hugo-
niot curve obtained from the initial conditions of �0 = 800
in Ref. [11]. The initial coupling parameter of our studied
Yukawa solids here is �0 = 2000, with 40% of the kinetic
temperature of �0 = 800 in Ref. [11]. However, from the test
runs of our simulations, we confirm that, for compressional
shocks in 2D Yukawa systems of �0 = 800 and �0 = 2000,
the resulting shock front speeds are almost exactly the same.
Thus, in Fig. 2, as well as in Figs. 3 and 4 reported later, we
still use the shock Hugoniot curves in Ref. [11] to derive the
shock front speed D.

The amplitude of the DSW can be easily obtained from the
obtained one-particle distribution function f1(ζ , vx ) and the
corresponding velocity profiles. From Figs. 2(a) and 2(c), a
few ripples can be observed around the shock front region, just
corresponding to the structure of the DSW. We find that the
velocity profiles of vx at the first peak of the DSW in Figs. 2(b)
and 2(d) can be well described using the Gaussian distribution
of

f (x) = e− (x−μ)2

2σ2
/

σ
√

2π, (1)

as the fitting curves shown in Figs. 2(b) and 2(d). Thus, the
fitting parameter of σ can be used to characterize the mag-
nitude of the DSW quite well. Clearly, μ is the averaged drift
velocity of particles at the location of ζ = 0, while σ the width
of the Gaussian profile there. For the Gaussian distribution,
the particle velocity probabilities of �μ + 2σ and �μ + 3σ

correspond to 2.3% and 0.13%, respectively. Since for the
Gaussian distribution, the probability of �μ + 4σ is very tiny,
we ignore it for our current investigation. As a result, we are
able to use the thresholds of 2σ or 3σ to characterize the
magnitude of the DSW, which here we term as the amplitude
of the DSW. These two amplitudes of the DSW essentially
represent the drift velocity of some fast particles faster than
μ + 2σ and μ + 3σ along the shock propagation direction
around the shock front. We plot the velocities of μ + 2σ and
μ + 3σ corresponding to the DSW’s amplitudes, along with
the shock front speed D in Figs. 2(a) and 2(c) for the intuitive
comparison.

From Fig. 2, we can easily observe the relationship be-
tween the particle velocities corresponding to the DSW’s
amplitudes of 2σ , 3σ and the shock front speed D. For the
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FIG. 2. Obtained one-particle distribution function of the particle
velocity f1(ζ , vx ) for the compressional speed of (a) vleft/a0ωpd =
0.636 and (c) 1.061, as well as the corresponding velocity profiles in
panels (b) and (d) at the first peak of the DSW, respectively. Clearly,
the velocity profiles in panels (b) and (d) can be well described using
the Gaussian distribution of Eq. (1), as the smooth dashed curves
shown. Here, we name 2σ or 3σ as the DSW’s amplitude, and mark
the particle velocities corresponding to these DSW’s amplitudes as
μ + 2σ and μ + 3σ in panels (a) and (c). We also mark the cor-
responding shock front speed D [11] in panels (a) and (c) for the
easier comparison. In panel (c), μ + 2σ < D, while μ + 3σ > D,
indicating that some particles move faster than the shock front, well
agreeing with Fig. 1(b) where some particles penetrate the shock
front. However, in panel (a), μ + 2σ and μ + 3σ are both lower than
D, well consistent with Fig. 1(a) where no particles penetrates the
shock front. Note here the initial conditions of the 2D Yukawa solid
are �0 = 2000 and κ0 = 0.75.

lower compressional speed in Fig. 2(a), both μ + 2σ and
μ + 3σ are lower than the shock front speed D. However,
for the higher compressional speed in Fig. 2(c), although
μ + 2σ is still lower than the shock front speed D, μ + 3σ is
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FIG. 3. Obtained particle velocities corresponding to these
DSW’s amplitudes of μ + 2σ and μ + 3σ , as the functions of the
compressional speed varying from 0.071a0ωpd to 1.485a0ωpd , with
the initial 2D Yukawa conditions of �0 = 2000 and κ0 = 0.75. For
comparison, we also present the shock front speed D derived from
the shock Hugoniot curve [11] for different compressional speeds.
Clearly, as the compressional speed of the left boundary vleft in-
creases, the shock front speed D increases simultaneously, and the
particle velocities corresponding to these DSW amplitudes μ + 2σ

and μ + 3σ also increase significantly and even more substantially.
When the particle velocity corresponding to the DSW’s amplitude
eventually exceeds the shock front speed D, the corresponding per-
centage particles are able to penetrate the shock front to enter the
preshock region, as those shown in Fig. 1(b). Note that the arrows
shown here correspond to the conditions of Fig. 1.

significantly higher than the shock front speed D. The result of
μ + 3σ > D in Fig. 2(c) clearly indicates that some particles
move faster than the shock front speed, well agreeing with the
observed fast particles in Fig. 1(b).

Note that although the velocity profiles in Figs. 2(b) and
2(d) can be fit to the Gaussian function quite well, they rep-
resent the particle drift velocity along the shock propagation
direction. Due to the acceleration of the compressional shocks
on all particles to the right in our simulations, the probability
of the velocity distribution within the range of (μ,+∞) is
slightly higher than that within the range of (−∞, μ), i.e.,
the calculated velocity profile is not strictly symmetric about
vx = μ. However, our use of μ + 2σ or μ + 3σ to quantify
the amplitude of DSW is still not affected much.

To understand the physical mechanism of fast particles
around the shock front, we investigate the variation of the
particle velocities corresponding to the DSW’s amplitudes
as the function of the compressional speed. By fitting the
velocity profiles at the shock front using the method described
above, we obtain the particle velocities of μ + 2σ and μ + 3σ

corresponding to the two DSW’s amplitudes for all compres-
sional speeds, as presented in Fig. 3. For the comparison, we
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FIG. 4. Obtained particle velocities corresponding to the DSW’s
amplitudes μ + 2σ and μ + 3σ , as the functions of the compres-
sional speed vleft , under the conditions of κ0 = 0.75, 1.0, and 2.0,
while �0 = 2000 for the initial 2D Yukawa solids. For the com-
parison, we also present the shock Hugoniot curves [11], i.e., the
D − v̄ relationship of 2D Yukawa system, where v̄ is the same as
the compressional speed vleft here [11], as the solid curves shown.
Clearly, the obtained particle velocities corresponding to the DSW’s
amplitudes of μ + 2σ and μ + 3σ follow the same monotonically
increasing trend with the compressional speed vleft . For these three
κ0 values, the obtained data points of μ + 2σ and μ + 3σ only
scatter briefly, suggesting that the amplitude of the DSW is mainly
determined by the compressional speed vleft , nearly not related to the
initial screening parameter of the 2D Yukawa solids. The parabolic
expression of V = αvleft + βv2

left is used to fit to these symbols, as
two dashed curves show. For the same compressional speed of vleft ,
although the obtained results of μ + 2σ and μ + 3σ for different κ0

values are very close, the shock front speed D determined by the
shock Hugoniot curves are completely different. From the crossings
of the shock Hugoniot curves and the parabolic fittings of μ + 2σ

and μ + 3σ , the fast particles overtaking the shock front can be well
predicted and characterized. Note when the compressional speeds
vleft = 0.919 and 1.061 for κ0 = 2.0, the DSW fades away so that
the amplitude cannot be distinguished any more.

also present the corresponding shock front speed D calculated
from the shock Hugoniot curve in Ref. [11]. Clearly, in Fig. 3,
the shock front speed D is nearly linear to the compressional
speed vleft [11], well agreeing with the theory of both viscous
and dispersive shocks [55]. Note, in Fig. 3, the initial condi-
tions of our 2D Yukawa solid are �0 = 2000 and κ0 = 0.75.

In Fig. 3, clearly, as the compressional speed increases,
both the shock front speed D and the particle velocities
corresponding to the DSW’s amplitudes increase monoton-
ically. However, the velocities corresponding to the DSW’s
amplitudes of μ + 2σ and μ + 3σ increase much more
substantially than the shock front speed D. For lower compres-
sional speeds of vleft , the particle velocities corresponding to
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the DSW’s amplitudes of μ + 2σ and μ + 3σ are both lower
than the shock front speed D. For our studied 2D Yukawa
solid of �0 = 2000 and κ0 = 0.75, when the compressional
speed vleft/a0ωpd � 0.8, the particle velocity corresponding
to the DSW’s amplitude of μ + 3σ first exceeds the shock
front speed D, we observe a few particles penetrate the
shock front to enter the preshock region with a limited depth.
When the velocity corresponding to the DSW’s amplitude
of μ + 2σ is comparable to or even higher than the shock
front speed D, as in Fig. 1(b) of vleft/a0ωpd = 1.061, we find
that more particles penetrate the shock front and then enter
sufficiently deep into the preshock region. As the compres-
sional speed vleft increases further, more and more particles
penetrate the shock front and enter the preshock region even
deeper.

From Fig. 3, we also find that, as the compressional speed
increases, the gap between μ + 2σ and μ + 3σ gradually in-
creases. This result is reasonable, since the difference between
μ + 2σ and μ + 3σ is just σ , which means the width of the
velocity profile or the thermal velocity [12]. For the higher
compressional speed, particles are more substantially acceler-
ated, so that more energy from the compression is converted
to the thermal energy around the shock front, i.e., the obtained
velocity profile in Fig. 2 is wider.

As the major result of this paper, we find the relationship
between the particle velocities corresponding to the DSW’s
amplitudes and the compressional speed vleft from our simu-
lated 2D Yukawa solids under various conditions, as shown in
Fig. 4. In addition to the results for κ0 = 0.75 in Fig. 3, we
also present the obtained particle velocities corresponding to
the DSW’s amplitudes for the other values of κ0 = 1.0 and
2.0 in Fig. 4. Note that we confirm that the initial states of the
simulated 2D Yukawa systems under these conditions of these
κ0 values and �0 = 2000 are all solids [56]. Following the
method described above, we obtain the particle velocities cor-
responding to the DSW’s amplitudes of μ + 2σ and μ + 3σ

for each pair of �0 and κ0, as shown in Fig. 4. We also present
the shock Hugoniot curves derived in Ref. [11] for different
κ0 values, as the solid curves shown in Fig. 4, where the mean
particle speed v̄ is replaced by the compressional speed vleft ,
as confirmed in Ref. [11].

Interestingly, from Fig. 4, we find that when the initial
screening parameter varies, the particle velocities correspond-
ing to the DSW’s amplitudes of μ + 2σ and μ + 3σ do not
vary substantially. Unlike the shock front speeds D for various
κ0 values which are completely different, our obtained particle
velocities of μ + 2σ and μ + 3σ only scatter very briefly for
the different κ0 values. That is to say, the particle velocities
corresponding to the DSW’s amplitudes are nearly not af-
fected by the initial screening parameter κ0 of the 2D Yukawa
solids, well agreeing with the analytical predictions for weak
DSWs [55,57,58]. Besides the DSW’s amplitude presented
here, in Ref. [13], it is also found that the period of the
DSW is mainly determined by the compressional speed of the
boundary, which is nearly independent from the initial condi-
tions of 2D Yukawa systems, no matter how �0 and κ0 vary.
Combining the results here and those in Ref. [13], it seems that
the properties of the DSW, such as its amplitude and period,
are almost only related to the compressional speed, and nearly
independent from the conditions of the media where the shock

propagates, such as 2D Yukawa solids studied here or those
studied in Ref. [13].

To better characterize the relationship between the particle
velocities corresponding to the DSW’s amplitudes and the
compressional speed, we use the parabolic expression of

V = αvleft + βv2
left (2)

to quantitatively describe these physical quantities instead of
relying on discrete data points, as shown by two dashed curves
in Fig. 4. Our chosen expression of Eq. (2) implies that the
particle velocity corresponding to the DSW’s amplitude is
zero when the compressional speed vleft is zero, as we discuss
later. The corresponding fitting coefficients of α and β in the
parabolic expression are presented in the legend of Fig. 4. To
keep the same weighting of data points for different κ0 values,
we only choose nine data points of κ0 = 0.75 from Fig. 3, as
presented in Fig. 4. However, all data points for κ0 = 0.75 in
Fig. 3 well agree with the presented fitting curves in Fig. 4.
Note that when the compressional speed vleft = 0.919 and
1.061 for κ0 = 2.0, the DSW almost vanishes so that the am-
plitude cannot be identified any more, and the similar feature
is also observed in Ref. [13]. As a result, in Fig. 4, we only
have seven data points for κ0 = 2.0, unlike the nine data points
for κ0 = 0.75 or 1.0, for the parabolic fittings. Clearly, from
Fig. 4, the ratio of the DSW’s amplitude (such as μ + 2σ )
to the postshock drift velocity (just the compressional speed
vleft [11]) is around 1.5, well agreeing with the theoretically
predicted ratio [55,57,58] of about 1.5 to 2 for DSWs when
the dispersive effect is dominant, as in Fig. 5 of Ref. [55].

From Fig. 4, we find that the obtained fitting curves inter-
sect with the shock Hugoniot curves with different κ0 values.
Although our fitting curves of μ + 2σ and μ + 3σ both start
from the initial point, they increase much more substantially
than the shock Hugoniot curves, as the compressional speed
increases. As a result, the particle velocities corresponding to
the amplitudes of the DSW μ + 2σ and μ + 3σ characterized
by the fitting curves gradually exceed the shock front speed D
when the compressional speed vleft is between 0.5a0ωpd and
1.0a0ωpd for different κ0 values. Essentially, when the parti-
cle velocity corresponding to the DSW’s amplitude exceeds
the shock front speed, the corresponding percentage particles
move faster than the shock front. As a result, these particles
overtake the shock front and then enter the preshock region.
Thus, we are able to effectively predict the occurrence of the
fast particles overtaking the shock front based on the crossings
of the shock Hugoniot curves and the parabolic fittings of
μ + 2σ and μ + 3σ in Fig. 4.

Note that, unlike the intercept of the shock Hugoniot curves
indicates the corresponding longitudinal sound speeds of the
undisturbed 2D Yukawa system [11], the particle velocity
corresponding to the DSW’s amplitude is always zero when
the compressional speed of vleft is close to zero. When vleft is
close to zero, the particles are barely accelerated, thus the drift
velocity of particles, or the particle velocity corresponding to
the DSW’s amplitude, is almost zero, leading to our choice of
the fitting equation (2) above.

From our compressional shock simulation results pre-
sented above, we provide our interpretation of the fast
particles overtaking the shock front. When the compres-
sional speed of the left boundary increases, both the particle
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velocity corresponding to the DSW’s amplitude and the shock
front speed increase monotonically, while the particle velocity
corresponding to the DSW’s amplitude increases much more
substantially than the shock front speed. If the particle veloc-
ity corresponding to the DSW’s amplitude is comparable to
or even higher than the shock front speed, i.e., some particles
move faster than the shock front, then these fast particles are
able to penetrate the shock front, just as in Fig. 1(b). Combin-
ing the quantitative relationship between the particle velocity
corresponding to the DSW’s amplitude and the compressional
speed in Fig. 4 with the shock Hugoniot curves in Ref. [11],
the fast particles occurring around the shock front during the
shock propagation in 2D Yukawa solids can be well predicted.

IV. SUMMARY

In summary, we systematically investigated the fast par-
ticles overtaking the shock front during the propagation of
compressional shocks in 2D Yukawa solids using MD sim-
ulations. From the obtained particle trajectories, we observe
two different types of particle motion around the shock front
during the propagation of compressional shocks. For the ini-
tial 2D Yukawa solid of �0 = 2000 and κ0 = 0.75, when the
compressional speed vleft/a0ωpd � 0.8, we find some particles
penetrate the shock front and then enter the preshock region.
Applying the Gaussian fitting to the velocity profile of the
one-particle distribution function, we obtain the amplitude of
the generated DSW around the shock front which can be used
to characterize these fast particles. The particle velocity cor-

responding to the DSW’s amplitude and the shock front speed
both increase monotonically with the compressional speed,
however, the increase of the particle velocity corresponding
to the DSW’s amplitude is much more substantial. When
the particle velocity corresponding to the DSW’s amplitude
increases to comparable to or even higher than the shock front
speed, i.e., the shock propagation speed, the fast particles
appear reasonably. We also find that the particle velocity cor-
responding to the DSW’s amplitude under various conditions
can be well fit by the parabolic expressions. Comparing these
parabolic fittings of the velocity of the DSW’s amplitudes with
the shock Hugoniot curves, the occurrence of the fast particles
during the shock propagation in 2D Yukawa solids can be well
predicted and characterized under various conditions.

As for the property of the DSW in our simulations, we
find that the initial screening parameter of 2D Yukawa solids
nearly does not have an effect on our obtained amplitude of
the DSW. Combined with the previous study on the period of
the DSW [13], it seems that the properties of the DSW are
nearly not related to the initial conditions of the media where
the compressional shock propagates, but only related to the
shock parameter of the compressional speed.
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