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Directional locking in a two-dimensional Yukawa solid modulated
by a two-dimensional periodic substrate
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Directional depinning dynamics of a two-dimensional (2D) dusty plasma solid modulated by a 2D square
periodic substrate are investigated using Langevin dynamical simulations. We observe prominent directional
locking effects when the direction of the external driving force is varied relative to the underlying square
substrate. These locking steps appear when the direction of the driving force is close to the symmetry direction of
the substrate, corresponding to the different dynamical flow patterns and the structures. In the conditions between
the adjacent locking steps, moving ordered states are observed. Although the discontinuous transitions often
occur between the locking steps and the nonlocking portion, the continuous transitions are also found around
the locking step associated with the disordered plastic flow close to its termini. Our results show that directional
locking also occurs for underdamped systems, which could be tested experimentally in dusty plasmas modulated
by 2D substrates.
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I. INTRODUCTION

Collective dynamics of interacting particles have been
widely investigated in various two-dimensional (2D) physical
systems, such as colloids [1], vortex lattice in superconduc-
tors [2], pattern-forming systems [3,4], Wigner crystals [5],
and dusty plasmas [6–17]. The dynamical behaviors of these
systems when modulated by various kinds of external sub-
strates are of great interest, as studied in Refs. [1,3,5,18].
These systems can be driven by different types of external
forces, leading to various distinct dynamical responses [19].
The driving forces may be either dc [19] or ac [20,21], with a
fixed direction [19] or varying directions [18,22]. The dynami-
cal responses that have been observed include the pinning and
depinning [19,23], structural phase transitions [24], and the
phase locking effects [18,21,22].

For particles moving over 2D periodic substrates, dif-
ferent dynamical phases can arise due to the symmetry of
the substrates [25–31]. One interesting phenomenon related
to these dynamical phases is the so-called directional lock-
ing [28–31], where the particles become dynamically locked
to move in certain directions relative to the substrate sym-
metry, even when the driving force is not aligned in these
directions. That is, for the particles driven with varying di-
rections, their motion becomes locked to specific directions
relative to the substrate symmetry, instead of following the
driving force direction [18,22]. Directional locking effects
have been widely studied in experiments [28,29,32–34] and
simulations [30,31,35–44] in various systems, such as col-
loids [30,45–47], superconducting vortices [18,22], active
matters [48], and microfluids [49]. The previous directional
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locking studies focus on the structure transition of the particle
arrangement [22], while the depth of the substrate and the
commensurability ratio vary for different substrates [50], such
as the triangular periodic substrates [22], the square periodic
substrates [18,22], and the quasicrystalline substrates [50].
In Refs. [30,37,38,46], the directional locking effect is also
exploited to sort different kinds of particles. In short, the
directional locking effect has already been widely studied in
the overdamped and strongdamped systems [18,22,36], so that
it would also be interesting to investigate whether this effect
also occurs in underdamped systems, such as dusty plasmas
as studied here.

Laboratory dusty plasma typically refers to the mixture of
micron-sized dust particles, free electrons, free ions, and neu-
tral gas atoms [6–17]. In the typical laboratory conditions, by
absorbing free electrons and ions in the plasma, these micron-
sized dust particles can be charged to a high negative charge of
∼ − 10−4 e, interacting with each other through the Yukawa
repulsion [51]. As a result, these dusty particles are strongly
coupled, which can be self-organized into a single layer
suspension, called 2D dusty plasma [52,53], exhibiting the
typical solid- [16,54] or liquidlike properties [17,55]. While
moving in the plasma environment, dust particles experience
a weak frictional gas drag force [56], with the typical damping
rate of ν ∼ 1 s−1 [16]. In experiments, dust particles can be
directly imaged and then tracked [57], so that the individual
dust particle motion can be precisely analyzed. Thus, various
physical procedures can be studied at the individual particle
level, such as the phase transition [16], the diffusion [58], and
the shock propagation [59]. Recently, 1D and 2D periodic sub-
strates are introduced to 2D dusty plasmas to modulate their
collective structural and dynamical behaviors using simula-
tions [60–63]. In Refs. [64,65], the 1D-substrate-modulated
2D dusty plasmas are driven by a gradually changing uniform
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dc force, leading to the pinning and depinnnig dynamics,
where the pinned, the plastic flow, and the moving ordered
states are observed. However, the directional locking effect
has never been investigated in dusty plasmas before, so that
it is still not clear whether the directional locking also exists
in underdamped dusty plasmas, as studied here. As compared
with those overdamped systems [30,45,46], the role of the in-
ertial term in the directional locking effect needs to be further
studied.

The rest of this paper is organized as follows. In Sec. II,
we describe our simulation method to mimic a substrate-
modulated 2D dusty plasma driven by forces at different
angles. In Sec. III, we present our observed prominent direc-
tional locking effect in a square-substrate-modulated 2D solid
dusty plasma, or 2D Yukawa solid, which is driven by the
external force in varying directions. We find that the observed
prominent locking steps correspond to the flow patterns with
the 1D channels along the directions related to the symmetry
of the substrate. Around the termini of these locking steps, we
investigate the corresponding structure transitions in detail.
Finally, we give a brief summary.

II. SIMULATION METHODS

We follow the tradition [12–15] to characterize our stud-
ied 2D dusty plasma solids or 2D Yukawa solids using the
two dimensionless parameters of the coupling parameter �

and the screening parameter κ . They are defined [66,67] as
� = Q2/(4πε0akBT ) and κ = a/λD, respectively. Here Q is
the charge of one particle, a = 1/

√
πn is the Wigner-Seitz

radius [68] for the areal number density n, T is the averaged
kinetic temperature from the velocity fluctuation of particles,
and λD is the Debye screening length.

To investigate the directional locking effect of the
substrate-modulated 2D Yukawa solid driven by the external
driving force in varying directions, we perform Langevin dy-
namical simulations [60] with N = 1024 particles constrained
in a rectangular box of 61.1a × 52.9a with the periodic
boundary conditions. The equation of motion for the ith parti-
cle is

mr̈i = −∇�φi j − νmṙi + ξi(t ) + Fs + Fd . (1)

The first term on the right-hand side of Eq. (1) is the interpar-
ticle Yukawa repulsion [51] between the ith and jth particles,
where φi j = Q2exp(−ri j/λD)/4πε0ri j and ri j is the distance
between them. The second term −νmṙi is the fractional gas
damping [56] that particles experience while moving in the
rarefied gas or plasma environment. The third term ξi(t ) is the
Langevin random kicks [16,69] from the plasma environment,
which is realized using the driven-dissipation theorem [70]
in our simulations. The last two terms of Fs and Fd are the
forces from the modulate substrate and the external driving
source in varying angles, respectively, as we explain in details
next.

Our simulated 2D Yukawa solid is modulated by a square
periodic substrate, as shown in the Fig. 1(a). As in Ref. [30],
the function of the substrate is specified as

U (x, y) = −V0

1 + e−g(x,y)
, (2)
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FIG. 1. (a) A contour plot of a portion of the square periodic
substrate of Eq. (2) for the parameters of V0 = 0.1E0, wx = 1.79a,
wy = 1.82a, A = 6, B = 0.8 in our simulations. (b) A potential pro-
file U (x, 0) of one well of the periodic substrate, with the accurate
depth of 0.0917E0.

where g(x, y) is the 2D periodic function of g(x, y) =
A[cos(2πx/wx ) + cos(2πy/wy) − 2B] [30], which is con-
trolled by five parameters of V0, wx, wy, A, and B. Clearly,
V0 determines the depth of the square substrate in units of
E0 = Q2/4πε0a, while wx and wy are the distances between
the centers of two adjacent wells in the x and y directions,
respectively, in units of the Wigner-Seitz radius of a. Here
A directly controls the steepness of the wells, while the
relative width or shape of the well with respect to the spa-
tial periods wx and wy is determined by B. By taking the
derivative of Eq. (2), we obtain the force from this substrate
as

Fs = −∂U (x, y)

∂x
x̂ − ∂U (x, y)

∂y
ŷ

= −2πAV0

wx
sin

(
2πx

wx

)
e−g(x,y)

[1 + e−g(x,y)]2 x̂

−2πAV0

wy
sin

(
2πy

wy

)
e−g(x,y)

[1 + e−g(x,y)]2 ŷ. (3)

Our chosen parameters of the square potential function are
V0 = 0.1E0, A = 6, B = 0.8, wx = 1.79a, and wy = 1.82a.
As a result, our simulation box of 61.1a × 52.9a contains
Nw = 34×29 = 986 potential well minima for our specified
substrate, leading to the corresponding commensurability ra-
tio of ρ = N/Nw = 1.039. In fact, due to the complicated
expression of Eq. (2), for our specified parameters, the exact
depth of each potential well is 0.0917E0, not exactly the same
as V0 = 0.1E0, as shown in Fig. 1(b). Note that although we
intend to investigate the modulation by the square periodic
substrate, our choice of wx and wy are slightly different,
corresponding to ≈1.5% difference in the spatial periods in
the x and y directions, to satisfy the periodic boundary con-
ditions for the simulation box of 61.1a × 52.9a, since we
mainly focus on the commensurability ratio ρ of around unity
here.

The last term in Eq. (1) is the externally applied driv-
ing force Fd = Fxx̂ + Fyŷ in units of F0 = Q2/4πε0a2. For
our current investigation, we mainly focus on the dynamical
response of the substrate-modulated Yukawa solid to the ex-
ternal driving force in varying directions, so that we keep the
external force in the x direction unchanged as Fx = 0.24F0,
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and then only increase the external force in the y direction
Fy [18] gradually from zero to 0.3F0. As a result, while
Fy increases in this range, the corresponding angle of the
driving force relative to the x direction θ varies from 0◦ to
≈51◦. Note, for each specified value of the driving force Fy

reported here, we always perform one individual simulation
run.

Other parameters and the details of our simulations are
listed below. The conditions of our simulated 2D Yukawa sys-
tem are specified as � = 1000 and κ = 2, just corresponding
to the typical Yukawa solid state [71], so that the temper-
ature effect is reduced. The frictional gas damping rate is
chosen as ν = 0.027ωpd , comparable to the typical 2D dusty

plasma experiments [52], where ω−1
pd = (Q2/2πε0ma3)−1/2 is

the nominal dusty plasma frequency [68]. For our simulated
Yukawa solid, the time step is specified as 0.0014ω−1

pd , as well
justified in [72]. For each simulation run, after the steady
state is achieved, we integrate Eq. (1) for � 5×106 steps
for all N = 1024 particles to obtain their positions and ve-
locities, which are used for the data analysis reported later.
When our simulated system reaches the final steady state,
the total collective drift velocity, the total energy, and the
kinetic temperature do not change or drift beyond the typical
fluctuation level for 1024 particles anymore. Note, we also
perform a few test runs with N = 4096 particles to make sure
that all results presented here are independent from the simu-
lation system size. Other simulation details are the same as in
Ref. [64].

III. RESULTS AND DISCUSSIONS

A. Locking steps

To investigate the dynamical response of the square-
periodic-substrate-modulated 2D Yukawa solid driven by the
uniform force in various angles, we first focus on the collec-
tive dynamical measure of the averaged velocity direction,
characterized by tanψ . Here, ψ is the collective velocity
angle with respect to the x direction. Thus, the value of
tanψ is just tanψ = Vy/Vx, where Vx and Vy are the collec-
tive velocity projected in the x and y directions, respectively.
We calculate Vx and Vy using Vx = N−1〈∑N

i=1 vi · x̂〉 and
Vy = N−1〈∑N

i=1 vi · ŷ〉, respectively. Here vi is the velocity of
the particle i, and 〈 〉 denotes the average for all particles. As
the driving force in the y direction Fy increases from zero,
we calculate the corresponding Vx and Vy values to determine
tanψ for all conditions, as presented in Fig. 2(a). Note, after
each driving force is specified in our simulations, we always
monitor the evolution of the total energy and the kinetic tem-
perature of the whole system to confirm that the simulated
system arrives at the final steady state, then we start to record
the position and velocity data for the calculation of tanψ

reported here.
As the major result of this paper, we discover the prominent

directional locking effect from the substrate-modulated 2D
Yukawa solid driven by the uniform force in various angles,
as presented in Fig. 2(a). As Fy increases from zero, instead
of increasing monotonically, tanψ exhibits several remarkable
steps, where the value of tanψ is completely unchanged. The
unchanged value of tanψ means that the angle of ψ is un-

FIG. 2. Obtained tangent values of the collective velocity an-
gle tanψ (a) and the corresponding fraction of sixfold coordinated
particles P6 (b) versus the transverse driving force Fy for the square-
substrate-modulated 2D Yukawa solid, with the commensurability
ratio of ρ = 1.039. Here the driving force Fx is specified as an
unchanged value of Fx = 0.24F0. Locking steps occur when Fy/Fx is
near rational values of Fy/Fx = p/q, where p and q are both integers.
The locking steps (p, q) of (0, 1), (1, 3), (1, 2), (1, 1) are manifested
in (a), where (1, 1) is the most prominent. Corresponding to these
locking steps, substantial diminishments in the structural measure of
P6 are clearly exhibited in (b), especially for the significant drops in
P6 on the (1, 2) and (1, 1) locking steps. At the termini of the (1, 3)
locking step, there are two abrupt dips in P6.

changed while Fy varies, indicating that, for this range of Fy,
the direction of the collective velocity is “locked” in this spe-
cific direction, instead of changing with the varying driving
force. Interestingly, the locking steps of tanψ occur when the
ratio of Fy/Fx is close to the rational values of p/q, where p
and q are both integers. Clearly, the most prominent locking
step occurs at p/q = 1/1, with the tanψ value of 1. The
locking steps at p/q = 1/2 and 1/3 are also both remarkable,
corresponding to the tanψ value of 0.5 and 0.33, respectively.
We speculate that these rational values of p/q = 1/1, 1/2,
and 1/3 are related to the locked collective velocities on these
steps, probably due to the symmetry direction of the square
substrate, as we discuss in detail later.
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In Fig. 2(a), for the data beyond the reported steps, we can
clearly observe that the value of tanψ increases linearly with
Fy with a uniform slop, as the dashed line shown. The slope
of the dashed line is just 1/Fx, indicating that the increase rate
of tanψ relative to Fy is just 1/Fx for our current simulation
data. This increase rate of 1/Fx means that the value of tanψ

is the same as that of tanθ = Fy/Fx. That is, even though the
studied Yukawa solid is modulated by the square periodic
substrate, the observed collective velocity still exactly follows
the applied external force direction, for all of the nonlocking
data in Fig. 2(a).

From Fig. 2(a), as Fy increases gradually from zero, the
value of tanψ is always zero when Fy � 0.018F0, which can
be termed as the (0, 1) locking step, as named in Refs. [18,22].
On the (0, 1) locking step, the tanψ value of zero indicates
that the Yukawa solid is completely pinned in the y direc-
tion, although all particles move in the x direction, i.e., they
are “locked” in the x direction. When Fy � 0.018F0, from
Fig. 2(a), the tanψ value abruptly increases from zero to the
linear straight line of tanψ = Fy/Fx. As in Ref. [18], the value
of Fy = 0.018F0 here can be termed as the critical transverse
depinning force F c

y for our studied system.
In fact, besides the (1, 1), (1, 2), (1, 3), and (0, 1) locking

steps reported above, we can still observe some small ripples
in the linearly increasing portion of tanψ in Fig. 2(a). For
example, these ripples occur around Fy/F0 = 0.048, 0.097,
and 0.182. Probably these ripples are also related to other
rational values of p/q. However, due to the finite step of Fy in
our simulations and the finite accuracy of the square periodic
substrate, here we do not explore these small ripples further,
as discussed later.

To further analyze the mechanism of the observed direc-
tional locking, besides the dynamical diagnostic of tanψ , we
also investigate the structure of our studied 2D Yukawa solid
during the depinning procedure, as shown in Fig. 2(b). To
characterize the structure, we calculate the fraction of sixfold
coordinated particles P6 [1] using P6 = N−1〈∑N

i=1 δ(6 − zi)〉,
where zi is the coordination number of the ith particle obtained
in the Voronoi construction [64]. Note that for a perfect 2D
triangular lattice, P6 = 1, while for a more disordered state,
the value of P6 is smaller. From the calculated results of P6

in Fig. 2(b), clearly, the value of P6 remains at a relatively
high value, mostly larger than 0.95, during the nonlocking
phase, i.e., the linearly increasing portion of tanψ . This fea-
ture indicates that our studied 2D Yukawa solid exhibits the
highly ordered triangular arrangement outside these locking
steps.

Our observed directional locking effect from tanψ is also
distinctively exhibited from the structural measurement of P6

in Fig. 2(b). For the most prominent (1, 1) locking step, the
P6 results exhibit a significant drop to the steady low value of
≈0.52. The P6 value also drops to ≈0.67 for the remarkable
(1, 2) locking step. However, for the (1, 3) locking step, the
P6 results exhibit two abrupt dips to ≈0.65 then immediately
returns back to the high values of around 0.9. That is to say,
unlike the (1, 1) and (1, 2) locking steps where the P6 value
always stays at the lower values of < 0.7, the P6 value only
momentarily drops below 0.7 at the two termini of the (1, 3)
locking step, while at the central portion of the (1, 3) locking
step, the P6 value is still high ≈0.9. For the (0, 1) locking
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FIG. 3. Obtained particle trajectories of the 2D Yukawa solid
for the time duration of 2.8ω−1

pd at the conditions corresponding to
the (0, 1) locking step (a), the (1, 2) locking step (b), the (1, 1)
locking step (d), and the nonlocking condition of Fy = 0.17F0 (c),
as marked in Fig. 2(a). The large open circles present the locations of
potential wells of the substrate, while the small filled circles indicate
the particle positions at one typical snap shot. From these trajectories,
at the locking steps, particles mostly move in 1D channels aligned
with potential wells as in (a), (b), and (d), while under the nonlocking
condition, particle trajectories exhibit the quasiperiodic feature as in
(c). On the (0, 1) locking step in (a), all particles are completely
pinned in the y direction as they move in the x direction, i.e., locked
in the x direction. On the (1, 1) locking step in (d), particles always
move along the diagonal direction with the same moving distance
in the x and y directions, while on the (1, 2) locking step in (b),
the moving distance in the x direction is twice of that in the y
direction. Note, different colors of the particle trajectories correspond
to different times.

step, although the P6 value is still high ≈0.93, a distinctive
step slightly lower than the nonlocking phase can be clearly
identified.

B. Flow patterns

To illustrate the detailed dynamics of the directional lock-
ing effect, in Fig. 3 we plot the typical particle trajectories in
various conditions as marked in Fig. 2(a). In Fig. 3, we use
filled circles to indicate the particle positions in one typical
snap shot, and then use open circles to label the locations of
potential wells of the square periodic substrate. The straight
lines shown in Fig. 3 are just the typical particle trajectories
during the time interval of 2.8ω−1

pd . The four conditions in each
panel of Fig. 3 correspond to the (0, 1) locking step, the (1, 2)
locking step, the nonlocking phase of Fy = 0.17F0, and the
(1, 1) locking step, respectively, as marked in Fig. 2(a).
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The particle trajectories exhibit the distinctive feature in
the locking step conditions in Fig. 3. For the most prominent
(1, 1) locking step, all particles move regularly along the
1D channels at the same direction of ψ = 45◦, as shown in
Fig. 3(d). As shown in Fig. 2(a), even the value of Fy/F0

varies in the range of [0.217, 0.271], tanψ always stays at the
constant value of unity, indicating that the ψ = 45◦ 1D chan-
nels are the only choice of the particle trajectories, i.e., the
direction with the angle of ψ = 45◦ is “locked”. Similarly, for
the (1, 2) locking step, all particles also move regularly along
the 1D channels at the same direction of ψ = tan−1(1/2), as
shown in Fig. 3(b), so that the particle motion distance in the
x direction is always twice of that in the y direction. In fact,
for the (1, 3) locking step, we also verify that all particles
move along 1D channels at the direction of ψ = tan−1(1/3).
In short, we find that all of the observed locked directions of
the particle motion are along the symmetric directions of the
square periodic substrate.

As shown in Fig. 3(a), for the (0, 1) locking step, the
corresponding particle trajectories are always along the x di-
rection, which are just the 1D channels for the particle motion.
That is to say, all particles are still completely pinned in the
y direction. When the applied force Fy exceeds the critical
transverse depinning force F c

y [18], particles are able to move
in the y direction, so that the depinning procedure in the y
direction occurs. Note, as in [18,35], the stable directions of
the particle motion ψ corresponding to these locking steps
shown in Figs. 3(a), 3(b) and 3(d) are often termed as the
commensurate angles.

For the nonlocking phase conditions, such as Fy = 0.17F0

as shown in Fig. 3(c), the particle trajectories are com-
pletely different from those on the locking steps. As shown in
Fig. 3(c), the regular 1D channels completely disappear, how-
ever, the particle trajectories are nearly uniformly distributed,
exhibiting the quasiperiodic feature, similar to those observed
in Ref. [18]. The directions of the particle motion ψ corre-
sponding to these nonlocking conditions may be termed as
the incommensurate angles. Furthermore, from Fig. 3(c), it is
clear that these particles are self-organized in a highly ordered
triangular lattice, well agreeing with the corresponding high
value of P6 in Fig. 2(b).

C. Structures

To further characterize the different structures correspond-
ing to these locking steps and the nonlocking phase, in Fig. 4
we also calculate the 2D distribution functions Gxy of the stud-
ied system in the same four conditions as in the four panels
of Fig. 3. The 2D distribution function Gxy [73] provides the
probability to find a particle at one position relative to the
central reference particle, which is often used for anisotropic
systems. While calculating Gxy, for each applied driving force,
we also use the simulated particle position data in the final
steady state, similarly to the calculation of tanψ above. For
each panel of Fig. 4, besides Gxy, we also provide a typical
snap shot of the corresponding particle positions on the lower
left corner to illustrate the arrangement of particles.

From the obtained four Gxy results in Fig. 4, clearly, the
structure of Fig. 4(c) is the most ordered triangular lattice with
the hexagonal symmetry. Besides Fig. 4(c), we also confirm
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FIG. 4. Obtained 2D distribution functions Gxy for the substrate-
modulated 2D Yukawa solid at the same conditions as in Fig. 3. For
all these four conditions, the nonlocking condition (c) corresponds
to the most ordered triangular lattice, while the (1, 2) locking step
in (b) corresponds to the slightly disordered structure. The (0, 1)
locking step in (a) corresponds to the triangular lattice with the main
axis along the x direction. The (1, 1) locking step in (d) almost
corresponds to the square lattice. For each panel, the inset on the
lower left corner is the typical snapshot of particle positions.

that the particle arrangement corresponding to these nonlock-
ing phase conditions, or the incommensurate angles, is always
highly ordered. The corresponding snap shot further verifies
the highly ordered triangular lattice in these conditions. In the
depinning procedure of the 1D-periodic-substrate-modulated
2D Yukawa systems [64,65], when the external driving force
is large enough, the system is in the moving ordered state,
i.e., all particles move in a highly ordered triangular lattice as
one body. From our understanding, in the nonlocking phase
conditions as Fig. 4(c), the studied 2D Yukawa solid is also in
the moving ordered state, similar to those in Refs. [64,65].

The calculated 2D distribution functions Gxy on these lock-
ing steps exhibit the completely different features in Fig. 4.
For the most prominent (1, 1) locking step, from both Gxy and
the corresponding snap shot in Fig. 4(d), the particles are ar-
ranged in a nearly square lattice. We speculate that this square
lattice arrangement is probably caused by the combination of
two facts, which are the nearly same magnitude of the driving
forces in the two directions and the nearly same period of the
potential well arrays in the two directions. From our under-
standing, all particles almost experience the same magnitude
of force in the x and y directions, not only modulated by the
square substrate, but also driven by the external force with
the direction of θ ≈ 45◦. The forces from the external driving
force and the substrate are both substantially higher than the
interparticle force, as a result, the nearly same magnitude of
the external forces in the x and y directions reasonably result
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in the square lattice in Fig. 4(d). Further away from the center
of Gxy, the points related to the distributed particle positions
seem to be smashed along the direction of ψ = 45◦, as the
dashed line shown in the lower right corner of Fig. 4(d). We
speculate that this smashed feature in Gxy is caused by the
particle motion along the 1D channels, as shown in Fig. 3(d).

For the (0, 1) locking step, the calculated Gxy and the
corresponding snap shot in Fig. 4(a) further verify that all
particles are pinned in the y directions. Particles only move in
the x direction, so that they are well aligned in the y direction.
From the calculated Gxy, the particles are mainly ordered
in the x direction, while in the y direction, the particles in
different lines are not very correlated. From the calculated Gxy

in Fig. 4(a), the points far away from the center also seem to be
smashed along the x direction. Clearly, this smashed feature
along the x direction should be caused by the particle motion
only in the x direction.

For the (1, 2) locking step, the calculated Gxy and the
corresponding snap shot in Fig. 4(b) both exhibit much more
disordered features than Figs. 4(a), 4(c) and 4(d). From Gxy

in Fig. 4(b), except for the nearest neighbors of the center,
other points related to the particle positions are smashed along
the direction of ψ = tan−1(1/2), as the dashed line shown in
the lower right corner of Fig. 4(b). As in Figs. 4(a) and 4(d),
this smashed feature in Gxy should be caused by the particle
motion along the 1D channels, as shown in Fig. 3(b). For the
current condition, Fy is only about one half of Fx, so that the
driving force in the x and y directions are not commensurate to
induce the square lattice as in Fig. 4(d). In fact, we may regard
the structure of Fig. 4(b) as the combination of Figs. 4(a)
and 4(d).

To further investigate the dynamical and structural transi-
tions around the termini of the locking steps, we magnify one
portion of the tanψ − Fy results in Fig. 5(a). In Fig. 5, we
also plot five 2D distribution functions, corresponding to five
different conditions around the termini of the (1, 3) and (1, 2)
locking steps. From Fig. 5(a), clearly, the tanψ exhibits abrupt
jumps between the linear increase nonlocking phase and the
two termini of the (1, 2) locking step, indicating the discontin-
uous transition between the nonlocking and the locking phases
there. For the nonlocking phase, the obtained 2D distribution
function Gxy in Fig. 5(e) clearly indicates a highly ordered
triangular lattice, well consistent with the moving ordered
state driven at unlocked angles, as in Fig. 4(c). When tanψ

reaches the left terminus of the (1, 2) locking step, the calcu-
lated 2D distribution function Gxy in Fig. 5(f) clearly exhibits
the smashed feature along the direction of ψ = tan−1(1/2),
exactly the same as Fig. 4(b). That is, for all conditions on
the locking step, the structure does not change any more, just
like the locked moving direction of ψ = tan−1(1/2). At the
right terminus of the (1, 2) locking step, the 2D distribution
function Gxy also abruptly changes from the smashed fea-
ture along ψ = tan−1(1/2) to the highly ordered triangular
lattice. In addition, we confirm that the phase transition be-
tween the nonlocking phase and the (1, 1) locking step, or
the (0, 1) locking step, is also discontinuous, very similar
to the transition related to the (1, 2) locking step reported
above.

From Fig. 5, we observe a different phase transition be-
tween the nonlocking phase and the (1, 3) locking step,

FIG. 5. Magnified view of tanψ (a) versus the transverse driv-
ing force Fy as in Fig. 2(a), and the corresponding 2D distribution
functions Gxy [(b), (c), (d), (e), and (f)] around the termini of the
two locking steps. The Gxy results in (b) and (e) both correspond
to the highly ordered triangular structure, while the Gxy results in
(d) and (f) correspond to the structure with the smashed feature along
the direction of ψ = tan−1(1/3) and ψ = tan−1(1/2), respectively.
The Gxy results in (c) indicate the highly disordered structure, i.e.,
the disordered plastic flow state. At the left terminus of the (1, 3)
locking step, tanψ increases from the nonlocking phase (b) to the
disordered plastic flow state (c) and then to the (1, 3) locking phase
(d) finally. Similarly, at the right terminus of the (1, 3) locking step,
tanψ increases also from the locking phase to the disordered plastic
flow state and then to the nonlocking phase. However, for the (1, 2)
locking step, the transition between the nonlocking phase (e) and
locking phase (f) is discontinuous, without the disordered plastic flow
state between them.

which is associated with the disordered plastic flow state. In
Fig. 5(a), between the nonlocking phase and the (1, 3) locking
step, we find that there are a few data points corresponding
to the angles which are neither the direction of the driving
force nor the locked angle of ψ = tan−1(1/3), such as the one
marked with the arrow of Fig. 5(c). To find the corresponding
structure transition, we calculate 2D distribution functions
Gxy on the conditions of the three data points around the left
terminus of the (1, 3) step, as shown in Figs. 5(b)–5(d). In
Fig. 5(b), the hexagonal symmetric 2D distribution function
Gxy indicates the highly ordered triangular lattice, just corre-
sponding to the typical moving ordered state in the nonlocking
phase as in Fig. 4(c). At the left terminus of the (1, 3) locking
step in Fig. 5(d), the 2D distribution function Gxy shows some
disordered features with the smashed feature related to the
1D moving channels along the direction of ψ = tan−1(1/3),
similar to Fig. 5(f). However, for the conditions between
Figs. 5(b) and 5(d), the calculated Gxy clearly exhibits the
ring-shaped 2D distribution in Fig. 5(c), indicating the ar-
rangement of particles is disordered as a liquid. That is to
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say, for the transition from the nonlocking phase to the (1,
3) locking step, our studied 2D Yukawa solid changes from
the moving ordered state to the disordered plastic flow state
first, then to the locking phase when tanψ arrives at the left
terminus of the (1, 3) locking step. Around the right terminus
of the (1, 3) locking step, this studied system changes from
the locking phase to the disordered plastic flow state first,
and then to the moving ordered state of the nonlocking phase
as the tanψ value increases. In fact, this transition feature
is also verified from the momentarily drops of the structural
measure of P6 at the two termini of the (1, 3) locking step
in Fig. 2(b), which is completely different from other locking
steps.

D. Discussions

Under the conditions of the observed locking steps, it is
clear that all particles move along 1D channels aligned with
the directions corresponding to the symmetry of the substrate,
as shown in Fig. 3. Here, we provide our interpretation of
the observed locking steps. For the most prominent (1, 1)
locking step, the particles all move through potential wells
along the ψ = 45◦ diagonal direction of the square substrate,
as shown in Fig. 3(d). When Fy = Fx, as the particle drifts
from one potential well, it falls to the next potential well in
the diagonal direction quickly. Even if Fy is mismatched with
Fx not too much, after the particle leaves the initial potential
well, it is still captured by the next potential well in the
diagonal direction. Thus, even for the mismatched Fy and Fx,
the moving direction of particles is still locked in the ψ = 45◦

direction.
Following on this interpretation, the (p, q) locking steps

correspond to the symmetric drift directions, where particles
move qwx in the x direction while moving simultaneously pwy

in the y direction. When the values of p and q are smaller,
such as either 1 or 0, as particles move from one well to the
next one, they do not pass many other potential wells, so that
this direction is easily “locked” even if the forces in the two
directions are somewhat mismatched, i.e., the locking effect
is prominent, like the (1, 1) and (0, 1) locking steps. However,
when the values of p and q are larger, as particles move from
one well to the next one, they pass many other potential wells,
so that particles may be easily captured by these wells close
to their trajectories if the forces in two directions are slightly
mismatched, i.e., the locking effect is not very prominent,
like the (1, 3) locking step, well consistent with the results
in Fig. 2.

Here, we would like to clarify that all of the conclusions
presented above are based on our current Langevin simula-
tions. Computer simulations always contain some limitations,
for example, the finite number of discrete data points. Our
Langevin simulations presented here are of finite resolution
due to at least three points. First, while increasing the trans-
verse force Fy, we choose the finite increasing step of 0.001F0.
Our discontinuous transition between the nonlocking phase
and the (1, 1) or (1, 2) locking step is drawn based on this
0.001F0 increasing step of Fy. Second, for our current simula-
tion box, due to the different scales in the x and y directions,
to satisfy the periodic boundary conditions, the distances be-
tween the centers of two adjacent wells of the square substrate

in the two directions are set as 1.79a and 1.82a, with ≈1.5%
difference, i.e., the square substrate is not perfectly square.
Third, the coupling parameter of our studied 2D Yukawa solid
is � = 1000, so that the corresponding thermal energy may
introduce the stochastic feature in the dynamical diagnostics.
These latter two points would both blur the locking step fea-
ture in Fig. 2. Due to the precision resolution problem caused
by these points, it is quite difficult to observe the locking steps
with larger values of p and q using our current simulation
method.

IV. SUMMARY

In summary, we investigate the directional locking effect
in a square-periodic-substrate-modulated 2D Yukawa solid
driven by the external force with varying directions. When
the direction of the driving force is close to the symmetry
directions of the square substrate, we find four distinctive
directional locking steps, characterized by the diagnostic of
tanψ , where the direction of the whole collective motion
of all particles ψ is locked. Under the conditions of each
locking step, all individual particles move regularly along
the 1D channels at the same direction related to this locking
step. The nonlocking phase always corresponds to the most
ordered triangular lattice with the hexagonal symmetry, while
the structure of our system in the locking phase depends on
the corresponding locking step. For the most prominent (1, 1)
locking step, the system exhibits the distinctive square lattice
arrangement. In addition, we also find the transition between
locking and nonlocking phases is either discontinuous for
some locking steps, such as the (1, 1) and (1, 2) locking
steps, or continuous for others like the (1, 3) locking step.
Around the termini of the (1, 3) locking step, while the system
changes between the moving ordered nonlocking phase and
the locking phase, the disordered plastic flow state always
occurs, which is completely different from the (1, 1) and (1, 2)
locking steps. We also provide our interpretation of the ob-
served directional locking locking.

The previous directional locking studies are mainly fo-
cused on overdamped systems, while our current investigation
shows that underdamped 2D Yukawa systems also exhibit
the directional locking effect. This study probably is able to
open up new application possibilities for underdamped sys-
tems moving over periodic substrates, such as sorting different
species of dust particles in dusty plasmas.
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