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Transient electrohydrodynamics of a liquid drop: The interplay of fluid flow evolution and dynamic
response, and the density ratio effects
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Computer simulations are performed to study some of the less explored aspects of the transient electro-
hydrodynamics of a liquid drop in uniform DC electric fields. The governing equations of the problem are
solved using a parallelized front tracking/finite difference method in the framework of Taylor-Melcher’s leaky
dielectric theory. For density- and viscosity-matched fluid systems, the evolution of the flow field at a high
Ohnesorge-squared number Oh2 = μ2/γ ρa is studied. It is shown that the instantaneous flow pattern is the result
of superposition of deformation- and hydrodynamic shear-driven vortices, and that depending on the placement
of the fluid systems on the deformation-circulation map, there exists two different paths for the development of
the velocity field toward steady state. Examination of the steady-state flow patterns shows that the location of
the maximum velocity can shift from the (classically known) drop surface to inside the drop along the poles.
The effect of Oh2 on the dynamic response of the drop and the kinetic energy of the fluid is studied. For high
Oh2 number flows, the dynamic response is monotonic while the kinetic energy evolves in a nonmonotonic way,
achieving a distinct peak before settling to steady state. However, for low Oh2 number flows, both the dynamic
response and kinetic energy are oscillatory. Inspection of the results show a two-way coupling between the
deformation rate and the fluid flow. The effect of the density ratio ρ̃ = ρi/ρo (drop to ambient) on the dynamic
response and fluid flow strength shows that for high Oh2 number flows both parameters remain essentially intact
at steady state, while their evolution modes transition from a monotonic response to an oscillatory one at high
density ratio. However, for low Oh2 number flows, with an increase in ρ̃, the oscillation frequency of both
parameters remain intact, while their oscillation amplitudes increase.
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I. INTRODUCTION

Electrohydrodynamics (EHD) of a liquid drop in uniform
DC electric fields has been the focus of increased attention in
recent years because of its relevance in a host of technologi-
cally advanced and natural processes. The theoretical model
that describes the phenomenon fairly well is the so-called
Taylor-Melcher leaky dielectric model (LDM) [1,2]. Briefly,
under a weak electric field, the drop elongates in the direction
of or perpendicular to the electric field, becoming a prolate or
an oblate spheroid, respectively. It can also remain spherical,
which is a possibility for leaky dielectric fluids because of
intricate interplay of electric and hydrodynamic stresses. The
electric field also establishes a circulatory flow in and around
the drop, whose direction depends on the relative importance
of the electric conductivity ratio σ̃ = σi/σo and the electric
permittivity ratio ε̃ = εi/εo (drop fluid/ambient fluid). For
σ̃ < ε̃, the direction of the ambient fluid is from the poles
(aligned in the direction of the electric field) to the equator,
while for σ̃ > ε̃ it is the opposite; for σ̃ = ε̃, the fluid flow
cease to exist, since this is tantamount to a perfectly dielectric
drop suspended in another perfect dielectric fluid. As the
electric field increases, the drop continues to elongate more or
move along a hysteresis curve, where a small increase in the
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electric field strength at the turning point results in a sudden
jump in the deformation, or disintegration of the drops; see,
for example, Lac and Homsy [3].

Taylor’s analytical solution was extended by several au-
thors to account for the transient period during which the drop
and the flow field evolve toward their steady states. Sozou’s
theoretical study [4] was, perhaps, the first in this regard, who
solved the creeping flow equations semi-analytically, while
retaining the local fluid acceleration term ∂u/∂t . The focus
of this study was on the evolution of the flow field toward
the steady state. The author considered a fluid system for
which ε̃ > σ̃ (although he did not provide the actual σ̃ and
ε̃) and showed that the flow structure around the drop ini-
tially consisted of closed streamlines that crossed the drop,
which first penetrated into it and then gradually retreated
into the ambient, leading to the steady flow pattern depicted
in the inset of Fig. 2 for region III. For this flow, the in-
ner and outer Ohnesorge numbers were (discerned to be)
Ohi = μi/

√
ρiaγ = 12.9 and Oho = μo/

√
ρoaγ = 25.8. To

provide a simple closed form solution, Esmaeeli and Sharifi
[5] ignored the local acceleration term and showed that the
deformation-time curve was monotonic, with the capillary
timescale μoa/γ being the only characteristic timescale of the
problem.

In both of these studies [4,5], however, it was assumed that
the surface charge build up was instantaneous, thus, reducing
the charge conservation equation to the Laplace equation for
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the electric potential. Lanauze et al. [6] built on the Sozou’s
solution and derived an analytical solution that accounted for
the effect of surface charge relaxation ∂qs/∂t . The authors
characterized their results in terms of the Ohnesorge number
Oh = μ/

√
ρaγ and the Saville number Sa = εν/σa2, rep-

resenting the ratios of the capillary timescale μa/γ and the
charge relaxation timescale ε/σ to the momentum diffusion
a2/ν timescale, respectively. It was shown that the drop would
deform monotonically if charge and momentum relaxation
occurred quickly compared to interface deformation, i.e.,
Oh � 1 and Sa � 1 for the droplet and medium. However, if
Sa > 1 or Oh < 1 for either phase, then the deformation-time
curve would be nonmonotonic. Furthermore, the droplet and
medium behaved as perfectly dielectrics at early times, which
always favored an initial prolate deformation. Zhang, Zahn,
and Lin [7] accounted for large drop deformation in strong
electric fields, using a spheroidal coordinate system. They
ignored the local acceleration term ∂u/∂t but accounted for
the surface charge relaxation ∂qs/∂t . Das and Saintillan [8]
solved the complete surface conservation equation, using a
small-deformation theory. The review article by Vlahovska
[9] provides an insightful summary of the state of understand-
ing of the transient electrohydrodynamics of liquid drops and
vesicles.

The common limitation of the aforementioned studies is
their disregard for the convective effects in the momentum
equation. However, to account for them, one needs to re-
sort to higher order analytical solutions or direct numerical
simulations (DNSs). In this article, the focus is primarily on
the transient behavior of the drops, which is studied using
DNSs. Thus, while in the formulation the convective effects
are accounted for, the effect of the Ohnesorge number Oh =
μ/

√
ρaγ , rather than the fluid Reynolds number Re f = ua/ν,

on the drop behavior and fluid flow is examined. Two notable
studies that have examined the Reynolds number effect in a
steady-state setting are Refs. [10] and [11].

Finite Reynolds number computational studies concerning
the transient behavior of a drop have a relatively short history,
but are quickly becoming a routine undertaking. A recent
article by Esmaeeli and Behjatian [12] summarizes the state
of understanding of the problem for density-matched fluid
systems and in the absence of surface charge relaxation and
convection. Briefly, at low electric field strength, the dynamic
response of the drop is similar to that of a first- (inertia-
less) or a second-order (nonzero inertia) mass-damper-spring
mechanical system, depending on Oh2 = μ2

o/γ aρo � 1 or
Oh2 � 1, respectively, where the drop settles to a steady
deformation Dss monotonically [13] or through oscillations
[14,15]. However, at higher electric field strength, the dy-
namic response becomes nonlinear and deviates from that
of a mechanical system. Furthermore, for low electric field
strength, the Ohnesorge squared number Oh2 and the viscosity
ratio μ̃ are the key parameters that determine the transition
from a monotonic response to an oscillatory one (and vice
versa).

In the experimental and theoretical studies so far, several
key aspects of the electrohydrodynamics of a drop have been
less explored or have not been explored at all. These include
(i) the two-way coupling between the deformation rate and the
fluid flow, (ii) the manner in which fluid flow develops toward

steady state in the three regions of the deformation-circulation
map (Fig. 2) and the mechanism behind the fluid flow devel-
opment, (iii) the effect of the Oh2 number on the dynamic
response of the drop and the evolution of the kinetic energy,
and the time and velocity scales that properly characterize
high and low Oh2 fluid flows, and (iv) the effect of the density
ratio ρ̃ = ρi/ρo on the dynamic response of the drop and the
fluid flow strength, and the time and velocity scales that prop-
erly characterize high and low density ratio flows. The major
goal of this study is to shed some light on these questions. This
is achieved by considering the evolution of the flow field for
three representative fluid systems. The motivation is derived
from the fact that the electrohydrodynamic-driven flows find
relevance in a host of applications, such as enhancement of
mixing by chaotic advection [16–19] and heat transfer en-
hancement by convection [20]. The fluid flow evolution and
the effect of the transient fluid inertia has been explored by
several authors [4–6]. However, these studies did not examine
the two-way coupling of the deformation rate and the fluid
flow. Similarly, the majority of the studies that have been
carried out so for dealt with density-matched fluid systems,
and in a handful of them in which the density of the two fluids
were different, the density ratio did not come to the picture
since the ambient fluid was a gas, which was dynamically
inactive. See, for example, Refs. [13,21,22]. The density ratio
effects can come to the picture, for example, in the studies
concerning the manipulation of drops in pressure-driven flows
[23].

In this study, DNSs are used to investigate the problem. The
computer code is based on a well-established methodology
that has been used in the past to predict the behavior of a host
of multiphase flow problems in the absence of the electric field
[24]. In the context of the electrohydrodynamics of drops,
detailed information regarding the mathematical formulation
and numerical method can be found in Refs. [25] and [26].
The governing equations are solved using parallel computing,
in conjunction with message passing interface (MPI). The
parallel computing algorithm is similar to the one used by [27]
but has been modified to account for the incorporation of the
electric field equations. Electric fields of moderate strength
is considered, so that the drop will not disintegrate or be
subjected to electrorotation.

II. PROBLEM SETUP AND NONDIMENSIONAL
PARAMETERS

The physical setup of the problem is shown in Fig. 1, de-
picting an initially uncharged liquid drop in a pool of another
liquid. Here, a is the initial drop radius, and ρ, μ, σ , ε, and
γ , denote, respectively, density, viscosity, electric conductiv-
ity, electric permittivity, and surface tension. Both fluids are
initially quiescent. The gravity is set zero. The electric field
is established by assigning uniform electric potentials φt and
φb to the top and the bottom walls, respectively. Thus, in the
absence of the drop, the electric potential is linear (φ ∼ z) and
the electric field strength is uniform; i.e., E0 ≡ |E0| = |φt −
φb|/zl . The computational domain is periodic in the horizontal
directions and wall-bounded in the vertical direction. No-slip
and no-through flow boundary conditions are applied to the
velocity field at the walls and periodic boundary conditions
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FIG. 1. The computational setup, depicting a liquid drop im-
mersed in another liquid. Here a, ρ, μ, σ , and ε represents,
respectively, radius, density, viscosity, electric conductivity, and elec-
tric permittivity. The computational domain is wall-bounded in the
vertical direction and periodic in the horizontal directions. The mov-
ing and the fixed grids are also shown schematically.

are used in the horizontal directions. The drop is placed in the
middle of the domain. As such, it remains stationary because
of the symmetry, while its surface undergoes deformation.

The governing nondimensional numbers of the problem
can be best identified by nondimensionalization of the gov-
erning equations and their jump conditions. Doing so will put
the effect of these numbers and their interplay in perspec-
tive. Here, the focus is on the momentum equation since it
is controlled by the timescales of the problem. In contrast,
the electric field equation ∇ · (σ∇φ) = 0 and the continuity
equation ∇ · u = 0 are not affected directly by the timescales
of the problem. The governing equations can be nondimen-
sionalized in a number of ways based on the choices of the
length, time, velocity, and pressure scales. However, each
terms in the original equations should be properly scaled
and the dimensionless equations should lead to conceptually
correct equations in the limits of interest. Three timescales
can be identified; the momentum diffusion τdiff = a2/νo,
the viscous-capillary τVC = μoa/γ , and the inviscid-capillary
timescale τIC =

√
ρoa3/γ . It is to be noted that only two of

these timescales are independent. The relevant velocity scales
are the EHD- and inviscid-capillary (inertiadriven) velocity
scales, uEHD = εoE2

0 a/μo and uIC = √
γ /ρoa, respectively.

The former is constructed by balancing the tangential (nor-
mal) electric stress εoE2

0 with the viscous shear (normal)
stress μouEHD/a at the drop surface. The latter is found by
balancing the dynamic pressure ρu2

IC with the capillary pres-
sure γ /a. The viscous and inviscid pressure scales are pV =
μouEHD/a = εoE2

0 and pIC = ρou2
IC = γ /a, respectively. For

viscous drops under a low to moderate electric field strength,
the relevant time, velocity, and pressure scales are those that
are associated with the fluid viscosity; namely, τVC = μoa/γ

and τdiff = a2/νo, uEHD = εoE2
0 a/μo, and pV = μouEHD/a.

However, to allow for the effect of the surface tension on the
fluid acceleration in the momentum equation, one should use

TABLE I. The relevant timescales of the problem. Here, us ≡
uEHD = εoE 2

0 a/μo.

τVC = μa/γ τdiff = a2/ν τconv = a/us τIC = √
ρa3/γ

viscous-capillary diffusion convection inviscid-capillary

the viscous capillary timescale τVC = μoa/γ (rather than the
diffusion timescale τdiff = a2/νo). On dimensional ground, the
momentum equation reads

ρJ (∂uJ/∂t + uJ · ∇uJ ) = −∇pJ + μJ∇2uJ ; J = i, o. (1)

Considering ρs = ρo, μs = μo, ls = a, us = uEHD, ts = τVC ≡
μoa/γ , and ps = pV ≡ μous/a as the density, viscosity,
length, velocity, time, and pressure scales, and nondimension-
alization of the momentum equation yield

ρ∗
J

(
1

Oh2

∂u∗
J

∂t∗ + Re f u∗
J · ∇∗u∗

J

)
= −∇∗ p∗

J + μ∗
J∇∗2u∗

J ;

J = i, o. (2)

In Eq. (2), ρ∗
i = ρi/ρo ≡ ρ̃ and μ∗

i = μi/μo ≡ μ̃ are the den-
sity and viscosity ratios, Re f = aus/νo is the flow Reynolds
number, and Oh2 = μ2

o/ρoaγ is the Ohnesorge number
squared. It is to be noted that ρ∗

o = 1, μ∗
o = 1. Equation (2)

presents a proper nondimensionalization of the momentum
equation as it allows for the independent scaling of the local
acceleration ∂u/∂t and the convective u · ∇u terms. Fur-
thermore, this equation converges to the correct form of the
momentum equation in the limit of Oh2 → ∞, i.e., ρJuJ ·
∇uJ = −∇pJ + μJ∇2uJ .

In addition to the governing equations, the pertinent jump
conditions of the problem should be rendered dimension-
less also. Here, capillary number Ca = μouEHD/γ emerges
as another primary nondimensional number in the process
of nondimensionalization of the tangential and normal stress
balance; �τ e

nt� + �τ h
nt� = 0 and �τ e

nn� + �τ h
nn� − �p� = γ κ ,

respectively.
In summary, the governing nondimensional numbers of the

problem are

Ca = μouEHD

γ
≡ εoE2

0 a

γ
, Oh2 = μ2

o

ρoaγ
,

σ̃ = σi

σo
, ε̃ = εi

εo
, ρ̃ = ρi

ρo
, μ̃ = μi

μo
. (3)

In addition to Eq. (3), the volume fraction α = Vd/� (Vd

and � being the volume of the drop and the computational
domain, respectively) can influence the results if the com-
putational domain is not sufficiently large. Sometimes in
the literature, the nondimensional electric field strength, and
the flow Reynolds number the nondimensional electric field
strength E∗ = E0/

√
γ /εoa = √

Ca and the flow Reynolds
number Re f = uEHDa/νo are used in lieu of Ca and Oh, re-
spectively. It is to be noted that Re f = Ca/Oh2.

The evolution of the drop and the flow field is controlled
by several characteristic times (Table I). As such, the relative
importance of them can be best understood by representing
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the governing nondimensional numbers in terms of the ratios
of these characteristic times. This yields

Oh2 = τVC

τdiff
≡ μoa/γ

a2/νo
; Ca = τVC

τconv
≡ μoa/γ

a/uEHD
;

Re f = τdiff

τconv
≡ a2/νo

a/uEHD
. (4)

III. MATHEMATICAL FORMULATION
AND NUMERICAL METHOD

The governing equations are solved using parallel com-
puting, in conjunction with message passing interface (MPI).
The computer code is based on a well-established method-
ology that has been used in the past to predict the behavior
of a host of multiphase flow problems, in the absence
of the electric field [24]. In the context of the electrohy-
drodynamics of drops, detailed information regarding the
mathematical formulation and numerical method can be found
in Refs. [25], [26], and [12]. Figure 1 summarizes the compu-
tational approach. Briefly, rather than writing the governing
equations separately for each fluid, a “one-fluid” formulation
is used, where a single set of equations is used to repre-
sent both fluids, and the phase boundary is treated as an
embedded interface by adding the appropriate source terms
to the conservation laws. Here, the drop is represented by
triangular elements (Lagrangian grid) and the field variables
are computed on a fixed (Eulerian) grid. The computational
domain is wall-bounded in the vertical direction and peri-
odic in the horizontal directions. The stationary grid is used
to discretize the governing equations, and the moving grid
marks the position of the phase boundary and is used to keep
the stratification of material properties sharp and to calcu-
late the surface tension. This grid is also used to advect the
interface by interpolating the velocities of the marker points
from the regular grid.

In the computations that follow, the drop diameter is d =
0.4 and the computational domain is a cube of 2.5d a side,
which is resolved by a 1283 grid. Considering the results
of the finest grid as the exact solution, the relative errors in
steady-state deformation for 323, 643, and 1283 grids were
8.3%, 1.8%, and 0.34%, respectively, reflecting the fact that
the results are converged for the 1283 grid.

IV. BACKGROUND

A. Drop deformation in a weak electric field

For slightly deformed drops, the deformation is typically
characterized by the Taylor deformation parameter [28]

D = zmax − rmax

zmax + rmax
, (5)

which is the difference of the lengths of the axes parallel
and perpendicular to the electric field divided by their sum.
Using Taylor’s solution [1], Vizika and Saville [29] calculated
the steady-state drop deformation for slight perturbation from

sphericity (Ca � 1)

Dss = 9

16




(σ̃ + 2)2
Ca, (6a)


 = σ̃ 2 + 1 − 2̃ε︸ ︷︷ ︸

e

+ 3

5
(σ̃ − ε̃)

3μ̃ + 2

μ̃ + 1︸ ︷︷ ︸

h

, (6b)

where 
 is the so-called Taylor deformation characteristic
function, which determines the sense of drop deformation. For

 < 0, the drop becomes oblate, while for 
 > 0 it becomes
prolate. For 
 = 0 it remains spherical. In Eq. (6), 
e and

h represent the contribution of the electric pressure and
tangential electric stress in the deformation, respectively.

B. The electric pressure and electric shear stress

The key parameters that determine the sense of interface
deformation and fluid circulation are the net normal �τ e

nn�
and tangential �τ e

nt� electric stresses at the interface, which
are also referred to as the electric pressure and the electric
shear stress, respectively. Using Maxwell stress tensor τM =
εEE − (1/2)εIE · E and a normal-tangent coordinate system
n-t , it can be shown [30] that

�τ e
nn� = εo

2

[(
1 − ε̃

σ̃ 2

)
E2

no
+ (̃ε − 1)E2

t

]
(7)

and

�τ e
nt� = εoEnoEt

(
1 − ε̃

σ̃

)
= qsEt , (8)

where

qs = εoEno

(
1 − ε̃

σ̃

)
(9)

is the free electric charge at the surface. Here, �A� = Ao − Ai

denotes the jump across the drop for a typical parameter A,
and subscripts “i” and “o” stand for the inside and the outside.

To analyze the results of the numerical simulations (and
for that matter the experimental observations) or to estimate
the expected behavior of the drop, scaling arguments have
proved to be very helpful. For a moderately deformed drop,
the electric pressure at the poles (θ = 0 and π ) and the equa-
tor (θ = π/2), the electric shear stress, and the tangential
(surface) velocity can be estimated [3], using Eqs. (7)–(9) in
conjunction with the Taylor’s solution [1]. This results in

�τ e
nn�

∗
(0) ∼ 9

2

σ̃ 2 − ε̃

(σ̃ + 2)2
, (10a)

�τ e
nn�

∗
(π/2) ∼ 9

2

ε̃ − 1

(σ̃ + 2)2
, (10b)

�τ e
nt�

∗ ∼ 9

2

σ̃ − ε̃

(σ̃ + 2)2
, (11)

and

u∗
t ∼ 1

5

�τ e
nt�

∗

1 + μ̃
, (12)

where εoE2
0 has been used to render the electric stresses di-

mensionless. The sense of the deformation can be determined
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by examination of the electric pressure at the equator and
poles, in conjunction with the sense of the fluid flow around
the drop. Pole-to-equator flows tend to deform the drop to
an oblate, while equator-to-pole flows tend to deform it to a
prolate.

C. The electric pressure-, electric shear-, hydrodynamic shear-,
and deformation-driven flows

At steady state, where the drop surface is immobile, the
fluid flow is due to the electric shear stress �τ e

nt� only. How-
ever, the deformation D is due to both the electric pressure
�τ e

nn� and the electric shear stress �τ e
nt�. The contribution of the

latter to the deformation is due to the normal hydrodynamic
stress �σ h

nn� ≡ �τ h
nn� − �p� associated with the shear-driven

fluid flow. During the transient, both the electric pressure and
electric shear stress contribute to the instantaneous drop defor-
mation and fluid flow. Accordingly, the fluid flow comprises
two parts; a part due to instantaneous motion of the interface,
and another part due to the interfacial shear stress. To put the
roles of these stresses in perspective, it is remarked that in
perfectly dielectric fluid systems where the electric shear is
absent (�τ e

nt� = 0), the fluid flow during the transient is due
to the electric pressure only. In this study, the fluid flow due
to the deformation rate and the hydrodynamic shear are re-
ferred to as the deformation- and hydrodynamic shear-driven
flows (or ∂D/∂t- and �τ h

nt�-driven flows), respectively. Here,
a distinction is made between the electric shear- and hydrody-
namic shear-driven flows, even though the electric shear and
hydrodynamic shear are equal (in an absolute sense), |�τ e

nt�| =
|�τ h

nt�|. In an analytical solution, to examine the electric shear-
driven flow, one should set the electric pressure to zero
(�τ e

nn� = 0) in the normal stress balance �τ e
nn� + �σ h

nn� = γ κ .
However, to examine the hydrodynamic shear-driven flow,
one should set ∂D/∂t = 0 in the formulation (Appendix A).
The deformation-driven flow can be found easily by subtract-
ing the �τ h

nt�-driven solution from the total solution. It is to
be noted that the �τ e

nt�- and �τ h
nt�-driven solutions will not be

the same, and similarly, �τ e
nn�- and ∂D/∂t-driven solutions

will not be the same. The deformation-driven flow ceases to
exist at steady state where the rate of the deformation is zero.
Furthermore, it is due to both the electric pressure and the
electric shear stress. However, the shear-driven flow is present
even at steady state. The flow structure due to ∂D/∂t-driven
flow will be in line with the local motion of the interface.
Thus, the flow direction at the drop surface will be outward
(where the interface is expanding into the ambient) and in-
ward (where it is contracting). The flow structure due to the
hydrodynamic shear-driven (or �τ h

nt�-driven) flow will consist
of closed streamlines at the drop surface that do not cross
the surface. However, the flow structure due to the electric
shear-driven (or �τ e

nt�-driven) will consist of streamlines that
cross the drop surface during the transient (because of the
contribution of the electric shear in the deformation rate). In
the next two paragraphs, the original decomposition method
(setting �τ e

nt� and �τ e
nn� to zero, sequentially) is compared

with the proposed method (setting ∂D/∂t and �τ e
nt� to zero,

sequentially) in the context of the transient creeping flow
solution.

The transient evolution of the drop and the flow field is
a two-way coupling phenomenon in which the deformation
rate ∂D/∂t affects the flow field and vice versa. Major insight
about the flow evolution can be gained from the simple closed
form solution of Ref. [5]. These authors solved the governing
equations of the problem in an asymptotic limit (Ca � 1,
Oh2 � 1, and Re f � 1). In this zeroth-order solution, r ≡ n
and θ ≡ t . Taking advantage of the linearity of the governing
equations and their jump and boundary conditions, they were
able to find the electric pressure- and the electric shear-driven
fluid flow and deformation by setting �τ e

rθ � = 0 (in the tan-
gential stress balance) and �τ e

rr� = 0 (in the normal stress
balance), respectively. The deformation rate was not zero in
the electric shear-driven solution because of the normal hy-
drodynamic stress �σ h

rr� resulting from the fluid flow. As such,
the streamlines crossed the drop surface during the transient.
In summary, the total velocity field (stream function) and the
deformation could be identified as ψ = ψEP + ψES and D =
DEP + DES, using the superposition of the electric pressure-
and the electric shear-driven solution. Here, the subscripts EP
and ES stand for the electric pressure and electric shear. It is
to be noted that the flow structure due to the electric pressure
and the electric shear was initially examined by Sozou [4].
However, the solution was not in a closed form.

To characterize how the deformation rate ∂D/∂t controls
the flow field, the solution of Ref. [5] is recast in a new form
by expressing it as a superposition of the deformation- and
the shear-driven solutions Eqs. (A1) and (A2). Since in this
new expression, the effect of the electric shear stress �τ e

rθ � in
the deformation-driven solution has already been accounted
for, the ∂D/∂t = 0 solution is called the hydrodynamic shear-
driven solution. This solution is simply Taylor’s steady-state
solution [1] since at this zeroth-order [O(Ca0)] solution, the
impact of the drop deformation on the velocity field is not
accounted for.

Examination of the evolution of the forces that control
the drop deformation with time provides valuable insight into
the problem. The drop deformation D is the results of inter-
play of the electric pressure, the normal hydrodynamic stress,
and the surface tension, �τ e

rr� + �σ h
rr� = γ κ . In Ref. [5], both

the drop deformation and the fluid flow are controlled by a
single timescale (τVC = μoa/γ ) only. Thus, both of these en-
tities evolve monotonically. Since the timescale of momentum
diffusion is vanishingly small (τdiff = a2/νo � 1), the flow
field is established impulsively. Subsequently, the deformation
increases (in an absolute sense) and the kinetic energy de-
creases monotonically until they settle to their steady state.

V. RESULTS AND DISCUSSION

The aim of this study is to investigate some aspects of
the electrohydrodynamics of liquid drops that have not been
explored or less explored before (Sec. I). The governing
nondimensional parameters of the problem are Oh2, Ca, α,
σ̃ , ε̃, μ̃, and ρ̃ (Sec. II). Here, the volume fraction is fixed at
α = 3.3%, corresponding to a drop of radius 0.2 unit in a com-
putational box of unit size. The effect of the confinement on
the results will be discussed in Sec. V E. To examine the effect
of the dielectric properties (σ̃ and ε̃) on the results, three fluid
systems are considered as the representative fluid systems
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FIG. 2. The circulation-deformation map along with a schematic
of the steady-state flow pattern and modes of the drop deformation.
The coordinates of the fluid systems A–C are, respectively, ε̃ = 8,
σ̃ = 2 (circle), ε̃ = 0.15, σ̃ = 0.06 (diamond), and ε̃ = 2, σ̃ = 8
(triangle).

from the three regions of the deformation-circulation map.
The coordinates of these systems are identified on the map
(Fig. 2) and their pertinent information are given in Table II.
The representative fluid systems are considered to be density-
and viscosity-matched. However, the density ratio ρ̃ effect is
explored by comparing the results with those at ρ̃ = 10 and
100 in Sec. V C. To examine the effect of local fluid accelera-
tion ∂u/∂t on the dynamics, Oh2 = 2 and 0.02 are considered
as the limits of small (Oh2 � 1) and large (Oh2 � 1) fluid
acceleration, respectively. The justification for considering
Oh2 = 2 as the upper end of the Ohnesorge number comes
from the numerical simulations of Ref. [13] who observed
marginal differences between the deformation-time curve for
Oh = 2 and Oh = 200. Here, the capillary numbers Ca are
chosen so that the drop deformation will be modest (D ∼ 0.1)
for all the reference simulations. The steady-state deformation
of the drop is primarily controlled by the product of the modi-
fied characteristic function 
̃ ≡ 
/(σ̃ + 2)2 and the capillary
number Ca = μous/γ [Eq. (6)]. For fluid systems A and C,

̃ is an order of magnitude larger than that for fluid system
B (Table II). Thus, an order of magnitude larger capillary
number is used for fluid system B to obtain a deformation that
is nearly the same for all the fluid systems. In summary, two
sets of simulations at ρ̃ = 1 are considered as the reference
simulations, Rih and Ril , where subscript i = A − C refers to
the fluid systems and subsubscripts h and l stand for high
(Oh2 = 2) and low (Oh2 = 0.02) Ohnesorge square number,
respectively. Table III provides pertinent information about
the reference simulations.

TABLE II. Pertinent information regarding the fluid systems
used in this study. Here, k1 is the coefficient of the capillary number
in Dss = k1Ca, as given in Eq. (6).

Fluid system Region σ̃ ε̃ ρ̃ μ̃ k1

A I 2 8 1 1 −0.7031
B II 0.06 0.15 1 1 0.0754
C III 8 2 1 1 0.3937

TABLE III. Pertinent information regarding the high- and low-
Oh2 reference simulations. For all the cases, ρ̃ = 1, μ̃ = 1, α =
0.035, and Reel = 0.05.

Reference simulation Fluid system Ca Re f D

RAh (RAl ) A 0.2 0.1 (10.0) ∼0.1
RBh (RBl ) B 2.0 1.0 (100.00) ∼0.1
RCh (RCl ) C 0.2 0.1 (10.0) ∼0.1

A. Reference simulations at high Oh2 number

1. Evolution of the velocity field

The analysis of the problem is initiated by considering the
evolution of the fluid flow for high-Oh2 reference simulations.
The pertinent information about these simulations are given
in Tables III and IV. Figure 3 shows the velocity field and the
drop for reference simulation RAh at the selected times noted
in the caption. The fluid system for this simulation belongs
to region I of the map. In this figure and the subsequent
ones that deal with the velocity field, the velocity vectors in
each panel are color-coded according to their relative size
|u| = √

u2 + v2 + w2 in that panel, where the minimum and
the maximum velocity strengths are represented by the blue
and red colors. However, since there is major differences
between the strengths of the fluid flow at several stages of the
flow evolution, to aid the visualization, the velocity scales in
each panel have been set independently and are reported in the
caption. In this study, the electric field evolves quasi-steadily
since the charge relaxation and convection is ignored, i.e., the
Laplace equation ∇ · σ∇φ = 0 is solved at each time step
to determine the electric potential. Thus, the electric field,
and hence the electric stresses, are established impulsively.
However, the fluid flow is established gradually over a time
that is characterized by the momentum diffusion time scale
τdiff = a2/ν. The velocity field at a given time is set by the
superposition of the deformation- and shear-driven velocity
fields (Sec. IV C).

For this fluid system, the electric pressure �τ e
nn� tends to

deform the drop to an oblate Eq. (10). In line with the sense
of the deformation, the fluid flow comprises of vortices that
cross into the drop surface around the poles and cross out of
it around the equator. At steady state where the deformation
rate is zero, the net tangential electric stress �τ e

nt� tends to
generate closed vortices that are initiated at the drop surface,
and do not cross the surface. The sense of these vortices can
be discerned by the relative importance of σ̃ and ε̃ [Eqs. (11)
and (12)]. For σ̃ < ε̃, the fluid flow around the surface of the
drop runs from the poles to the equator, while for σ̃ > ε̃, it

TABLE IV. The magnitude of the timescales of the high-Oh2

reference simulations.

Fluid
system τVC = μoa/γ τdiff = a2/νo τconv = a/uEHD τIC = √

ρoa3/γ

A 8.0 4.0 40.0 5.657
B 8.0 4.0 4.0 5.657
C 8.0 4.0 40.0 5.657
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FIG. 3. Evolution of the velocity field toward steady state for
reference simulation RAh . To aid in visualization, the velocity vec-
tors have been scaled independently. The nondimensional time and
the velocity scale factor (inside the parentheses) for each panel is
(a) 0.00376 (8), (b) 0.0625 (1), (c) 0.375∗ (1), (d) 2.5 (2), (e) 5 (2),
and (f) 15 (2). The times correspond to those marked in Figs. 8
and 9. The asterisk marks the panel for which the kinetic energy is
maximum.

runs in the opposite direction. Here, σ̃ < ε̃, and thus the sense
of these vortices is the same as the steady-state flow pattern
for region I in the inset of Fig. 2. During the transient where
the deformation rate is not zero, �τ e

nt�-driven vortices cross the
interface. In an unbounded domain, the deformation-driven
vortices will be open-ended, except for a small region around
their cores (which resides in the ambient fluid). However,
because of the confinement effect, here these vortices form
closed loops. Panel (a) shows the velocity field at an early
time. For this panel, the kinetic energy of the fluid is the min-
imum (Fig. 8). Thus, to aid visualization, the velocity vectors
have been scaled with the maximum scaling. At this early
time, the deformation rate is very small. As a result, �τ e

nt�-

driven velocity is substantially stronger than ∂D/∂t-driven
velocity, as is evident from the size of the tangent vectors at
the drop surface, compared with that of the rest of the velocity
vectors. For a liquid drop in a weak electric field and at steady
state, the maximum velocity occurs at the drop surface and
at polar angles of θ = π/4 and 3π/4 radians, measured from
the positive z axis [1]. Despite the maximum scaling of the
velocity field for panel (a), the velocity field inside the drop
is essentially zero, reflecting the fact that the fluid flow has
not propagated into the drop yet. As time progresses, the
deformation-driven velocity becomes more dominant [panel
(b)]. As a result, the tangential velocity vectors are replaced
by the velocity vectors that cross into the drop at the poles
and cross out of it at the equator [panels (b) and (c)]. Note
that the velocity vectors have not been scaled for panels (b)
and (c). The kinetic energy of the fluid is maximum for panel
(c) (Fig. 8). The flow strength increases with time for panels
(a)–(c) but it starts to decrease afterwards until it settles to its
steady state where the deformation rate is zero. Compared to
panels (a)–(c), in panels (d)–(f) the pace of the evolution of the
flow field toward the steady state is relatively slow, since the
deformation rate is low. At steady state, the flow field consists
of inner and outer vortices that do not cross the drop surface
[panel (f)].

While a vector plot of the velocity field at a given time
provides useful information about the relative strength of the
flow field at different regions of the computational domain, it
cannot fully capture the evolution of the flow structure. For
instance, in panels (d)–(f), the deformation-driven vortices
are gradually retreating to the ambient fluid, while at the
same time the recirculating (shear-driven) vortices inside the
drop are becoming stronger. However, this information cannot
be discerned from the vector plots. To this end, the stream-
lines, corresponding to the velocity vectors, are presented in
Fig. 4. The stream function was found numerically by solving
the stream function-vorticity equation in a cylindrical (r–z)
coordinates, using the results of the three-dimensional compu-
tations. The streamlines at a give time were generally drawn
at equispaced values ranging from the minimum value of the
stream function to its maximum one. However, occasionally
one or two extra contours would be added if the equispaced
contours could not capture a weak circulation. Panels (a)–(c)
show the penetration of the streamlines into the drop while
the flow strength is increasing, and panels (d) and (e) show
their retreat to the ambient fluid while it is decreasing. As
can be seen from Fig. 9, panels (a)–(c) correspond to the
first stage of the drop deformation where the deformation rate
(in an absolute sense) is achieving its peak (∂2D/∂t2 > 0),
and panels (d) and (e) corresponds to the second stage where
the deformation rate has passed the peak and is gradually
diminishing (∂2D/∂t2 < 0). Here, the initial stage of the flow
motion is called the “acceleration stage” and the final stage is
called the “deceleration stage.” At steady state [panel (f)], the
ambient fluid around the drop runs from the poles toward the
equator, and no streamline crosses the drop surface, reflecting
the fact that the deformation has settled to steady state.

A few remarks regarding the general features of these
results can be made. First, in an unbounded domain, the
steady-state flow field in the ambient fluid would consist of
open vortices. However, because of the domain confinement,
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FIG. 4. Evolution of the velocity streamlines toward steady state
for reference simulation RAh . The nondimensional time for each
panel is (a) 0.00376, (b) 0.0625, (c) 0.375∗ (1), (d) 2.5, (e) 5, and
(f) 15. The times correspond to those marked in Figs. 8 and 9. Panels
(a)–(c) and (d)–(f) correspond to the acceleration and deceleration
stages, respectively. The asterisk marks the panel for which the
kinetic energy is maximum.

here the vortices in the ambient are closed. Second, the plane
vortices seen at the steady state [panel (f)] are the cross sec-
tions of two toroidal vortices inside the drop in the northern
and the southern hemispheres. Third, in the analytical so-
lution [5] where the fluid flow is established instantly, the
acceleration stage is bypassed. There, the rate of the defor-
mation is maximum at the outset, and as such, the fluid flow
retreats to the ambient from the beginning.

Figure 5 shows the evolution of the velocity field and the
drop for reference simulation RBh . The fluid system for this
simulation belongs to region II of the map. In this region the
electric pressure tends to deform the drop to a prolate Eq. (10),
and the creeping flow solution [1] predicts a prolate drop at

FIG. 5. Evolution of the velocity field toward steady state for
reference simulation RBh . To aid in visualization, the velocity vec-
tors have been scaled independently. The nondimensional time and
the velocity scale factor (inside the parentheses) for each panel
is (a) 0.00375 (8), (b) 0.0625 (1), (c) 0.25∗ (1), (d) 4.0 (3), (e)
6.75 (3), and (f) 22.5 (4). The times correspond to those marked in
Fig. 10(a). The asterisk marks the panel for which the kinetic energy
is maximum.

steady state, even though the fluid flow at steady state tends
to deform the drop to an oblate Eq. (11). This is because here
the electric pressure �τ e

nn� is stronger than the electric shear
stress �τ e

nt� [12]. Thus, unlike the simulation for fluid system
A, where the �τ e

nt�-driven velocity was dominant at the very
beginning, here the deformation-driven flow is dominant at
the very beginning [panel (a)]. In line with the instantaneous
motion of the drop surface, the deformation-driven vortices
cross into the drop surface around the equator and cross out
of it around the poles. However, the electric shear stress �τ e

nt�
tends to generate vortices that have the same sense as that of
the fluid system A, as the sign of ε̃ − σ̃ remains unchanged
Eq. (11). Here, the velocity fields in panels (a)–(d) are similar,
with the only difference between them being the magnitude
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FIG. 6. Evolution of the velocity streamlines toward steady state
for reference simulation RBh . The nondimensional time for each
panel is (a) 0.0037, (b) 0.0625, (c) 0.25, (d) 4.0, (e) 6.75, and (f)
22.5. The times correspond to those marked in Fig. 10(a). Panels
(a)–(c) and (d)–(f) correspond to the acceleration and deceleration
stages, respectively.

of the fluid flow strength [Fig. 10(a)]. Note that the velocity
vectors in panels (b) and (c) have not been scaled. The flow
strength increases with time for panels (a)–(c) but it starts to
decrease afterwards until the deformation rate settles to zero
at steady state [Fig. 10(a)]. The senses of flow circulation in
and around the drop at steady state are the same as those
for fluid system A (Fig. 3). Surprisingly, the location of the
maximum velocity is inside the drop and along the poles,
which is different than that predicted by the classical theory
[1]. The discrepancy between the numerical result and the
analytical prediction is due to the limitations of the latter, and
will be discussed in Sec. V F.

Figure 6 shows the evolution of the velocity streamlines
for this simulation. In contrast to the previous simulation

FIG. 7. Evolution of the velocity field toward steady state for
reference simulation RCh . To aid in visualization, the velocity vec-
tors have been scaled independently. The nondimensional time and
the velocity scale factor (inside the parentheses) for each panel
is (a) 0.00375 (12), (b) 0.0625 (2), (c) 0.375∗ (1), (d) 7.0 (4), (e)
8.5 (2), and (f) 25 (5). The times correspond to those marked in
Fig. 10(b). The asterisk marks the panel for which the kinetic energy
is maximum.

(Fig. 4), where the deformation-driven vortices penetrated
into the drop during the “acceleration stage” and retreated to
the ambient fluid during the “deceleration stage,” here these
vortices continuously move into the drop. However, they start
to lose their strength during the deceleration stage [panels (d)–
(f)]. This is evident from the lack of streamlines away from
the drop in panel (d), compared to the previous panels. As a
result, shear-driven closed vortices are becoming unmasked
in the drop and the ambient [panels (e) and (f)]. At the steady
state, no streamline crosses into or out of the drop and the fluid
around the drop runs from the poles to the equator.

Figure 7 shows the evolution of the velocity field and the
drop for reference simulation RCh . The fluid system for this
simulation belongs to region III of the map. Here, similarly to
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fluid system B, the electric pressure tends to deform the drop
to a prolate Eq. (10). However, as opposed to fluid systems
A and B, the electric shear stress also tends to deform the
drop to a prolate. In line with the sense of the deformation,
the electric pressure generate vortices that cross into the drop
surface around the equator and cross out of it around the
poles. Similarly, the electric shear stress tends to generate
vortices that have the same sense as those shown in the inset
of Fig. 2 for region III. Here, at the start of the process, the
deformation- and shear-driven velocities are nearly the same
order, as is evident from the sizes of the tangential velocity
vectors at the drop surface, compared with those of the radial
velocity vectors that emanate at the poles [panel (a)]. The flow
strength increases for panels (a)–(c), and decreases afterwards
until it settles to its steady state [Fig. 10(b)]. The flow strength
is at its maximum in panel (c). Note that the velocities in panel
(c) have not been scaled. As time progresses, the shear-driven
vortices inside the drop become more dominant [panels (d)–
(f)]. At steady state, the maximum velocity field appears at
the drop surface around the polar angles θ = π/4 and 3π/4.
The evolution of the velocity streamlines (not shown here) for
this simulation was similar to that for RAh , i.e., the streamlines
penetrated into the drop until the rate of the deformation
became maximum, and retreated from it, afterward.

A remark is in order regarding the underlying reason for
the difference in the observed fluid flow development paths for
simulations RAh (Fig. 4) and RBh (Fig. 6). In simulation RAh (as
well as RCh ), the sense of shear-driven vortices around the drop
surface during the transient was the opposite of the sense of
deformation-driven vortices. This opposition led to retreat of
the deformation-driven vortices from the drop to the ambient
during the deceleration stage. However, for RBh simulation,
the sense of shear- and deformation-driven vortices during the
transient were the same. As such, the shear-driven vortices
helped to maintain the propagation of the vortices into the
drop even during the deceleration stage. It is to be noted that
the retreatment of the outer vortices in RAh and RCh simulations
and their continual penetration into the drop in RBh simulation
provides the only mechanism by which the steady-state fluid
flow circulation of Fig. 2 can be realized from the transient
vortices with the specified senses.

2. Dynamic response of the drop

The dynamic response of the drop and the fluid flow
affect one another. As such, a major insight about their in-
teractions can be gained by examining their evolutions. The
dynamic response can be best characterized by considering
the deformation-time curve. However, the fluid flow can be
characterized by its structure and strength. For fully three-
dimensional simulations, the kinetic energy

Ek = 1

2

∫
�

ρ|V|2d� (13)

is a convenient and robust measure to characterize the flow
strength, � being the volume of the computational domain.
Figure 8 shows the evolution of the deformation parameter D
Eq. (5) and the kinetic energy E∗

k = Ek/Eks (Eks = ρou2
EHD�)

with the nondimensional time t∗ = t/τVC, for reference sim-
ulation RAh (Fig. 3). Here, in addition to a linear scale, which

FIG. 8. Evolution of the deformation parameter D and the ki-
netic energy E∗

k for reference simulation RAh (Table III). The circles
identify the times for panels (a)–(f) of Figs. 3 and 4.

is used to show the overall behavior of D and E∗
k , a semilog

scale is used to provide insight into the evolution of these two
parameters at an early time. The solid circles on the curves
are used to mark the times of the corresponding panels of
Fig. 3. From the linear-scale graph it is seen that the deforma-
tion parameter increases (in an absolute sense) monotonically
and settles to its steady state gradually, while the kinetic
energy reaches a peak in a very short period of time, drops
down rather rapidly, and then gradually settles to its steady
state. Considering the semilog-scale graph, it is seen that the
deformation-time curve has an initial tail [curve segment (a)–
(b)], along which the deformation is negligibly small. This tail
is followed by a curve [curve segment (b)–(f)], along which
the deformation initially increases with a fast pace and then
settles toward steady state with a slower pace. The kinetic
energy-time curve highlights the evolution before and after the
peak. Here, the drop is deformed over a time that is set by the
viscous capillary timescale τVC = μoa/γ = 8, while the fluid
flow is established over a time that is set by the momentum
diffusion timescale τdiff = a2/νo = 4. Thus, the fluid flow is
established before the drop is fully deformed. Accordingly,
the peak in the E∗

k -t∗ curve relates to the diffusion timescale
τdiff. However, the peak occurs at a shorter time (i.e., t∗

max =
0.3626 < τdiff/τVC = 0.5), primarily due to the continual fluid
flow generation by the electric pressure and the electric shear
stress. The kinetic energy does not stay at its peak since it
will be controlled by τVC, which is the dominant timescale.
As such, both the deformation and the kinetic energy settle to
steady state over the time that is characterized by the viscous-
capillary timescale τVC.

The deformation rate is the key parameter behind gener-
ation of the fluid flow during the transient. To discern the
correlation between this parameter and the kinetic energy, the
evolutions of these two parameters with time are presented
in Fig. 9. The deformation rate from the analytical solution
Eq. (A6) is also added to the figure. The numerical defor-
mation rate-time curve evolves through four stages. It has
an initial small tail, along which the rate of the deformation
increases slowly. After this tail, the deformation rate starts
to increase at a faster pace until it achieves a peak. It then
decreases rapidly until the beginning of a final tail, along
which it continues to decrease gradually toward steady state.
The initial increase in ∂|D|/∂t is because of the weak viscous
damping, while the momentum gradually diffuses away from
the surface of the drop into the drop and the ambient. How-
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FIG. 9. Evolution of the deformation rate ∂|D|/∂t (numerical
and analytical [5]) and the kinetic energy E∗

k for reference simulation
RAh (Table III). The circles identify the times for panels (a)–(f) of
Figs. 3 and 4.

ever, once the momentum is fully diffused, the deformation
rate starts to decrease, leading to the reduction in the flow
strength. Here, the weak viscous damping at the beginning
does not lead to an oscillatory response since the inertia
forces are not strong. The kinetic energy is controlled by
the deformation rate, judging by a small time lag that exists
between the peak of the former with respect to the latter,
i.e., t∗(Ḋ) = 0.347 < t∗

max(E∗
k ) = 0.36326. In the analytical

solution [5] where the fluid flow is established instantly, the
deformation rate is maximum at the outset and decreases
gradually afterwards (Fig. 9).

Figure 10 shows the deformation-time and kinetic energy-
time curves for fluid systems B and C. This figure was
previously referenced to identify the fluid flow strength of the
individual panels of Figs. 5 and 7. It is seen that the evolutions
of D and E∗

k with time are similar to the corresponding ones
for fluid system A. However, there are one to two orders of
magnitude difference between the the kinetic energy of the
three cases, with RAh and RBh having the maximum and the
minimum kinetic energies, respectively. This observation is in
line with that of the creeping flow solution, which predicts that
the maximum surface velocity Eq. (A7) for these simulations
are |Umax|/us = 0.1688, 0.0095, and 0.027, respectively. The
substantial differences in the fluid flow strength for the three
cases are the result of the interplay of the conductivity and the
permittivity ratios in setting the electric shear stress Eq. (11),
i.e., the flow strength is maximum when |̃ε − σ̃ | is maximum

FIG. 10. Evolution of the deformation parameter D and the ki-
netic energy E∗

k for reference simulations RBh (a) and RCh (b). For
panel (a), the circles identify the times for panels (a)–(f) of Figs. 5
and 6, while for panel (b), they identify the times for panels (a)–(f)
of Fig. 7. Table III provides the information about the fluid systems.

FIG. 11. Evolution of the deformation parameter D and the ki-
netic energy E∗

k for reference simulation RAl (Table III), using linear
and semilog scales. Here, fMS = ωMS/2π , where ωMS is given in
Eq. (B2b). The kinetic energy is nondimensionalized by ρou2

MS�,
where uMS = aω/(2π ).

and the conductivity ratio σ̃ is minimum. For simulation RAh ,
|̃ε − σ̃ | is relatively large and σ̃ = 2 is modest. However,
for simulations RBh and RCh , the contrast is weak, and the
conductivity ratio is large, respectively.

In summary, for high-Oh2 number reference simulations,
the dynamic response was monotonic for all the fluid systems.
However, the evolution of the kinetic energy was nonmono-
tonic. The deformation rate was initially high while the
viscous damping was weak, but started to decrease after the
viscous force was established. The evolution of the kinetic
energy was controlled by that of the rate of the deformation.
Here, the dynamic response resembled that of a mass-damper-
spring mechanical system (Fe − (kx + cẋ) = mẍ) with a small
inertia (mẍ), as it was overdamped. However, the problem
was governed by two timescales. On the other hand, in the
creeping flow solution of Ref. [5], the inertia was completely
ignored. As such, the problem was governed by a single
timescale only.

B. Reference simulations at low-Oh2 number

The monotonic behavior for the deformation-time curve
(Fig. 8) will be disrupted if Oh2 becomes sufficiently small.
For the ambient fluid, 1/Oh2 emerges as the parameter that
controls the local acceleration term ∂u/∂t Eq. (2). However,
considering the momentum Eq. (2) for the drop fluid and
balancing the first and the last terms suggests that

� = ρ̃

μ̃

(
1

Oh2

)
(14)

is the parameter that controls the local acceleration in general.
Thus, small Oh2, as well as large ρ̃ and small μ̃, favors an
oscillatory behavior. Generally speaking, smaller Oh2 number
is tantamount to a larger drop or a less viscous surroundings.

For each fluid system, a simulation at Oh2 = 0.02 was per-
formed as a representative of low Oh2 simulation. However,
here the focus will be mostly on fluid system A, since the
results for the other fluid systems were similar to those for
fluid system A. Furthermore, the evolution of the velocity
field is not presented, since the manner in which the fluid
flow evolves can be predicted from the corresponding D-t∗
and E∗

k -t∗ curves that will follow, taking advantage of the
insight that was gained from the fluid flow evolution for high
Oh2 simulations (Sec. V A). Figure 11 shows the D-t∗ and
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TABLE V. Numerical period Tn and analytical estimates of the period along with the magnitude of the timescales for the low-Oh2 reference
simulations. Here, ωs = 1/τIC, where τIC = √

ρoa3/γ , and ωL and ωMS are given in Eqs. (B2a) and (B2b).

Fluid system Tn TIC = 2π/ωs TL = 2π/ωL TMS = 2π/ωMS τIC τconv τVC τdiff

A 2.0 3.5543 1.622 2.09 0.5667 0.4 0.08 4.0
B 1.9 3.5543 1.622 2.09 0.5667 0.04 0.08 4.0
C 2.7 3.5543 1.622 2.09 0.5667 0.4 0.08 4.0

E∗
k -t∗ curves for fluid system A. Compared to the counterpart

simulation at high Oh2 (Fig. 8) where the dynamic response
was monotonic, here, the dynamic response is oscillatory. The
deformation parameter |D| has a large initial peak that is
followed by a smaller dip, and nearly an imperceptible second
peak. The oscillatory behavior of the D∗-t∗ curve suggests
that a timescale that is constructed based on the frequency
of the oscillation will be a more appropriate timescale. The
question that arises is what the intrinsic frequency of the
problem would be. To provide an answer, the numerical period
Tn was first examined by simply measuring the (dimensional)
peak to peak distance on the deformation-time curve. Next,
the period of oscillation was calculated using three different
equations; Eq. (B2a) and (B2b), and the inviscid-capillary
timescale τIC =

√
ρoa3/γ . Here, the first equation is due to

Lamb [31], which gives the frequency of small amplitude
oscillation of an inviscid drop, while the second equation is
based on Miller and Scriven [32], which is also designated for
small amplitude oscillation but allows for small viscosity in
both fluids (i.e., μi, μo � 1). Table V provides information
about the numerical and analytical period as well as the other
relevant timescales of the problem. It should be noted that
Eq. (B2a) and (B2b) are used outside their range of applica-
bility as the degree of drop deformation is not negligible (i.e.,
D ∼ 0.1). Table V makes it plain that for each fluid system the
Miller-Scriven period is the closest period to the numerical pe-
riod Tn. Accordingly, the timescale of oscillation is governed
by this period. However, after the drop goes through a cycle
of oscillation, its settling toward the steady state is controlled
by the momentum diffusion timescale τdiff, which is also the
largest time of the problem (Table V).

To nondimensionalize the kinetic energy, a velocity scale
associated with the oscillatory motion should be used. Here,
a Miller-Scriven velocity scale [uMS = aωMS/(2π )] is used,
as opposed to uEHD = εoE2

0 a/μ, which was used for the high
Oh2 reference simulations. The kinetic energy also settles
to its steady state over a time that is characterized by τdiff

(Fig. 11). However, its evolution is not monotonic also since it
is controlled by the deformation rate, which is nonmonotonic.
This can be verified from Fig. 12, which shows that the kinetic
energy has a time lag with respect to the deformation rate.
Thus, the deformation rate is the driver behind the variations
in the kinetic energy, while the fluid flow controls the defor-
mation parameter, as D has a time lag with respect to E∗

k .
The oscillation period of the deformation is slightly larger
than that of the kinetic energy. The peaks of ∂|D|/∂t , E∗

k ,
and |D| occur at t∗

max(|Ḋ|) = 0.1793, t∗
max(E∗

k ) = 0.2629, and
t∗
max(|D|) = 0.4781.

In summary, for low-Oh2 number reference simulations,
the dynamic response resembled that of an underdamped

second order mechanical system for all the fluid systems.
For small deformation and nearly inviscid fluids, the Miller-
Scriven solution [Eqs. (B1) and (B2)] serves as a good
model to characterize the dynamic response. For this so-
lution, the governing timescales are the oscillation period
TMS = 2π/ωMS and the damping rate ζ . Considering the scal-
ing arguments, the relevant timescales of the problem were
the inviscid capillary τIC and the momentum diffusion τdiff

timescales. The kinetic energy evolved nonmonotonically and
was controlled by the deformation rate.

C. Effect of the density ratio ρ̃

The density ratio effect on the transient electrohydrody-
namics of leaky dielectric drops has not been explored before.
The local acceleration term ∂u/∂t in the drop fluid (as well
as the convective term) correlates positively with ρ̃ Eq. (2).
Accordingly, as ρ̃ is increased, one would expect a monotonic
dynamic response to transition to an oscillatory one and vice
versa. To explore the effect of ρ̃, two simulations at density
ratios of ρ̃ = 10 and 100 were performed, corresponding to
each high- and low-Oh2 reference simulation. In these simu-
lations, the density ratio was changed by changing the density
of the drop fluid ρi. As such, for unequal-density simula-
tions, the momentum diffusion timescale τdiff = a2/ν and the
inviscid capillary timescale τIC =

√
ρa3/γ are different for

the ambient fluid and the drop fluid, and change from one
simulation to another. Accordingly, the more dominant mo-
mentum diffusion timescale and inviscid capillary timescale
are those associated with the drop fluid (τdiffi = a2/νi and
τICi =

√
ρia3/γ ) as they are larger than their counterparts in

the ambient fluid. Here, to characterize the fluid flow strength,
the mean fluid velocity,

u =
√

1

�

∫
�

|V|2d�, (15)

FIG. 12. Evolution of the deformation rate ∂|D|/∂t and the ki-
netic energy E∗

k for reference simulation RAl (Table III). Here, fMS =
ωMS/2π , where ωMS is given in Eq. (B2b). The kinetic energy is
nondimensionalized by ρou2

MS�, where uMS = aω/(2π ).
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FIG. 13. Evolution of the deformation parameter and the mean
velocity with time at three density ratios ρ̃ for high-Oh2 reference
simulation RAh , using linear and semilog scales. The density ratio
ρ̃ was changed by changing the density of the drop ρi. Here, the
velocity scale is us = εoE 2

0 a/μo and the time is nondimensionalized
with the viscous-capillary timescale τVC = μoa/γ .

is used instead of the kinetic energy Ek , since this parameter
would be a better measure as it bypasses the weighting of the
fluid flow strength by the densities.

Figure 13 explores the effect of the density ratios ρ̃ on
the evolution of the deformation parameter D and the mean
velocity u∗ = u/us (us = εoE2

0 a/μo) for the high-Oh2 refer-
ence simulation of fluid system A (hAh ). The corresponding
results for fluid systems B and C are not presented here, since
they were essentially the same as those shown here. A few
observations can be made about this figure. First, an order of
magnitude increase in the density ratio from ρ̃ = 1 to 10 does
not lead to a tangible difference in the deformation parameter.
However, an order of magnitude increase in ρ̃ from 10 to 100
transitions the monotonic responses to the oscillatory ones for
both D and u∗. The rather weak impact of ρ̃ on the dynamic
response is presumably due to the fact that this parameter has
direct impact on the drop fluid only, which has a much smaller
volume than that of the ambient (i.e., the volume fraction is
about 3.5%). Second, the steady-state deformation and mean
velocity are unaffected by the density ratio. This implies,
considering the normal and tangential stress balance, that the
normal �σ h

nn� and the tangential �τ h
nt� hydrodynamic stresses

at steady state remain essentially unchanged as a result of the
change in the density ratio. Third, while the mean velocity at
steady state is unaffected by the changes in the density ratio,
it tends to correlate negatively with this parameter during the
transient. Furthermore, the time that it takes for the velocity to
achieves it peak increases with an increase in the density ratio.
Two factors contribute to this: (i) the deformation rate (not
shown here) during the acceleration stage decreases with an

FIG. 14. Evolution of the deformation parameter and the mean
velocity with time at three density ratios ρ̃ for low-Oh2 reference
simulation RAl , using linear and semilog scales. The density ratio
ρ̃ was changed by changing the density of the drop ρi. Here, the
velocity scale is us = εoE 2

0 a/μo and the time is nondimensionalized
with the viscous-capillary timescale τVC = μoa/γ .

increase in ρ̃, (ii) the momentum diffusion time increases with
an increase in ρ̃, i.e., a2/νi = 4.0, 40.0, and 400.00, for ρ̃ = 1,
10, and 100, respectively. Compared to the low-Oh2 reference
simulations (Table V), here, the Miller-Scriven period does
not provide as good of an estimate. This is because the Miller-
Scriven solution is valid for Oh2 � 1, which is not the case
here.

Figure 14 compares the evolution of the deformation pa-
rameter D and the mean velocity u∗ = u/us with time at
different density ratios ρ̃ for the low-Oh2 reference simula-
tion of fluid system A (hAl ). The corresponding results for
fluid systems B and C are not presented since they were
essentially the same as those shown here. Here, to scale the
frequency of oscillation and fluid flow strength uniformly
for all the simulations, the time and the velocity scales have
been nondimensionalized with τVC = μoa/γ and uEHD =
εoE2

0 a/μo, both of which are independent of the density ratio.
The highly oscillatory nature of the ρ̃ = 100 curves is due to
the simultaneous effect of ρ̃ and Oh2, which is characterized
by Eq. (14). Two observations can be made. First, the dynamic
response is oscillatory at all the density ratios. However, the
oscillation frequency (D − t curve) decreases with an increase
in the density ratio, while the oscillation amplitude increases.
Inspection of the results shows that the oscillation frequency
of the deformation parameter D and that of the mean velocity
u are nearly the same. Second, the time-averaged deformation
D increases with an increase in ρ̃. The changes are more
pronounced when ρ̃ is increased from 10 to 100, compared
to those for which ρ̃ is increased from 1 to 10. Contrary to
the D − t curve, the time-averaged mean velocity u decreases
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FIG. 15. Evolution of the deformation parameter and the mean
velocity with time at three density ratios ρ̃ for low-Oh2 reference
simulations RAl , using linear and semilog scales. The density ratio
ρ̃ was changed by changing the density of the drop ρi. Here, fMS =
ωMS/2π and the velocity scale is uMS = a fMS, where ωMS is given in
Eq. (B2b).

with an increase in ρ̃, which is primarily due to the decrease in
the deformation frequency. Inspection of the evolution of the
mean velocities inside (ui) and outside (uo) of the drop (not
shown here) showed that these quantities followed the similar
trend as that for the mean velocity of the whole flow field (u).

Because of the oscillatory behavior of the curves in Fig. 14,
a more appropriate scaling would be those associated with
Miller-Scriven scales. Figure 15 is the result of this rescaling.
As opposed to Fig. 14, here, the nondimensional frequencies
of the three curves are nearly the same. This observation
reaffirms the fact that the Miller-Scriven frequency fMS is the
intrinsic frequency of the problem. Furthermore, contrary to
Fig. 14, here the nondimensional mean velocity increases with
an increase in ρ̃. The result for Oh2 = 2 (̃ρ = 100) simulation
has been also added to the D − t∗ curve (nondimensionalized
by its own Miller-Scriven frequency fMS from Table VI),
where it is seen that D − t∗ curves for Oh2 = 2 (̃ρ = 100) and

TABLE VI. Numerical period Tn and analytical estimates of the
period for high Oh2 simulations at ρ̃ = 100. Here, ωsi = 1/τICi ,
where τICi = √

ρia3/γ , and ωL and ωMS are given in Eqs. (B2a) and
(B2b).

Fluid
system Tn TICi = 2π/ωsi TL = 2π/ωL TMS = 2π/ωMS τICi τdiffi

A 127.90 355.43 126.08 134.07 56.57 400
B 144.90 355.43 126.08 134.07 56.57 400
C 187.90 355.43 126.08 134.07 56.57 400

Oh2 = 0.02 (̃ρ = 1) simulations are essentially the same. This
observation suggests that for the range of the parameters used,
the convective effects do not play a role in the deformation D,
since there is a two order of magnitudes difference between
ρ∗

o Re f (which scales the convective term in the ambient) for
the corresponding simulations, i.e., ρ∗

o Re f = 1 × 0.1 = 0.1
for Oh2 = 2 (̃ρ = 100) and ρ∗

o Re f = 1 × 10 = 10 for Oh2 =
0.02 (̃ρ = 1). Note that ρ∗

i Re f (which scales the convective
term in the drop) is the same (i.e., 10) for both simulations
(Table III). Table VII compares the relevant timescales with
the numerical period for this simulation and the corresponding
ones for fluid systems B and C (not shown here).

D. Predicting the dynamic response at the outset

From the investigations so far it is clear that the key param-
eters that determine the transition from a monotonic response
to an oscillatory one (or vice versa) for viscosity-matched
fluid systems are the Ohnesorge number squared Oh2 and
the density ratio ρ̃. A question that naturally arises is how
to predict the dynamic response a priori for a given Oh2 and
ρ̃. This question can be answered by considering Eqs. (5.9)
and (5.10) of Ref. [12], which characterizes the dynamic re-
sponse of a liquid drop for small deformation at arbitrary Oh2.
Considering those equations, the transition from a monotonic
response to an oscillatory one is determined by the magnitude
of τωL/2 relative to one, where τ is the time constant (A6b)
and ωL is the Lamb inviscid frequency (B2c). Accordingly,
setting τωL/2 = 1 leads to the characteristic Ohnesorge num-
ber (squared)

Oh2
c = 3ρ̃ + 2

6

[
40(μ̃ + 1)

(19μ̃ + 16)(2μ̃ + 3)

]2

, (16)

for which the dynamic response switches from an overdamped
response (Oh2 > Oh2

c) to an underdamped one (Oh2 < Oh2
c).

Considering the fact that Oh2
c is a decreasing function of μ̃

and an increasing function of ρ̃, and that a higher Oh2
c is tanta-

mount to a liquid drop that more readily becomes oscillatory,
all things being the same, the oscillatory behavior is favored
toward the drops that are less viscous and more dense than
the surrounding fluid. Figure 16, which is based on Eq. (16),
provides a map that can be used at the outset to predict the
mode of the dynamic response. Here, the symbols represent
the placement of high- and low-Oh2 simulations on this map
using Eq. (16). The theoretical prediction matches with the
numerical results, lending support to Eq. (16).

E. Confinement effect

In the majority of the numerical and analytical studies so
far, the ambient fluid has been considered to be essentially
unbounded. See, for example, Refs. [3,6,10,33]. In the current
study, however, the computational domain was finite. The do-
main confinement can affect the results in a qualitative and a
quantitative way. Qualitatively, the streamlines in the ambient
fluid will form closed loops (Figs. 4 and 6), as opposed to
those in an unbounded domain, which are open-ended (e.g.,
Fig. 1 of Ref. [1]). Quantitatively, the confinement can af-
fect the degree of drop deformation and fluid flow strength.
For steady-state creeping flows (Ca � 1, Re f � 1), Ref. [34]
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TABLE VII. Effect of density ratio ρ̃ on the oscillation period for Oh2 = 0.02 simulations. Here, ωsi = 1/τICi and uICi = a/τICi where
τICi = √

ρia3/γ , and ωL and ωMS are given in Eq. (B2a) and (B2b).

ρ̃ Tn (A B C) TICi = 2π/ωsi TL = 2π/ωL TMS = 2π/ωMS τICi uICi τdiffi

1 2.0 1.9 2.70 3.5543 1.622 2.09 0.5657 0.4180 4.0
10 3.90 4.50 5.50 11.2397 4.10 4.4844 0.8969 11.2397 40.0
100 10.5 13.60 16.50 35.543 12.60 12.85 2.57 35.543 400.0

explored the confinement effect by solving the electrohydro-
dynamic equations analytically, considering a liquid drop of
radius a, suspended in a pool of another liquid in a spherical
rigid container of radius b, where the drop and the container
were concentric. Accordingly, they examined the confinement
effect by evaluating the effect of the so-called confinement
ratio λ = a/b on the results. The results of this study showed
that depending on the relative importance of the ratio of
the dielectric properties (σ̃ , ε̃) and the viscosity ratio μ̃, the
fluid flow strength (characterized by the maximum surface
velocity Umax) and the deformation D would correlate posi-
tively or negatively with λ = a/b. It is to be noted that the
confinement ratio is related to the volume fraction through
λ = α1/3.

Table VIII provides information regarding the confinement
effect on the steady-state deformation D and the maximum
surface velocity Umax for all the fluid systems, using creeping
flow solution [34]. Here, D∞ and Umax∞ are the corre-
sponding results for an unbounded domain [1] (i.e., λ = 0),
while the results for the confined domain corresponds to
λ = 0.332 (α = 3.35%) used in this study. The domain con-
finement leads to the reduction of the fluid flow strength for
all the fluid systems but it does not affect the deformation
uniformly. These observations can be justified by considering
the creeping flow solution. Briefly, the domain confinement

FIG. 16. A phase diagram depicting the regions of the monotonic
and oscillatory responses in the physical space. The characteristic
Ohnesorge number squared (Oh2

c) is found from Eq. (16). The sym-
bols represent the placement on the map of the high- and low-Oh2

number simulations. Here the circle, diamond, and triangle represent
the results of Figs. 13 and 14, respectively.

affects the electric field and the flow field, and its influence
on the deformation and maximum velocity can be formu-
lated as D = CeCh

1D∞ and Umax = CeCh
2Umax∞ . Here, Ce =

f (σ̃ , λ), Ch
1 = f1(μ̃, λ), and Ch

2 = f2(μ̃, λ), are coefficients
that reflect on the modification of the electric and hydro-
dynamic forces by domain confinement, respectively. It is
to be noted that these coefficients can be easily identified
from the solution of Ref. [34]. For fluid systems A − C, the
confinement effect reduces the hydrodynamic forces. Thus,
Ch

1 and Ch
2 are lower than their corresponding values in an

unbounded domain. However, the confinement effect in-
creases the electric forces for fluid systems A and C, while
it does the opposite for fluid system B. Accordingly, the net
effect of the confinement is determined by the coefficients
CeCh

1 and CeCh
2 , compared to the corresponding ones for

an unbounded domain. Here, CeCh
2 is less than that for an

unbounded domain for fluid systems A–C. As such, Umax <

Umax∞ uniformly. However, for fluid systems A and C, CeCh
1 is

larger than that for an unbounded domain, while the opposite
is true for fluid system B. Accordingly, D > D∞ for fluid
systems B and C, while |D| < |D∞| for fluid system A.

The confinement effect was explored by performing two
extra simulations in cubic boxes of 1.5 and 2 a side, for each
simulation that was presented so far. This led to volume frac-
tion (confinement ratio) of α = 0.9929% (λ = 0.2149) and
0.4189% (0.1612), respectively. Recall that for the original
simulations α = 3.35% and λ = 0.3224, corresponding to a
unit cubic box. Here, a highlight of these study is provided in
Fig. 17, which shows the confinement effect for fluid system A
and Oh2 = 2. For the top row, ρ̃ = 1, and for the bottom row,
ρ̃ = 100. The deformation (in an absolute sense) increases
with an increase in the domain size and the difference is
more pronounced at steady state compared to the transient.
However, the kinetic energy decreases with an increase in the
domain size. Furthermore, the confinement effect on the ki-
netic energy is more pronounced than that on the deformation.
The deformation for the intermediate domain is nearly the

TABLE VIII. Estimation of confinement effect for the three fluid
systems used in this study, using creeping flow solution of Ref. [34].
The numbers in the parentheses show the percentage of the relative
decrease or increase in D and Umax compared with the corresponding
values in an unbounded domain.

Fluid System Umax/Umax∞ (percent) D/D∞ (percent)

A 0.963 (−3.7) 0.955 (−4.5)
B 0.9187 (−8.13) 1.001 (+0.1)
C 0.993 (−0.7) 1.03 (+0.7)
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FIG. 17. Effect of confinement on the deformation and kinetic
energy. The computational domains are cubes of sizes 1, 1.5, and 2,
the fluid system is A, and Oh2 = 2. For panels (a) and (b), ρ̃ = 1,
and for panels (c) and (d), ρ̃ = 100. For panel (b), Ek is nondimen-
sionalized by ρou2

s �, where us ≡ uEHD = εoE 2
0 a/μo and � is the box

volume. fMS = ωMS/2π and the velocity scale is uMS = a fMS, where
ωMS is given in Eq. (B2b).

same as that for the large one, reflecting the fact that a cubic
box of 1.5 a side can be considered essentially an unbounded
domain for evaluating the deformation. The D-λ correlation
is in line with that for the creeping flows (Table VIII), while
Ek-λ correlation is the opposite. The discrepancy between the
numerical results and the creeping flow predictions concern-
ing the kinetic energy is due to the convective effects, which
are present in the numerical simulations but are absent in the
creeping flow solution. This argument is backed by the fact
that the effect of the domain confinement on the kinetic energy
increases with an increase in the convective effects, as is
evident by comparison of panels (b) and (d). For both panels,
the convective term in the ambient is scaled by Re f = 0.1.
However, the convective term in the drop is scaled differently;
it is ρ̃Re f = 0.1 and 10 for panels (b) and (d), respectively.
The results for fluid systems B and C are not presented as they
were similar to that for fluid system A.

F. Position of the maximum velocity

In the course of investigations of the fluid flow structure
(Sec. V A 1), an interesting observation was made regarding
the location of the steady-state maximum velocity for fluid
system B [Fig. 5(f)]. Whereas Taylor’s solution [1] predicts
the location of the maximum velocity Umax [Eq. (A7)] to be at
the drop surface and at polar angles θ = 45◦ and 135◦, there,
the maximum velocity occurred inside the drop somewhere
along the poles. It is conjectured that this discrepancy is due

to the consideration of the creeping flow solution beyond
its range of applicability. Briefly, Taylor’s solution for the
velocity field is a zeroth order solution in a regular series
solution in which the capillary number Ca is the perturba-
tion parameter, u = u0 + Cau1 + O(Ca2). In this solution, the
nondimensional velocity field u0/Umax inside and outside of
the drop is only function of the nondimensional radial dis-
tance r/a and the polar angle θ . Accordingly, the location
of the maximum velocity remains intact, regardless of the
input parameters of the problem. The solution also predicts
a smaller peak (≈0.77Umax) inside the drop along the poles
at r/a ≈ 0.577. However, examination of the Ajayi’s solution
[35], which is a first order solution to the problem, shows that
the location and the magnitude of the maximum velocity are
modified by the first order velocity u1. Since u1 is a function
of the property ratios (σ̃ , ε̃, μ̃), capillary number Ca, and
the degree of the drop deformation D, all these parameters
can affect the position of the maximum velocity in a real
setting. In particular, they can reduce the surface velocity and
increase the velocity along the poles, leading to the switch
over of the position of the maximum velocity. As such, the
observation made in Fig. 5(f), is not specific to region II.
Detailed examination of this matter warrants a study of its
own.

VI. CONCLUSIONS

Direct numerical simulations were performed to study
some of the less explored aspects of the transient
electrohydrodynamics of a liquid drop in DC electric fields
I. The governing equations of the problem were solved using
a parallelized front tracking/finite difference scheme in the
framework of Taylor-Melcher’s leaky dielectric theory. To
account for the effects of the dielectric properties on the ques-
tions of interest, three representative fluid systems (Table II),
corresponding to regions I–III of the deformation-circulation
map were considered (Fig. 2). The drop deformed to an oblate
in region I and a prolate in regions II and III. For density- and
viscosity-matched reference simulations at high and low Oh2

number, the deformation parameter and the flow field settled
to a steady state. The steady-state flow field consisted of two
toroidal vortices inside the drop (in the northern and south-
ern hemispheres) that were matched with the corresponding
vortices in the ambient fluid. The external flow ran from the
poles toward the equator in regions I and II, while it ran in the
opposite direction in region III.

It was shown that the instantaneous flow pattern was the
result of the superposition of the deformation- and hydro-
dynamic shear-driven flow patterns, where the former was
behind the generation of vortices that crossed into and out
of the drop surface (the so-called open vortices in an un-
bounded domain), while the latter led to recirculating vortices
that remained confined in each fluid. For high-Oh2 refer-
ence simulations in which the drop deformed monotonically,
the evolution of the flow field consisted of two stages, the
acceleration stage and the deceleration stage. In the accel-
eration stage, the deformation rate was increasing with time
(∂2D/∂t2 > 0), and thus, the flow pattern was mainly shaped
by the deformation-driven vortices. These vortices gradually
penetrated into the drop for all the fluid systems. In the decel-
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eration stage, the deformation rate was decreasing with time
(∂2D/∂t2 < 0), and thus, the shear-driven vortices gradually
became dominant. In this stage, the deformation-driven vor-
tices gradually retreated to the ambient fluid for fluid systems
A and C, while they continued to move into the drop for
fluid system B. For all the fluid systems, the evolution of
the vortices continued until the flow field settled to its steady
state. The underlying reason for the difference in the paths
was attributed to the difference in senses of the deformation-
and shear-driven vortices for fluid systems A and C compared
to those for fluid system B.

The evolutions of the deformation parameter D, the kinetic
energy Ek , and the deformation rate ∂D/∂t with time for the
high- and low-Oh2 reference simulations led to a number of
observations. For both cases, the deformation rate controlled
the kinetic energy, while the kinetic energy controlled the
deformation. Because of the close association of the defor-
mation rate with the instantaneous deformation, this hinted
a two-way coupling between the deformation rate and the
kinetic energy. For the high-Oh2 reference simulations, the
deformation increased (in an absolute sense) monotonically
until it settled to a steady state. However, the kinetic energy
had an overshoot early on and then gradually settled to a
steady state. Here, the dynamic response resembled that of an
overdamped mechanical system. For the low-Oh2 reference
simulations, the evolutions of both the deformation and the
kinetic energy were oscillatory. Here, the dynamic response
resembled that of an underdamped mechanical system. Fur-
thermore, the oscillation frequency of the deformation was
close to that predicted by Miller-Scriven ( fMS = ωMS/2π ).

The effect of the density ratio on the dynamic response and
the fluid flow strength was studied for both the high and the
low Oh2 reference simulations. For the former, no tangible
changes in the dynamic response and the average velocity
were observed when the density ratio was increased from 1 to
10. However, when the density ratio was increased from 10 to
100, both parameters transitioned from a monotonic response
to an oscillatory one. For all the cases, the steady-state defor-
mation and the average velocity remained intact. For the latter,
the dynamic response was oscillatory at all the density ratios.
The oscillation frequency, nondimensionalized by the Miller-
Scriven frequency, was essentially the same for all the density
ratios, reflecting the fact that the Miller-Scriven frequency was
the intrinsic frequency. The oscillation amplitude increased
with an increase in the density ratio. The fluid flow strength,
represented by the average velocity (15) was oscillatory and
correlated positively with the density ratio ρ̃.

The confinement effect on the deformation and the ki-
netic energy was explored by performing two simulations
in cubic boxes of sizes 1.5 and 2, for every original simu-
lation (which was done in a unit box). Examination of the
selected results for fluid system A showed that the deformation
(in an absolute sense) correlated positively with confinement
while the kinetic energy did the opposite. These observations
were attributed to the modification of the electric and hy-
drodynamic forces by the confinement and their interplay in
setting the drop deformation and the fluid flow generation.
The confinement effect was more pronounced on the kinetic
energy, compared to the deformation; whereas the deforma-
tion remained essentially the same when the domain size was

increased from 1.5 to 2, the kinetic energy for the two systems
had noticeable differences.

APPENDIX A: HYDRODYNAMIC SHEAR- AND
DEFORMATION-DRIVEN COMPONENTS OF THE

CREEPING FLOW SOLUTION

In what follows the result of recasting the solution of
Ref. [5] in a new form is reported. This is done to highlight
the role of the deformation rate on the evolution of the flow
field. Briefly, for quasi steady-state creeping flows, the equa-
tion of motion is −∇p + μ∇2u = 0, which has the following
solution in terms of stream function:

ψi = (Air
3 + Bir

5) sin2 θ cos θ, (A1a)

ψo = (Aor−2 + Bo) sin2 θ cos θ. (A1b)

Here, the unknown coefficients are time-dependent and deter-
mined from the interfacial jump conditions. Application of the
jump conditions results in

Ai = 16μ̃ + 19
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, (A2a)

Bi = − 2μ̃ + 3

5(μ̃ + 1)a2
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Ao = − (3μ̃ + 2)a5

5(μ̃ + 1)

∂D
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deformation-driven

+ a5

5(μ̃ + 1)
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, (A2c)

and

Bo = (19μ̃ + 16)a3

15(μ̃ + 1)

∂D
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deformation-driven

− a3

5(μ̃ + 1)

�̃τ e
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, (A2d)

where the deformation rate ∂D/∂t needs to be determined. In
Eq. (A2), �̃τ e

rθ � is the coefficient of sin 2θ in the electric shear
stress

�τ e
rθ � = 9εoE2

∞
2(σ̃ + 2)2

(̃ε − σ̃ ) sin 2θ. (A3)

The deformation D is found from the solution of the normal
stress balance equation

τ
∂D
∂t

+ D = a

8γ

(
�̃τ e

rr� − 3

5

3μ̃ + 2

μ̃ + 1
�̃τ e

rθ�

)
︸ ︷︷ ︸

Dss

, (A4)

where �̃τ e
rr� is the coefficient of cos2 θ in the electric pressure

�τ e
rr� = 9εoE2

∞
2(σ̃ + 2)2

[̃ε − 1 + (σ̃ 2 + 1 − 2̃ε) cos2 θ ]. (A5)

In Eq. (A4), τ is the characteristic timescale that governs the
dynamics, and Dss is the steady-state deformation. Solution of
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Eq. (A4) leads to

D = Dss[1 − exp(−t/τ )], (A6a)

τ = μoa

γ

(19μ̃ + 16)(2μ̃ + 3)

40(μ̃ + 1)
, (A6b)

which suggests that the drop deformation settles monotoni-
cally to its steady-state value.

Inspection of the radial and tangential velocity components
shows that during the transient, the maximum fluid velocity
occurs at the poles (where the radial velocity ur is maximum)
or at the surface at θ = π/4 and 3π/4 (where the tangential uθ

velocity is maximum). The radial velocity ur is driven solely
by ∂D/∂t . As such, it will cease to exist at steady state. The
tangential velocity is due to both ∂D/∂t and �τ e

rθ� during the
transient, but it will be driven solely by τ h

rθ at steady state. The
tangential surface velocity at steady state is uθ = Umax sin 2θ ,
where

Umax = 9

10

us

1 + μ̃

σ̃ − ε̃

(σ̃ + 2)2
, (A7)

is the maximum velocity in the flow field.

APPENDIX B: CHARACTERIZING THE OSCILLATORY
DYNAMIC RESPONSE

Reference [12] developed an equation for the deformation
of a liquid drop in DC electrics field using the solution of
Ref. [32] for small-amplitude free oscillation of a liquid drop

D = D∞

[
1 − exp(−ζ t )

(
cos ωMSt +

(
ζ

ωMS

)
sin ωMSt

)]
,

(B1)

where

ωMS = ωL − 25(ωLμiμoρiρo)1/2

21/2�
, (B2a)

ζ = 25(ωLμiμoρiρo)1/2

(21/2)�
− 625μiμoρiρo

�2

+ 5[6μ2
i ρi + 16μ2

oρo + μiμo(4ρi − ρo)]

2a2�[(μiρi )1/2 + (μoρo)1/2]2
, (B2b)

ωL =
√

24

3ρ̃ + 2

(
γ

ρoa3

)
, (B2c)

� = 2a�[(μiρi )
1/2 + (μoρo)1/2], (B2d)

� = 2ρo + 3ρi. (B2e)

In Eq. (B2), ωL is the natural frequency of oscillation at the in-
viscid limit [31], and ζ is the damping factor. This equation is
valid for Oh2

i , Oh2
o � 1, μi, μo � 1, and O(μi ) = O(μo).
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