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Cylindrical convergence effects on the Rayleigh-Taylor instability in elastic and viscous media
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Convergence effects on the perturbation growth of an imploding surface separating two nonideal material
media (elastic and viscous media) are analyzed in the case of a cylindrical implosion in both the Rayleigh-Taylor
stable and unstable configurations. In the stable configuration, the perturbation damping effect due to angular
momentum conservation becomes destroyed for sufficiently high values of the elastic modulus or of the viscosity
of the media. For the unstable configuration, Rayleigh-Taylor instability can be suppressed by the elasticity
or mitigated by the viscosity, but without practically affecting the perturbation growth due to the geometrical
convergence. However, the convergence effects manifest themselves in a manner somewhat different from the
classical Bell-Plesset effect by making the process more sensitive to the media compressibility than in the case
involving ideal media.
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I. INTRODUCTION

It is already a well established fact that the effect of geo-
metrical convergence, known as the Bell-Plesset (BP) effect,
on the growth of perturbations in an accelerated cylindrical
or spherical surface, influences the evolution of the Rayleigh-
Taylor instability (RTI) [1–10].

The basic case is the one present in the implosion of cav-
ities or single interfaces involving two ideal fluids, although
a few works have also considered finite thickness shells in
which the convergence effects arise on both surfaces [3,4,8].
More recently, the presence of viscosity was also included in
the analysis of an expanding cavity, but a specific study of the
viscous effects was not further considered [11]. On the other
hand, several studies involving ideal media have shown that
BP effects are mitigated by the compressibility of the media,
although in some situations complete suppression may require
somewhat unrealistic levels of compressibility [5–7].

Except for the few works mentioned above, BP effects
have been mostly studied on single interfaces representing
either the outer or the inner surface of a shell, which is quite
appropriate for relatively thick shells in which feedthrough
effects can be ignored or at least separated from the growth
of the perturbations due to the geometrical convergence, or
from the RT evolution on the surface itself without feeding
from the other one.

In addition, the different phases of an implosion, which
include an acceleration stage followed by a stagnation phase,
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have been usually treated together, thus making it difficult to
discriminate the different response of the interface in each
regime. However, the convergence ratio C2 during the stag-
nation phase is in general not very large, and, as will be
shown, the contribution of this stage to the perturbations
growth due the geometrical effects is much less significant
than the growth due to the RTI. In fact, it was already
shown by Book and Bodner that in spherical implosions
it is C2 ∼ 2 [3]. Furthermore, if compressibility effects are
going to be of relevance, it should be expected that such
effects would be stronger just on this late phase. Therefore,
the perturbation growth during the stagnation phase can be
satisfactorily studied by neglecting BP effects and analyz-
ing RTI under conditions in which the curvature effects are
relevant [12–15]. Then, it seems reasonable to restrict the
analysis of the convergence effects during the implosion to the
phase of inward acceleration. This is the approach we have
adopted in the present work, and it is particularly appropri-
ated for the analysis of the LAPLAS (Laboratory Planetary
Science) experimental setup that is being designed in the
framework of the international collaboration on high-energy
density physics at the Facility for Antiproton and Ion Research
(FAIR) presently in the final phase of construction at the GSI
Helmholtzzentrum Darmstadt (Germany) [16–26,28].

The LAPLAS experiment consists in a cylindrical shell
(the payload) containing a material sample in the interior that
is imploded by using an intense beam of heavy ions with
an annular focal spot (Fig. 1). The beam impinges axially
and heats the annular region (the absorber) surrounding the
payload, which expands and accelerates the pusher radially
inward, thus compressing the sample [25–27]. The external
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FIG. 1. Schematic of the LAPLAS experiment.

shell (the tamper) avoids the outward expansion of the ab-
sorber optimizing the efficiency of the implosion process. The
high-density payload material, namely tungsten, ensures a
quasi-isentropic compression of the sample, but it also makes
the acceleration process potentially susceptible to Rayleigh-
Taylor instability. For this, LAPLAS relies on the mechanical
properties of the pusher material to provide the stabiliz-
ing mechanism that would safeguard the implosion process
from the deleterious effects of the hydrodynamic instabilities
[29–40]. In addition, both the inner and outer surfaces of
the shell may be affected by the geometrical convergence or
BP effects that could further enhance the amplitude of the
perturbations.

Although the convergence ratio of the pusher in LAPLAS
is not very large (Ce = Re0/Rem ≈ 1.5 for the external surface
and Ci = R0/Rim � 3.5 for the internal surface, where Re0 and
R0 are, respectively, the initial radii of the external and internal
surfaces; and Rem and Rim are the respective minimum radii
during the implosion), the influence of the mechanical prop-
erties of the pusher on the geometrical convergence effects
needs to be evaluated in order to learn about the possible
synergetic among such mechanical properties of the material,
the convergence process, and compressibility.

For this, in this work we study the BP effects on a single
interface, taking into account the compressibility of the pusher
and the elasticity of the medium, because a stable elastic phase
is a necessary condition for the RT stability of an elastic-
plastic medium [32,38]. The presence of viscosity will also be
considered. We restrict ourselves to the implosion phase, and
we consider separately the situations that suitably describe the
behavior of the external and internal surfaces of the pusher,
ignoring the feedthrough process (thick shell approximation).

II. FUNDAMENTAL EQUATIONS

We consider an imploding cylindrical surface of radius
R = R(t ) that separates two media of uniform densities ρ1

(r � R) and ρ2 (r � R). To keep the problem tractable, the
media are considered to develop irrotational fields of velocity
and displacements, both for the background flow and for the
perturbations, so that these fields are determined from scalar
potentials. The nonideal effects could be introduced to zero
order as boundary conditions in the same manner as was done
to consider the viscosity effects in the dynamics of bubbles

[41]. However, as we can see below, such effects are not
going to alter the velocity profiles, and therefore they will not
directly alter the dynamics of the interface implosion.

Then, the flow can be described by the following equa-
tions for mass and momentum conservation:

dρn

dt
+ ρn �∇ · �vn = 0, (1)

ρn
d�vn

dt
= −�∇pn, (2)

where n = 1, 2 denotes the internal and the external medium,
respectively, �vn and pn are the flow velocity and the pressure
of the medium n, respectively, and the material derivative of
any magnitude M is

dM

dt
= ∂M

∂t
+ �vn · �∇M = 0. (3)

In addition, the assumption of an irrotational velocity field
allowed us to define the velocity potential:

�∇φn = �vn. (4)

Therefore, we will consider first the dynamics of the back-
ground flow.

A. Background dynamics

As in previous studies, we assume that densities ρn are uni-
form, so that Eq. (1) can be integrated to obtain the following
expression for the radial velocity in the medium n:

vn = RṘ

r

(
1 − αn

2

)
+ αn

2

Ṙ

R
r, (5)

where we have defined αn such that

ρ̇n

ρn
= −αn

Ṙ

R
, (6)

and an overdot indicates time derivative.
In particular, by substituting Eq. (5) into Eq. (2), we obtain(

1 − α2

2

)
(R̈R + Ṙ2)

1

r
+ α2

2

[
R̈

R
−

(
1 − α2

2

)
Ṙ2

R2

]
r

−
(

1 − α2

2

)2 Ṙ2R2

r3
= − 1

ρ2

d p2

dr
. (7)

As is well known, is not possible to integrate this equation up
to an external radius Re → ∞ to get the evolution equation for
a cavity of radius R. However, as was shown in Refs. [42,43],
in considering a suitably thick shell or a cavity, a reasonable
approximation is to integrate up a radius Re ∼ 10R, where an
external pressure pe is applied. Here, we will assume a thick
shell with a given constant mass m2, and then the external
radius Re will be determined by the mass conservation:

Re

R
=

(
1 + m2

πρ2R2

)1/2

,
ρ2

ρ20
=

(R0

R

)α2

, (8)

where ρ20 is the initial density of the medium “2,” and we
remind the reader that R0 is the initial radius of the inter-
nal surface of the shell. The second part of the previous
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equation comes from the integration of Eq. (6). Then, upon
integration of Eq. (7), it turns out that

p1 − pe

ρ2
=

(
1 − α2

2

)
(R̈R) + Ṙ2 ln

Re

R

+ α2

4

[
R̈

R
−

(
1 − α2

2

)
Ṙ2

R2

](
R2

e − R2
)

+
(

1 − α2

2

)2 Ṙ2R2

2

(
1

R2
e

− 1

R2

)
, (9)

where p1 is the pressure in the internal region. The previous
equation must be solved with the following initial conditions:

R(0) = R0, Ṙ(0) = 0. (10)

Introducing the following dimensionless magnitudes:

x = R

R0
, T = t

t0
, (11)

and after rearranging the terms, Eq. (9) reads

2xα2 (�0x−α1γ − 1)

= ẍx

[(
1 − α2

2

)
ln(1 + a0xα2−2) + a0

α2

2
xα2−2

]

+
(

1 − α2

2

)
ẋ2

[
ln(1 + a0xα2−2) − 2 + α2a0xα2−2

1 + a0xα2−2

a0

2
xα2−2

]
,

(12)

and the initial conditions read

x(0) = 1, ẋ(0) = 0. (13)

In writing Eq. (12), we have considered that the internal
medium is compressed adiabatically with an adiabatic index
γ [8], so that

p1 = p0

(
ρ1

ρ10

)γ

=
(R0

R

)α1γ

, (14)

and, for writing Eq. (14), we have integrated Eq. (6) for the
medium “1.” If the mass of the internal medium is conserved,
then it turns out α1 = 2. If not, it must be assumed that a
convenient sink of mass exists in the internal region in order
to allow for an arbitrary value of α1 [5–8].

In addition, in Eq. (12) we set

�0 = p0

pe
, t0 =

√
ρ2R2

0

pe
, a0 = m2

πR2
0ρ20

, (15)

where the parameter a0 accounts for the thickness of the shell.
To study the convergence effects on the growth of the

perturbation amplitude, we are particularly interested in the
situations with �0 � 1 for which we have the maximum
convergence ratio.

In Fig. 2 we have represented a typical solution of Eq. (12)
for �0 = 0.05, a not too small value so that the scale of the
stagnation phase remains reasonably appreciable. Figure 2(a)
shows the interface trajectory R(t ), the velocity Ṙ(t ), and
the acceleration R̈(t ). Figure 2(b) shows a detailed view of
the slowing-down phase, starting at the time T1 (when the
imploding velocity is maximum), in which we can see that
the convergence ratio C2 = R(T1)/R(T2) is not very significant

FIG. 2. (a) Time evolution of the radius R(t ), velocity Ṙ(t ), and
acceleration R̈(t ) of the shell internal surface; (b) detail of R(t ),
Ṙ(t ), and R̈(t ) during the stagnation phase; (c) idealization of the
stagnation phase evolution. Arrows indicate the corresponding axes.

(T2 is the time when the minimum radius is achieved). This
fact is shown more clearly in Table I, where the convergence
ratios C1 = R0/R(T1) and C2 are given for a wide range of
variation of the parameters �0 and a0, and for ρ1 � ρ2. As
can be noticed, the convergence ratio C2 during the stagnation
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TABLE I. Convergence ratios during the acceleration phase C1

and during the stagnation phase C2 for different dimensionless driv-
ing pressures �0 and shell thicknesses a0, and γ = 1.7.

�0 = 0.1 �0 = 001 �0 = 0.001

a0(R0/	) C1 C2 C1 C2 C1 C2

1.00 (2.40) 2.70 1.59 13.50 1.58 67.50 1.63
0.10 (20.4) 2.10 2.01 12.70 1.66 59.10 1.94
0.05 (40.5) 2.03 2.10 12.30 1.69 53.10 2.02

phase is practically constant and it is C2 ≈ 1.6 to 2, so that the
convergence effects on the perturbation growth in this phase
cannot be very important, and it can be reasonably assumed
that such a phase is dominated by the RTI with, of course,
the curvature effects taken into account [15]. This conclusion
is reinforced by the influence of the compressibility on the
convergence effects [4–7], which is expected to be the maxi-
mum just during the stagnation phase. A similar conclusion
was obtained by Book and Bodner in their analysis of the
convergence effects in a spherical implosion [3].

Therefore, the situation at the stagnation can be idealized
as shown in Fig. 2(c). Such an approach has, in fact, been
adopted is several studies of the RTI spherical and cylindrical
interfaces [12–14,44], and it seems to be well supported by
the implosion dynamics.

Therefore, in the following, we can limit our analysis of
the convergence effects to the phase of inward acceleration of
the cavity.

B. Linear analysis

As a first step, we revisit the case involving ideal fluids
considered in Refs. [4–7] in order to find the equation for the
perturbation evolution in cylindrical geometry including the
compressibility of the background flow but assuming incom-
pressible perturbations.

1. Ideal media

We linearize Eqs. (1) and (2) in the usual manner by writing
every magnitude M (i.e., �v, ρ, and p) as M = M0 + δM,
where M0 and δM � M0 are the background value and its
perturbation, respectively. Thus, we obtain [15]

�∇ · (δ�vn) = 0, (16)

ρn
∂2φn

∂t2
+ δpn + ρnR̈ηrn = 0, (17)

where δ�vn = �∇(δφn), and ηrn is the radial component of the
displacement �η(θ, t ) with respect to the interface (�̇η = δ�vn,
and θ is the azimuthal coordinate).

Then, from Eq. (13) and considering that δφ2 → 0 for r →
∞, and that δφ1 must be finite at r = 0, we obtain

δφ2 = a2

rm
cos mθ, (18)

δφ1 = a1rm cos mθ, (19)

where a1 and a2 are constants to be determined from the
boundary conditions, and m = kr is the perturbation mode
(k = 2π/λ, and λ is the perturbation wavelength).

The boundary conditions at r = R are given by the conti-
nuity of the velocity and of the normal stress:

η̇r1(R) = η̇r2(R) = ξ̇ (t ) cos mθ, (20)

δp1(R) = δp2(R), (21)

where ξ (t ) is the perturbation amplitude, δpn is given by
Eq. (17), and

η̇rn(R) = vn(R + η) − Ṙ = δvn + ∂vn

∂r
|r=R, (22)

δvn = δvn(R) = ∂ (δφn)

∂r
|r=R. (23)

By using Eq. (5) in the velocity derivative of Eq. (22), we
obtain

δvn = η̇rn − (αn − 1)ηrn
Ṙ

R
, (24)

which, together with Eqs. (18), (19), and (23), yields the
following relationships for determining a1 and a2:

ξ̇ = − ma2

Rm+1
+ (α2 − 1)ξ

Ṙ

R
, (25)

ξ̇ = −ma1Rm−1 + (α1 − 1)ξ
Ṙ

R
. (26)

Therefore, from the boundary condition equations and taking,
for simplicity, αn as constants, we obtain the following equa-
tion for the perturbation evolution:

ξ̈ + (2 − α2)ρ2 + (2 − α1)ρ1

ρ2 + ρ1
ξ̇

Ṙ

R

− (m + α2 − 1)ρ2 − (m − α1 + 1)ρ1

ρ2 + ρ1
ξ

R̈

R
= 0. (27)

This is the cylindrical version of the equation obtained by
Ramshaw and Amendt [6] in spherical geometry, for the par-
ticular case of constant values for αn. However, the extension
to αn = αn(t ) is straightforward and it is not necessary for our
present purposes. Of course, when the mass of the interior
medium is conserved it turns out to be α1 = 2, and for an
incompressible external medium it is α2 = 0. This particular
choice of values is suitable for describing the perturbation
evolution at the inner face of a sufficiently thick cylindrical
shell so that we can ignore the transference to this surface
of the perturbations at the outer surface (feedthrough effects).
However, in the case when ρ1 � ρ2 [AT = (ρ2 − ρ1)/(ρ2 +
ρ1) = 1, where AT is the Atwood number], which is a conve-
nient extreme case for studying the convergence effects, the
value of α1 becomes irrelevant.

On the other hand, for studying the perturbation evolution
at the outer face of a shell imploded by an external pressure
pe, it is more suitable to consider the opposite extreme case
ρ1 	 ρ2 (AT = −1) in which now α2 becomes irrelevant,
and to take α1 = 0 to describe the shell as incompressible.
In this case, the assumption of a sink of mass at the interior
region is more suitable because it allows the interior fluid to
evolve meaningfully, as would be the case if it were a hollow
shell [7]. It may be worthwhile to notice that in the present
work, the values of the Atwood number AT = ±1 refer to
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the situations on the RTI stable internal surface and the RTI
unstable external surface, respectively, of a thick shell.

2. ρ1 � ρ2

As we have just discussed, this case is the appropriate one
for studying the perturbation growth at the internal surface of
a thick shell. Then, Eq. (27) reads

ξ̈ + (2 − α2)ξ̇
Ṙ

R
− (m + α2 − 1)ξ

R̈

R
= 0, (28)

which can be reduced to the canonical form by the well-known
transformation

ξ = ζ exp

(
−2 − α2

2

∫ t

0

Ṙ

R
dt

)
= ζ

(R0

R

) 2−α2
2

, (29)

where ζ = ζ (t ) satisfies the following equation:

ÿ = −�2y �2 = 2 − α2

4

ẋ2

x2
−

(
m + α

2

)
ẍ

x
, (30)

and the following dimensionless variables have been defined:

y = ζ

ζ0
, � = ω

ω0
, (31)

and ζ0 = ζ (t = 0) and ω0 = ω(t = 0) = −(m +
α2/2)(R̈0/R0).

As is well known, an approximate solution of Eq. (27) can
be obtained by using the WKB approximation, which yields

y =
√

�0

�
cos

(∫ T

0
� dT

)
, (32)

where we have taken ẏ(0) = 0, and

�2
0 = 2(1 − �0)(2m + α2)

(2 − α2) ln(1 + a0) + a0α2
. (33)

For writing the previous expression, we have used Eqs. (12)
and (30). Then, the dimensionless perturbation amplitude
turns out to be

z = yx− 2−α2
2 , z = ξ

ξ0
. (34)

We can see that the time evolution of the perturbation ampli-
tude consists, in this case, of an oscillation with a maximum
amplitude Z (T ), which constitutes the envelope of such an
oscillation:

Z (T ) =
√

�0

�

1

x2−α2
. (35)

In Fig. 3 we show z(T ) = ξ (t )/ξ0, which is obtained from
solving Eq. (28) for the incompressible case (α2 = 0), for
which the convergence effects are maximal, and for several
different modes m. We have also represented the maximum
amplitude Z (T ) of the perturbation oscillation, such as that
given by the WKB approximation in Eq. (35), which quite
accurately bounds the oscillation for every mode until the time
close to the maximum velocity when the oscillation frequency
is not yet too small to break the approximation. As was
noticed by Book and Bodner [3], the amplitude in Eq. (32)
decreases as �−1/2 as a consequence of the constancy of the
action variable of the perturbation [3,7].

FIG. 3. Perturbation amplitudes z(T ) = ξ/ξ0 such as that given
by Eq. (28) for different perturbation modes m. It is bounded by
the envelope Z (t ) given by the WKB approximation in Eq. (35). A
small-dotted line shows the 1/x perturbation growth due only to the
geometrical effects.

A quite clear physical picture of this process can be ex-
tracted from the approach taken by Eliezer and Gray for
solving the mathematical problem posed in Eq. (30) [45]. In
fact, the one-dimensional motion in the coordinate ζ (T ) can
be seen as the projection of the two-dimensional motion of
a particle under the attraction of a central force. The latter
motion is governed by the following equations:

�̈u + �2�u = 0, (36)

where the vector �u has Cartesian components ux and uy, so that
the previous vectorial equation can be written in the respective
polar components (ux = u cos θ , uy = u sin θ , and u = |�u|) as
follows:

ü + u(�2 − θ̇2) = 0, (37)

1

u

(u2θ̇ )

dt
= 0. (38)

For �2 	 ü/u, the previous equations yield u ≈ θ̇−1/2 ≈
�−1/2. That is, conservation of the angular momentum re-
quires the reduction of the amplitude in Eq. (32) as the
oscillation frequency increases, provided that � is not very
small, which is the condition for the WKB approximation to
remain valid. The good agreement with the exact solution
of Eq. (28) indicates that this requirement is well satisfied
during the imploding acceleration phase. Therefore, in such
a phase, the convergence effects given by the term x−(2−α2 )/2

in Eq. (35) are strongly mitigated by the conservation of the
angular momentum, and the perturbation amplitude is not
expected to increase much more than a factor of 2, as shown
in Fig. 3. A similar conclusion was obtained in Ref. [3] for
spherical geometry.
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3. ρ1 � ρ2

This situation can be considered as a suitable description of
the conditions present on the outer surface of a relatively thick
shell. The assumption of incompressibility (α1 = 0) imposes
the existence of a mass sink in the interior of the region “1.”
Thus, from Eq. (27) the evolution of the perturbations is given
now by the following equation:

ξ̈ + (2 − α1)ξ̇
Ṙ

R
+ (m − α1 + 1)ξ

R̈

R
= 0. (39)

Performing, as before, the transformation given by Eq. (29)
but replacing α2 with α1, we have now, instead of Eq. (30),

ÿ = σ 2y σ 2 = 2 − α1

4

ẋ2

x2
−

(
m − α

2

)
ẍ

x
, (40)

and the approximate WKB solution reads

z = ξ

ξ0
=

√
σ0

σ

1

x2−α1
cosh

(∫ T

0
σ dT

)
, (41)

where we have imposed the initial condition ż0 = 0, and σ0 is
defined as follows:

σ 2
0 = 4(1 − �0)(2m + α1)

(2 − α1) ln(1 + a0) + a0α1
. (42)

In this case, the interface is RT-unstable and the geometri-
cal effects act to enhance the perturbation growth, which turns
out to be the maximum for the incompressible case (α1 = 0).
Nevertheless, for relatively thick shells, like in the case of
LAPLAS, the convergence ratio of the external surface is not
very large, and the geometrical effects are not expected to be
considerable. In fact, as we have previously discussed, for
LAPLAS such a convergence ratio is less than 1.5, and al-
though the shell is practically incompressible, the perturbation
growth is mainly due to RTI on a practically planar surface,
and it can only be mitigated or suppressed by the mechanical
(nonideal) properties of the shell material.

C. Elastic media

As we have already mentioned, in the LAPLAS experimen-
tal setup, the stability of the cylindrical implosion is envisaged
to be controlled by means of the elastic-plastic properties of
the shell media. Since the stability in the elastic regime is a
necessary condition for the stability of the interface [32,38],
we will consider here the influence of the elastic properties
of the shell on the perturbation growth in the presence of the
convergence effects.

In the irrotational approximation, the boundary condition
in Eq. (21) must be modified in such a manner that now the
continuity of the normal stress reads

−δp1(R) + S(1)
rr = −δp2(R) + S(2)

rr , (43)

where S(n)
rr are the normal component of the perturbations

δt d (n)
ik of the deviatoric part t d (n)

ik of the stress tensor t (n)
ik

(t (n)
ik = −pnδik + t d (n)

ik and δt d (n)
ik ≡ S(n)

ik ). The deviatoric part
is determined by the constitutive properties of the medium,
and, for the case of elastic media, they are given by the Hooke
law. Then, for elastic media, we have

Ṡ(n)
rr = 2Gn

∂ (δvn)

∂r
|r = R, (44)

where Gn is the shear modulus of the medium n. Thus, from
Eqs. (23)–(26) we obtain the following expressions:

Ṡ(1)
rr = 2G1(m − 1)

ξ̇R − (α1 − 1)ξ Ṙ

R2
, (45)

Ṡ(2)
rr = −2G2(m + 1)

ξ̇R − (α2 − 1)ξ Ṙ

R2
, (46)

and the equation for the perturbations evolution becomes

ξ̈ + (2 − α2)ρ2 + (2 − α1)ρ1

ρ2 + ρ1
ξ̇

Ṙ

R

− (m + α2 − 1)ρ2 − (m − α1 + 1)ρ1

ρ2 + ρ1
ξ

R̈

R

= m

(ρ2 + ρ1)R

(
S(1)

rr − S(2)
rr

)
. (47)

In order to get a solution to this equation, we must integrate
it together with Eqs. (45) and (46). Now, the use of the WKB
approximation is not feasible, and it must be solved numeri-
cally.

As for the case of ideal media, we will consider separately
the cases with ρ1 � ρ2 and ρ1 	 ρ2, suitable for describing
the amplitude evolution in the inner and outer surfaces of a
thick shell, respectively.

1. ρ1 � ρ2

From Eq. (47) and using dimensionless magnitudes as de-
fined in Eqs. (11) and (34), we obtain

z̈ + (2 − α2)ż
ẋ

x
− z

ẍ

x
(m − 1 + α2) = mBe2

S2

x
, (48)

Ṡ2 = 2(m + 1)
[żx − (α2 − 1)zẋ]

x2
, (49)

where

Ṡ2 = Ṡ(2)
rr

Ṡ0e
, Ṡ0e = G2

ξ0

R0
, Be2 = G2

pe
. (50)

These equations must be solved with the following initial
conditions:

x(0) = z(0) = 1, ẋ(0) = ż(0) = 0. (51)

We show in Figs. 4(a) and 4(b) the perturbation evolu-
tion for two typical low (m = 5) and high (m = 100) modes,
respectively, for the incompressible case (α2 = 0), and for
different values of the parameter Be2 that measures the influ-
ence of the medium “2” elasticity. As is expected, for Be2 = 0
we retrieve the ideal case previously considered in which
the perturbation growth due to the geometrical effects was
only limited by the conservation of the angular momentum.
For relatively small values of Be2 (Be2 = 0.01), the elasticity
produces a further damping that progressively vanishes as Be2

increases, and for a sufficiently large value of Be2 the elasticity
finally destroys the favorable effects of the angular momentum
conservation. In fact, for very large values of Be2, the effects
of the elasticity completely dominate in Eq. (48), so that from
Eq. (49) we have

żx ≈ (α2 − 1)zẋ or z ≈ x−(1−α2 ). (52)
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FIG. 4. Time evolution of the dimensionless perturbation ampli-
tude z(t ) for different values of the parameter Be2 and different modes
m. (a) m = 5; (b) m = 100; (c) Be2 = 1.

FIG. 5. Perturbation amplitude z(T ) for different values of the
parameter Be1 and for two values of the compressibility factor α1.

That is, in this limit the geometrical effects completely
dominate without any damping by the angular momentum
conservation, as observed in the ideal case. This is because
of the suppression by the elasticity of such an effect, so that
the perturbation growth is only mitigated by the compress-
ibility of the medium. Certainly such a mitigation due the
compressibility becomes significant when α2 ∼ 1 or larger, a
situation that in LAPLAS could only be eventually present
during the stagnation phase when the pusher would be more
compressible. In such a case, it would further reduce the
BP effect during the stagnation phase, thus reinforcing the
expectation that the perturbation growth during such a phase
is mainly controlled by the RTI without too much influence of
the convergence.

In Fig. 4(c) we show the perturbation evolution for Be2 =
1, which would be the typical case for the LAPLAS experi-
ments. We can see that only the very large modes show some
considerable perturbation growth. Such modes, however, are
expected to have the smallest amplitudes [46], so that more
growth could be tolerated.

2. ρ1 � ρ2

In this case, we assume that a sink of mass exists in the
interior of medium “1” that makes possible an arbitrary vari-
ation of the density ρ1 as determined by a given value of α1

[6,7]. Then, Eq. (47) in dimensionless magnitudes now reads

z̈ + (2 − α1)ż
ẋ

x
− +z

ẍ

x
(m + 1 − α1) = mBe1

S1

x
, (53)

Ṡ1 = 2(m − 1)
[żx − (α1 − 1)zẋ]

x2
, (54)

where

Ṡ1 = Ṡ(1)
rr

Ṡ0e
, Ṡ0e = G1

ξ0

R0
, Be1 = G1

pe
. (55)

As in the previous paragraph, for Be1 = 0 we retrieve the ideal
case that is dominated by the RTI and the BP convergence
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FIG. 6. Time evolution of the dimensionless perturbation ampli-
tude z(t ) for different values of the parameter Be2 and different modes
m. (a) m = 5; (b) m = 100; (c) Bv2 = 10−4.

effects. As Be1 increases, the elasticity first mitigates the
growth due to RTI as it does in the case of a static (in average)
interface, but with no direct effect on the growth due to the
geometrical convergence. However, it shows an indirect effect
that is clearly seen when elasticity completely dominates for
very large values of Be1 for which it becomes S1 � 1:

z ≈ x−(1−α1 ). (56)

As can be noticed, the presence of the elasticity enhances
the sensitivity of the compressibility of the medium on the
convergence effects in comparison with the ideal case:

z ≈ x−( 2−α1
2 ). (57)

It is interesting to notice that under a strong influence of
the elasticity, the geometrical convergence effects manifest
themselves in a manner that is different from the already
known BP convergence effect occurring in ideal media. In ad-
dition, as shown by Eqs. (52) and (56), this mechanism works
equally well in both situations, either when the interface is
RT-unstable or RT-stable. As we have seen, in the second case
it destroys the beneficial effects of the angular momentum
conservation.

Furthermore, even in the case when the elasticity would be
able to stabilize RTI, it will only affect the growth due to the
geometrical BP effects provided that the compressibility of the
denser medium plays a significant role. This will not be the
case of LAPLAS, and the convergence will be fully in effect
at the maximum rate. Nevertheless, since the convergence
ratio of the external surface of the LAPLAS is actually very
low (Ce = C1C2 � 1.5) [16–18,27], the results of the planar
analysis of RTI would not be considerably affected by the
geometrical convergence.

We show an example of the behavior above discussed in
Fig. 5 for α1 = 0 and 0.5, and different values of the parameter
Be1. For each value of α1 the perturbation grows, in general,
due to both RTI and convergence. But, for the largest values
of Be1, RTI becomes stabilized, and the perturbation grows
as x−(1−α1 ) only due to the geometrical convergence and miti-
gated by the presence of the compressibility.

D. Viscous media

As we have already mentioned, the influence of viscosity
on the perturbation growth in the presence of BP geometri-
cal effects was considered in Ref. [11] for the case of the
expansion of a cylindrical cavity. But since the background
motion was not included in the equations, the consequences
of the viscosity were not completely studied. Here, we can
briefly consider such consequences by using Eq. (47) with
S(n)

rr given now by the following expressions corresponding to
Newtonian fluids:

S(1)
rr = 2μ1(m − 1)

ξ̇R − (α1 − 1)ξ Ṙ

R2
, (58)

S(2)
rr = −2μ2(m + 1)

ξ̇R − (α2 − 1)ξ Ṙ

R2
, (59)

where μn is the dynamic viscosity of the medium “n.”
When ρ1 � ρ2 (AT = 1), Eqs. (44) and (59) yield the

following evolution equation for the perturbation amplitude
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in dimensionless form:

z̈ + (2 − α2)ż
ẋ

x
− z

ẍ

x
(m − 1 + α2)

= 2Bv2m(m + 1)
[żx − (α2 − 1)zẋ]

x3
, (60)

where

Bv2 = μ2

ρ2R0

√
ρ2

pe
. (61)

As for the elastic case, this situation is appropriate for
describing the inner surface of a thick shell. In Figs. 6(a)
and 6(b), we show the perturbation evolution when the heavy
medium is incompressible (α2 = 0), and for m = 5 and 100,
respectively, as representatives of the behavior for low and
high modes. As we have already noticed, when Bv2 = 0 we
have the ideal medium situation in which the perturbations
are strongly reduced by the angular momentum conservation.
When the effect of the viscosity becomes relevant, it provides
some damping to the growth of the perturbations provided that
Bv2 is not too large (for instance, for Bv2 � 0.1). But, as in the
elastic case, as soon as the viscosity becomes large enough, it
reduces the surface waves oscillation frequency and destroys
the damping effect of the angular momentum conservation
(Bv2 = 1 and 3). This is probably a rather unrealistic physical
situation because such high values of the Bv2 parameter are
not likely to be achieved in practice. But it illustrates how
the dominance of the viscosity in Eq. (60) gives rise to a
manifestation of the geometrical convergence effect, which
is different from the well-known BP effect, and that is only
affected by the compressibility of the medium, just as was
shown for the elastic case in Eq. (56).

In Fig. 6(c) we show the perturbation evolution for Bv2 =
10−4 for a wide range of values of the modes m. Such a value
of Bv2 is the typical one in the experiment of Ref. [11], and
we can see that it is very effective for damping practically all
the modes m.

For the limit ρ1 	 ρ2, the general conclusions are qualita-
tively similar to those for the elastic case. Of course, viscosity
cannot completely stabilize RTI as elasticity does, but it can
provide some growth damping of the RTI. Nevertheless, it will
also be unable to affect the growth of the perturbations due to
the geometrical convergence, unless a significant compress-
ibility of the media is present, such as is reflected in Eq. (56).

III. CONCLUDING REMARKS

We have analyzed the influence of the mechanical proper-
ties (elasticity and viscosity) of the two media involved in the
inward acceleration phase of a cylindrical implosion on the
RT-stable and unstable configurations.

In the RT-stable configuration occurring at the inner face
of a thick shell, the rapid increase of the oscillation frequency

during the implosion effectively damps the growth of the per-
turbations due to the geometrical convergence, thanks to the
angular momentum conservation, when media at both sides of
the interface are ideal.

When the media have elastic properties, the angular mo-
mentum conservation process remains still active for moderate
values of the dimensionless elastic shear modulus Be2 of the
material. But for relatively high values of Be2, the elastic
properties reduce the oscillation frequency and destroy the
damping effect of the angular momentum conservation. In
this limit, geometrical convergence dominates the perturba-
tion growth, although it acts in a somewhat different manner
compared with the ideal case, making the process more sensi-
tive to the material compressibility than in the ideal case. This
mechanism also works in the unstable configuration occurring
at the outer face of the thick shell, in such a manner that,
once again, for moderate values of the dimensionless elastic
shear modulus Be1, the elasticity is able to stabilize RTI but
without affecting the growth of the perturbations due to the
geometrical convergence, except for the fact that elasticity
makes the compressibility of the media more effective than
in the case involving ideal media in reducing the perturbation
growth.

A qualitatively similar behavior is observed when the me-
dia are viscous, with the difference, of course, that viscosity
is unable to completely stabilize RTI in the external surface of
the shell.

Regarding the application to the LAPLAS experimental
setup, the low convergence ratio of the external surface makes
the convergence effects practically nonoperational, and there-
fore the surface can be treated as reasonably planar for the
analysis of the RTI. On the other hand, at the internal surface,
the typical value of Be2 ∼ 1 in LAPLAS is still sufficiently
low as to not completely destroy the process of damping due
to the angular momentum conservation, so that the pertur-
bation growth due to the geometrical convergence remains
reasonably low even in the incompressible limit.

For applications to cylindrical implosions of liners driven
by intense electrical currents, the effects of the viscosity com-
bined with the liner compressibility may positively influence
the perturbation growth as it makes the compressibility more
effective than in the absence of viscosity for moderating the
growth of the perturbations due to the geometrical conver-
gence.
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