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Influence of particle shape and material on the acoustic radiation force
and microstreaming in a standing wave
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In view of its influence on the acoustic radiation force, we investigate the microstreaming around a small
solid elastic particle in an ultrasonic standing wave in dependence of its material properties and shape. The
configuration is axisymmetric, making it accessible to numerical methods, such as the finite element method.
The results reveal a transition from viscous scattering- to microstreaming-dominated acoustic radiation force
that depends on the particle density. When a deviation of the particle shape from a sphere becomes smaller than
the viscous boundary layer thickness, we show that the influence of the shape on the viscous contributions
to the acoustic radiation force diminishes, allowing the use of theoretical models for a spherical particle.
However, extreme asymmetric shape perturbations, such as crowns with sharp edges, can give rise to noticeable
viscous contributions for a dense particle that is larger than the viscous boundary layer thickness. We also
introduce a hybrid analytical model for the acoustic radiation force on a spherical particle that accounts for
the microstreaming and particle compressibility and shows a good agreement with numerical simulations for an
arbitrary particle size and density.
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I. INTRODUCTION

Man-made and natural µm-sized particles consisting of
various materials often deviate from a spherical shape, such
as amoeba with pseudopods [1], bacteria of cylindrical shape
[2], nano-urchins with spikes [3], or the red blood cells with
their cross section resembling the Cassinian oval [4], to name
a few. Acoustophoresis — particle motion induced by acoustic
waves — can be used, for example, to separate [5], trap [6],
and focus [7] such particles. However, most theories on the
acoustic forces assume a spherical particle shape, while some
account for the irregular particle shape, but only with the as-
sumption of an inviscid fluid [8–15]. This leads to an unknown
influence of particle shape on acoustic forces for small particle
sizes, at which viscosity plays an important role.

When a single spherical particle with radius a is consid-
ered, the main forces on the particle in an acoustic field are the
acoustic radiation force (ARF) and the Stokes drag from the
acoustic streaming [16], scaling with a3 and a, respectively.
The steady acoustic streaming generally originates from the
interaction of acoustic waves with boundaries (Rayleigh [17]
and Schlichting [18] streaming) or from the wave attenuation
in the fluid bulk (Eckart [19] streaming). Meanwhile, the ARF
results from the interaction between the wave scattered at
the particle and the background wave, which is often a plane
standing wave [20]; this interaction also produces the steady
microstreaming around the particle [21] that influences the
ARF [22] and is superimposed to the environmental (Rayleigh
or Eckart) streaming [23].
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The aforementioned scaling of the ARF and the Stokes
drag from the environmental streaming limits the acoustic ma-
nipulation to a ≈ 1.34 µm for polystyrene particles in water
at the frequency f = 500 kHz [24]. In recent years, how-
ever, great efforts have been made to suppress the acoustic
streaming inside systems for acoustic manipulation of µm-
sized particles and cells [25–30]. These methods might enable
manipulation of particles that are small compared to the
viscous boundary layer thickness δ = √

η/(ρ0π f ), which is
≈0.74 µm, for f = 500 kHz in water, with dynamic viscosity
η = 1 mPa s and equilibrium density ρ0 = 1000 kg m−3.

Since King’s model [31] of the ARF on a rigid sphere in
an inviscid fluid, in 1934, the theoretical models of the ARF
have been gradually expanded [22,32–38]. In his formulation
of the ARF, Doinikov [22] eliminated the assumption on the
inviscid fluid, accounting for the microstreaming around a
rigid particle and for the viscous scattering effects. The the-
ory was further validated by a finite-element method (FEM)
analysis [39], confirming Doinikov’s prediction that the mi-
crostreaming can shift the equilibrium position of a heavy
particle, from a pressure node to an antinode of a standing
wave. Furthermore, Rednikov and Sadhal have studied the
microstreaming around rigid objects extensively, using ana-
lytical methods [40,41]. Their analysis is, however, limited to
a � δ and does not extend to the ARF.

The influence of viscous scattering and of microstreaming
is understood to increase with the density contrast between
the particle and the fluid, and with the decreasing particle size
[39,42]. However, the theory behind the ARF in the a � δ

regime needs to be further explored, in order to understand
how the particle shape and the particle material influence the
viscous scattering and microstreaming contributions to the
total ARF.
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Here we use a previously validated numerical model [39]
to investigate the influence of the shape and material on the
ARF for particles that are comparable or smaller than the vis-
cous boundary layer thickness δ, and smaller than the acoustic
wavelength in a standing wave (Rayleigh limit). We decom-
pose the total ARF into four parts: (1) the inviscid force on an
equivalent compressible sphere Fyos that follows from Yosioka
and Kawasima [32], (2) the inviscid scattering contribution
due to shape deviation F̃scat, (3) the viscous scattering con-
tribution F̃vsc, and finally (4) the microstreaming contribution
F̃str . We show that for different particle materials, spanning
from polystyrene to gold in water, the viscous contributions
for δ/a > 1 are generally dominated by F̃str , even though F̃str

and F̃vsc are both increasing with the particle density at δ/a >

1. At δ/a � 1, the total ARF is dominated by F̃str , except
for the nearly neutrally buoyant particles (e.g., polystyrene in
water). When the viscous effects start to rise, at δ/a ≈ 1, we
find that F̃vsc can be greater than F̃str , and that the greater den-
sity of the particle surprisingly shifts the rise of F̃str towards
higher δ/a. Studying spheroids and spheres with protruding
crowns revealed that the contribution of the particle shape
to the viscous contributions to the ARF, namely, F̃vsc and
F̃str , is generally insignificant. This happens in part due to
F̃vsc and F̃str being negligible at δ/a < 1, and in part due to
the viscous boundary layer extending past the shape features
when F̃vsc and F̃str become relevant at δ/a > 1. However, for
dense particles, extreme asymmetric shape perturbations in
the form of sharp crowns can give rise to noticeable viscous
contributions to the ARF at δ/a � 1.

We also introduce a versatile analytical model that com-
bines the contribution of the microstreaming and viscous
scattering to the ARF from the rigid particle model by
Doinikov [22] and a scattering contribution due to the parti-
cle compressibility from the inviscid model by Yosioka and
Kawasima [32]. The hybrid analytical model is in a good
agreement with our numerical model that accounts for the
particle compressibility and all the viscous effects in the fluid,
for all particle materials and sizes considered in the study.
The numerical models and the Matlab code for the analytical
models used in the study are provided in the Supplemental
Material [43].

II. THEORY

The motion of a viscous fluid is governed by the compress-
ible Navier-Stokes equations

ρ

[
∂v

∂t
+ (v · ∇)v

]
= −∇p + η∇2v

+
(
ηB + η

3

)
∇(∇ · v) (1)

and the continuity equation

∂ρ

∂t
= −∇ · (ρv), (2)

with the dynamic viscosity η and the bulk viscosity ηB. The
density ρ is assumed to be a function of pressure p only
(barotropic fluid), and v represents the velocity field. The
particle is assumed to be linear elastic solid.

The equations are linearized using the regular perturbation
approach [44]. Accordingly, the physical fields are expanded
in a series � = �0 + �1 + �2 + · · · , where � represents the
field, while the subscript denotes the respective order. The
amplitude of the first-order velocity v1 is assumed to be small
with respect to the speed of sound cf (small Mach number
assumption).

The theory could be extended to cover thermal effects, by
adding temperature as an unknown variable, and the equa-
tion of energy conservation to the set of governing equations,
as done in Refs. [35,45]. The particle would then need to be
modeled as a thermoelastic solid.

A. First-order (acoustic) problem

For a fluid quiescent at the zeroth order (v0 = 0), the sub-
stitution of the first-order perturbed fields into the governing
equations yields the following set of first-order equations:

ρ0
∂v1

∂t
= −∇p1 + η∇2v1 +

(
ηB + η

3

)
∇(∇ · v1), (3)

∂ρ1

∂t
= −ρ0∇ · v1, (4)

with the equilibrium density ρ0. The equation of state,

ρ1 = 1

c2
f

p1, (5)

is connecting the first-order density with the first-order pres-
sure. The first-order fields are assumed to have a harmonic
time dependency with the factor of eiωt , where ω = 2π f is the
angular frequency and i the imaginary unit.

The acoustic fields, comprising velocity v1 and pressure
p1, are assumed to be the sums of the corresponding back-
ground fields (bg) and scattered fields (sc), namely, �1 =
�1

bg + �sc
1 . We assume a one-dimensional plane standing

wave along the z direction of the cylindrical coordinate system
(r, θ, z), defined through the background velocity field

v
bg
1 = Re

[ϕa

2
ik(eikz − e−ikz )eiωt

]
ez, (6)

with the corresponding velocity potential amplitude

ϕa = − pa

iωρ0 + (
ηB + 4

3η
)
k2

, (7)

with the pressure amplitude pa, and the wave number

k = ω

cf
− αi, (8)

with the attenuation coefficient for viscous fluids [46]

α = ω2η

2c3
f ρ0

(
ηB

η
+ 4

3

)
. (9)

At the fluid-solid interfaces, the continuity of velocity and
stress are imposed. The first-order fields are assumed to con-
verge to the background fields far from the particles, in an
unbounded fluid.

B. Second-order (streaming) problem

Applying the perturbation theory up to second order to
the governing equations and taking the time average over an
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oscillation period T , defined as 〈�〉 = 1
T

∫
T � dt , leads to the

equations of acoustic streaming [47]:

∇〈p2〉 − η∇2〈v2〉 = −ρ0∇ · 〈v1v1〉, (10)

∇ · 〈v2〉 = 0. (11)

Whenever two vectors are side by side, as 〈v1v1〉 are in
Eq. (10), the tensor product is implied. In Eqs. (10) and (11),
we consider the streaming field to be incompressible, in line
with related studies [48].

At the second order, the no-slip boundary condition is im-
posed on the Lagrangian velocity of the fluid at the fluid-solid
interface; the Lagrangian velocity is defined as the summation
of the Eulerian streaming velocity 〈v2〉 and the Stokes drift
[49,50]

vSD =
〈(∫

v1 dt · ∇
)

v1

〉
, (12)

leading to the boundary condition

〈v2〉 = −vSD at the interface. (13)

The environmental streaming due to the attenuation of the
background field in the absence of the particle is assumed
negligible for the standing wave [22,39] and was neglected
also in the present study. Accordingly, the no-slip condition is
applied to the fluid at the outer boundary.

The above derivation is meaningful only as long as the per-
turbation theory is valid and as long as the streaming remains
laminar.

Experimentally, the standing wave is usually established
inside a microfluidic device, where the geometry-dependent
[25,51,52] Rayleigh streaming [17,53] appears due to the
presence of walls. We do not consider this type of streaming
here, as it could be computed without the presence of the
particles and then used to predict the cumulative force on an
individual particle (e.g., [13,54]).

C. Acoustic radiation force

The time-averaged ARF on a particle is defined as the
mapping of a stress tensor σ onto the outward pointing surface
normal n(t ), integrated over surface S(t ) of a particle under-
going oscillations, namely,

F rad =
〈∫

S(t )
σ · n(t ) dS

〉
. (14)

It has been proven (see [45] for the range of validity) that the
second-order expression for the ARF can also be written as
[22,45]

F rad =
∫

S0

[〈σ2〉 − ρ0〈v1v1〉] · n0 dS, (15)

where the difference between the time-averaged second-order
incompressible stress tensor

〈σ2〉 = −〈p2〉I + η
(∇〈v2〉 + (∇〈v2〉)T

)
(16)

and the Reynolds stress ρ0〈v1v1〉 is mapped onto the normal
n0 pointing out of the arbitrary static surface S0 enclosing
the particle, and integrated over S0. The microstreaming is,

together with other viscous effects at the second order, con-
tained in the stress tensor 〈σ2〉, while the first-order viscous
scattering effects also contribute to v1.

Some studies [42,45] neglect the viscosity at the second or-
der, but account for the viscous scattering effects. This results
in a simplified expression for 〈p2〉 from Eq. (16), namely,

〈p2〉noStr = 1

2ρ0c2
f

〈
p2

1

〉 − 1

2
ρ0〈v1 · v1〉, (17)

and in the simplified expression for the ARF,

FnoStr
rad =

∫
S0

[(
1

2ρ0c2
f

〈
p2

1

〉 − 1

2
ρ0〈v1 · v1〉

)
I − ρ0〈v1v1〉

]

·n0 dS. (18)

Neglecting viscosity already at the first order leads to the
inviscid first-order fields in Eq. (18) that are obtained by
neglecting the viscosity (η = ηB = 0) in Eq. (3). If in addition,
the particle is assumed to be spherical and small compared to
the acoustic wavelength of a standing wave along the z direc-
tion, Eq. (18) reduces to the well-known expression derived
by Yosioka and Kawasima [32] and Gor’kov [33], namely,

Fyos = Fyosez = 3V �kEac sin(2kz)ez, (19)

with the particle volume V = 4πa3/3, the acoustic contrast
factor � that represents the density and compressibility con-
trast between the fluid and the particle (reference values are
given in Table I), the ideal wave number k = ω/cf , and the
acoustic energy density Eac = p2

a/(4ρ0c2
f ). For the purpose of

normalization, we also define

F max
yos = 3V �kEac, (20)

which corresponds to the amplitude of Fyos, evaluated in the
middle between the pressure node and antinode of a standing
wave, namely, at z = λ/8, with the acoustic wavelength λ =
cf/ f .

III. NUMERICAL MODEL

The numerical model that solves the axisymmetric first-
and second-order problems is based on Ref. [39]. The model
is implemented in COMSOL Multiphysics v. 5.6 [58] and is
available with all the supporting functions in the Supplemental
Material [43]. The first-order equations (3)–(5) are defined
through the adiabatic form of the Thermoviscous Acous-
tics (ta) physics interface from the Acoustics Module. The
Solid Mechanics (solid) interface is used to model the linear
elastic solid spherical particles and is connected to the Ther-
moviscous Acoustics (ta) interface via the Thermoviscous
Acoustic-Solid Interaction interface. The background acoustic
field from Eq. (6) is imposed directly in the Thermoviscous
Acoustics (ta) interface. The perfectly matched layer (PML)
is assigned to the outermost subdomain of the fluid domain
(green region in Fig. 1). The multiphysics first-order problem
is solved in the frequency domain, using the Frequency Do-
main study.

The second-order streaming equations (10) and (11) are
solved via a modified Creeping Flow (spf) interface of the
CFD Module. This physics interface is assigned to the fluid
domain, excluding the region of the PML (green region in
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TABLE I. The material parameters for water (H2O) [45], polystyrene (PS) [55], red blood cell (RBC) [56,57], glass [55], titanium (Ti)
[55], copper (Cu) [55], and gold (Au) [55]. The acoustic contrast factor � for a single particle in water is computed using Eq. (30c) of Ref. [16]
and is positive for all materials in the current study.

H2O Unit PS RBC Glass Ti Cu Au Unit

ρ0 996.6 kg m−3 ρp 1050 1100 2240 4480 8930 19 700 kg m−3

cf 1502 m s−1 cP 2400 1658 5100 6100 5010 3240 m s−1

η 0.854 mPa s cS 1150 30.2 2800 3100 2270 1280 m s−1

ηB 2.4 mPa s � 0.17 0.12 0.54 0.68 0.75 0.79 —

Fig. 1). The spatial variation of the Reynolds stress, i.e., the
right-hand side of Eq. (10), is added as a Volume Force to the
Creeping Flow (spf) interface and contributes over the whole
fluid domain. At the fluid-particle interface, we apply the neg-
ative Stokes drift from Eq. (12) through a Wall boundary
condition, enforcing the no-slip boundary condition, while
accounting for the movement of the interface at the first order.
To constrain the formulated streaming problem, we set the
second-order pressure field to a constant value at an arbitrary
point in the fluid domain, using the Pressure Point Constraint.
Our formulation implies that the streaming fields are already
steady, and accordingly, we solve the streaming problem with
the Stationary study. The latter takes into account the solu-
tions of the first-order Frequency Domain study, to determine
the Stokes drift and the Reynolds stress that are used in the
streaming problem.

In order to analyze the influence of the fluid viscosity on
the scattering at the particle, we also use an inviscid first-

order numerical model. The inviscid model is built in the
same way as the first-order part of the viscous model, with
the only difference being that the Thermoviscous Acoustics
(ta) interface is replaced by the Pressure Acoustics (acpr)
interface, and the fluid-solid coupling is implemented via the
Acoustic-Solid Interaction interface. The Pressure Acoustics
interface solves only the inviscid first-order problem that is
derived from Eqs. (3)–(5), by setting η = ηB = 0 in Eq. (3).

The forces computed with the numerical models are sum-
marized in Fig. 1(b) and are defined as follows: “ARFstr” is
the total ARF including the microstreaming and is computed
using Eq. (15) in the viscous model, specifically ARFstr =
F rad · ez; “ARFnoStr” is the ARF that accounts for the viscous
scattering effects (i.e., viscosity at the first order), but neglects
the microstreaming, and is computed using Eq. (18) in the
viscous model, namely, ARFnoStr = FnoStr

rad · ez; “ARFinv” is the
ARF for an inviscid fluid, also computed using Eq. (18), but
in the inviscid model. The surface integral in Eq. (15) is
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FIG. 1. (a) The geometry of the axisymmetric numerical model of a spherical particle with protruding crowns. The model is parametrized
in the cylindrical coordinate system (r, θ, z), with the z axis parallel to the direction of the pressure gradient of the one-dimensional incident
standing wave. A perfectly matched layer (PML) surrounds the fluid domain. (b) The gradual relaxation in the modeling assumptions from
the analytical model for the ARF on a sphere in an inviscid fluid by Yosioka and Kawasima [32], through numerical models that add the
arbitrary axisymmetric shape deviations (ARFinv) and the viscous scattering (ARFnoStr), to the fully viscous numerical model that accounts for
the microstreaming (ARFstr). This incremental increase in the model complexity allows us to define normalized contributions of the individual
effect to the fully viscous (total) ARF, namely, the inviscid scattering contribution due to shape F̃scat , the viscous scattering contribution F̃vsc,
and the microstreaming contribution F̃str .
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FIG. 2. Influence of the material of a spherical particle on the ARF with respect to the particle radius a. [(a), (b)] The viscous scattering
contribution to the ARF (F̃vsc) and [(c), (d)] the microstreaming contribution to the ARF (F̃str). The particle is in water, positioned in the middle
between the pressure node and antinode of a standing wave with a frequency of 500 kHz, yielding δ = 0.74 µm. The particle materials include
polystyrene (PS), red blood cell (RBC), glass, titanium (Ti), copper (Cu), and gold (Au), in order of increasing density. The insets in (a) and
(c) feature a reduced range on the vertical axis, to highlight the magnitude of viscous contributions for PS and RBC.

for ARFstr evaluated at an arbitrary surface surrounding the
particle. However, for evaluating ARFnoStr through Eq. (18),
the integration surface needs to be at a sufficient distance from
the particle surface — at least ∼5δ [42,59] — since Eq. (18)
assumes an irrotational first-order velocity field, which holds
true only outside the viscous boundary layer around the parti-
cle.

IV. RESULTS

To study the influence of the particle material and shape
on the ARF and microstreaming, we decompose the total
ARF from the viscous numerical model that accounts for the
microstreaming into several parts:

ARFstrez = [
(F̃str + F̃vsc + F̃scat )F

max
yos + Fyos

]
ez, (21)

with the microstreaming contribution F̃str to the total ARF on
a particle defined as

F̃str = ARFstr − ARFnoStr

F max
yos

, (22)

the viscous scattering contribution F̃vsc, arising due to the first-
order viscous effects, as

F̃vsc = ARFnoStr − ARFinv

F max
yos

, (23)

and the last contribution, F̃scat, comes from the influence of the
particle shape on the inviscid scattering and is evaluated as

F̃scat = ARFinv − Fyos

F max
yos

. (24)

For all the results, the fluid surrounding the particle is water
with material properties given in Table I. The standing wave is
defined through the frequency f = 500 kHz and the pressure

amplitude pa = 500 kPa, and the particle is always positioned
in the middle between the pressure node and antinode, except
in Sec. IV C, where the dependency of the ARF on the par-
ticle position in a standing wave is discussed. For the given
frequency, δ = 0.74 µm in water. The particle materials are,
in the order of increasing density, polystyrene (PS), red blood
cell (RBC), glass, titanium (Ti), copper (Cu), and gold (Au),
with properties given in Table I.

A. Influence of the particle material

The analysis of the ARF on a spherical particle of differ-
ent materials in Fig. 2 reveals that the viscous contributions
to the ARF, namely, F̃vsc and F̃str , become significant with
respect to the inviscid force (Fyos) once the particle radius
is comparable to or smaller than the viscous boundary layer
thickness (a � δ). For the smallest particle, at a = δ/5, the
microstreaming contribution F̃str in Fig. 2(c) is more signifi-
cant than the viscous scattering contribution F̃vsc in Fig. 2(a),
for all analyzed materials. However, at the particle size of
a ≈ 2δ, the viscous scattering contribution F̃vsc is dominant
for most particle materials [Figs. 2(b) and 2(d)].

The particle materials that we consider all have a positive
acoustic contrast factor � (Table I), which in combination
with the inviscid ARF from Eq. (19) yields the pressure node
to be the equilibrium position of the particles. However, the
microstreaming contribution to the ARF, which is negative
relative to the inviscid ARF [Figs. 2(c) and 2(d)], can cause
an inversion of the sign of the ARF with the increase in δ/a,
as demonstrated in Fig. 3 for gold, copper, and titanium. This
phenomenon was investigated before [22,39,60], and results
in the shift of the equilibrium position of a particle from a
pressure node to a pressure antinode.

From Figs. 2(a) and 2(c) it follows that the denser the parti-
cle, the larger the relative contribution of both viscous effects
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FIG. 3. The ARF from our numerical model that includes the
viscous scattering and the microstreaming (ARFstr) normalized by the
inviscid ARF [32] with respect to the particle radius a. The particle
is in water, positioned in the middle between the pressure node and
antinode of a standing wave with a frequency of 500 kHz, yielding
δ = 0.74 µm. The particle materials include polystyrene (PS), red
blood cell (RBC), glass, titanium (Ti), copper (Cu), and gold (Au),
in order of increasing density.

at a � δ. In the intermediate particle size range [5δ � a � δ

in Figs. 2(b) and 2(d)] the viscous scattering contribution F̃vsc

keeps increasing with the particle density; but the increase
in the particle density surprisingly shifts the rise of the mi-
crostreaming contribution F̃str towards higher δ/a. We further
explore the shift in the rise of F̃str in Fig. 4(a), which shows
the maximal instantaneous first-order velocity magnitude near
the particle with respect to the decreasing particle size. The
instantaneous first-order velocity is the first-order velocity
field that is in phase with the background acoustic pressure
field. The whole range of the investigated materials exhibits
a local minimum of the maximal instantaneous first-order ve-
locity magnitude, denoted with the vertical lines in Fig. 4(a).
Investigating the spatial location of the maximal instantaneous
first-order velocity magnitude, such as in Figs. 5(a)–5(c) for
a copper particle, reveals that there are two local maxima,
one near the equator (z ≈ 0) that decreases in magnitude as
δ/a increases, and the second near the poles (z = ±a) that
increases in magnitude as δ/a increases. The characteristic
particle size at which the magnitudes of the instantaneous
first-order velocity at the equator and the poles cross over cor-
responds to the local minimum of the maximal instantaneous
first-order velocity magnitude in Fig. 4(a) and decreases with
the increase in the particle density. This feature of the first-
order velocity field could explain the rise of F̃str in Fig. 2(d)
that is analogously shifted to a smaller particle size as the
density of the particle is increased.

The particle size yielding a maximal streaming velocity for
each of the materials in Fig. 4(b) decreases with the increase
in the particle density. The corresponding Eulerian streaming
patterns for a copper particle, shown in Figs. 5(d)–5(f), re-
veal that the streaming pattern also undergoes a transition, as
the narrow vortices near the particle at δ/a < 1 [Fig. 5(d)]
gradually expand and in the end dominate the microstreaming
pattern at δ/a > 1 [Fig. 5(f)]. This transition in the streaming
pattern is summarized through the streaming velocity profiles
for different materials in Figs. 5(g)–5(i), which additionally
reveal that as the decrease in the particle size leads to an
increase in the magnitude of the radial component of the
streaming velocity near the particle, it also leads to a more

(a)

(b)

m
ax

|R
e[
v 1

]| 
(m

m
/s

)
m

ax
|<
v 2

>|
 (m

m
/s

)

δ / a

δ / a

PS
RBC

Glass
Ti

Cu
Au

1
0

50

100

50.5

1
0

5

10

15

50.5

AuC
uTi

G
la

ss

R
BC

& 
PS

AuC
uTi

G
la

ss

FIG. 4. Influence of the size and material of a spherical particle
on the instantaneous first-order velocity and microstreaming with
respect to the particle radius a. (a) The maximal magnitude of the
instantaneous first-order velocity in the fluid and (b) the maximal
magnitude of the acoustic streaming velocity in the fluid with respect
to the particle radius a. The particle is in water, positioned in the
middle between the pressure node and antinode of a standing wave
with an amplitude of 500 kPa and a frequency of 500 kHz, yielding
δ = 0.74 µm. The particle materials include polystyrene (PS), red
blood cell (RBC), glass, titanium (Ti), copper (Cu), and gold (Au), in
order of increasing density. The vertical lines in (a) mark the point of
transition in the location of the maximum instantaneous first-order
velocity, while in (b) they mark the point of maximum streaming
velocity (maxima for RBC and PS are outside the investigated size
range).

significant decay of the streaming velocity with the distance
away from the particle surface.

When comparing the streaming patterns around a copper
[Figs. 5(d) and 5(f)] and a polystyrene [Figs. 6(c) and 6(d)]
particle, we see that the inner vortex near the particle surface
is at δ/a = 0.2 broader for polystyrene, as indicated with
the velocity profile in Fig. 5(g). The outer streaming pattern
is less defined for polystyrene. At δ/a = 5, the streaming
patterns around the polystyrene and the copper particle look
very similar; however, the streaming velocity is more than two
orders of magnitude lower for polystyrene. The same trend is
visible in the comparison of instantaneous first-order velocity
[Figs. 5(a) and 5(c) and Figs. 6(a) and 6(b)].

The comparison of the first- and second-order velocities in
Fig. 4 indicates that the validity of the applied perturbation
approach could be compromised, in particular for small and
dense particles, since the maximal second-order streaming
velocity is rising relative to the maximal first-order veloc-
ity as the particle gets smaller and denser. This could mean
that some combinations of material and geometry no longer
satisfy the underlying assumption of the perturbation ap-
proach, namely, that second-order quantities are an order
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FIG. 5. Influence of the size and material of a spherical particle on the instantaneous first-order velocity and microstreaming. [(a)–(c)]
The instantaneous first-order velocity field around a copper particle and [(d)–(f)] the corresponding Eulerian streaming patterns. [(g)–(i)] The
profiles of the r component of the streaming velocity plotted along the r axis, at z = 0, and starting at the particle surface (r = a). The particle
is in all cases in water, positioned in the middle between the pressure node and antinode of a standing wave with an amplitude of 500 kPa and a
frequency of 500 kHz, yielding δ = 0.74 µm. The particle materials include polystyrene (PS), red blood cell (RBC), glass, titanium (Ti), copper
(Cu), and gold (Au), in order of increasing density. The arrows in (a)–(c) are scaled logarithmically with the magnitude of the instantaneous
first-order velocity, while they are normalized in (d)–(f). [(a), (d), (g)] δ/a = 0.2; [(b), (e), (h)] δ/a = 0.7; [(c), (f), (i)] δ/a = 5.

of magnitude smaller than their first-order counterparts. The
streaming velocity field could therefore be influencing the
acoustic velocity field. Such breakage of the perturbation the-
ory was observed, for example, in the vicinity of acoustically
excited sharp edges, where the streaming velocity reaches
high magnitudes [61]. However, further investigation of va-
lidity of the perturbation approach is beyond the scope of the
current paper.

For a sphere, ARFnoStr — the ARF from the viscous numer-
ical model that accounts for the viscous scattering effects, but
neglects the microstreaming — should match the force Fsett

from the first-order viscous model by Settnes and Bruus [42]

that neglects the microstreaming. We compare these forces in
Fig. 7(a) and see that the agreement is relatively good, unless
the density is too large, as is the case for copper and gold.
The difference could originate from simplifications made by
Settnes and Bruus [42], for example, limiting the particle
deformation to the monopole and the dipole modes, whereas
our model considers all the modes. To further validate our
results, we analyzed the dependence of ARFnoStr on the dis-
tance between the particle and the integration surface, which
is in our simulations >10δ; the results (Appendix A) confirm
that the distance of �5δ is sufficient to avoid errors due to the
rotational first-order velocity field.
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FIG. 6. [(a), (b)] The instantaneous first-order velocity field
around a polystyrene particle and [(c), (d)] the corresponding Eu-
lerian streaming patterns. The particle is in all cases in water,
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The ARF from the viscous numerical model accounting for
the microstreaming, namely, ARFstr , is in Fig. 7 compared to
the force Fdoi from the model by Doinikov [22] that accounts
for the microstreaming, but assumes the particle to be incom-
pressible (Fdoi is given in Appendix B). Figure 7(b) shows that
for dense materials, Fdoi agrees with our ARFstr . However, the
less dense materials — polystyrene and red blood cell — for
which the compressibility contrast to the surrounding fluid is
significantly affecting the ARF, cannot be correctly modeled
with the analytical model [22], which is attributed to the
inherent assumption of particle incompressibility.

Since the model by Doinikov [22] is the simplest analyt-
ical ARF model accounting for the microstreaming around a
spherical particle in the Rayleigh limit (ka � 1), we use it as a
basis and try to account for the compressibility of the particle
by adding the compressibility contribution from the inviscid
model by Yosioka and Kawasima [32], namely,

Fhyb = Fdoi − V

[
ρ0c2

f

ρp
(
c2

P − 4
3 c2

S

)
]

kEac sin(2kz). (25)

The hybrid force Fhyb is analyzed in Fig. 7(c), and it indicates
that the added compressibility contribution did not affect the
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FIG. 7. Comparison between analytical ARF models and the
numerically obtained ARF with respect to the particle radius a.
(a) The comparison of ARFnoStr with the analytical model by Settnes
and Bruus [42] that accounts for the viscous scattering effects, but
neglects the microstreaming (Fsett). (b) The comparison of ARFstr

with the analytical model by Doinikov [22] that accounts for the
microstreaming, but assumes a rigid particle (Fdoi). (c) The com-
parison between ARFstr , and the modified expression for the ARF
(Fhyb) from Eq. (25). The differences in forces are normalized by the
inviscid model (Fyos) by Yosioka and Kawasima [32]. The particle is
in water, positioned in the middle between the pressure node and
antinode of a standing wave with an amplitude of 500 kPa and a
frequency of 500 kHz, yielding δ = 0.74 µm. The particle materials
include polystyrene (PS), red blood cell (RBC), glass, titanium (Ti),
copper (Cu), and gold (Au), in order of increasing density.

dense materials, but it did close the gap between the model
by Doinikov [22] and the numerically obtained ARFstr for
polystyrene and red blood cells.

B. Influence of the particle shape

One of the simplest deviations from the spherical shape is
the spheroidal shape, which is also frequently analyzed in the
context of the ARF [11,12,62]. Figure 8 shows the influence
of the spheroid eccentricity |ε| = √

1 − c2, with aspect ratio
c between the two semiaxes, on the scattering, viscous scat-
tering, and microstreaming contributions to the ARF, F̃scat,
F̃vsc, and F̃str , respectively. The relative scattering contribu-
tion due to shape deviation F̃scat is independent of the δ/a
[Figs. 8(a)–8(c)]. The viscous scattering and microstream-
ing contributions, on the other hand, increase with δ/a, as
is already evident from Fig. 2. However, as δ/a increases,
F̃vsc and F̃str become independent of the spheroid eccentricity
[Figs. 8(f) and 8(i)].

The streaming patterns around the prolate and oblate
spheroids with eccentricity of |ε| = 0.95 in Figs. 9(a) and
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volume of the spheroid is constrained to V = 4πa3/3. (j) Depending on the sign of ε, the spheroid is prolate (ε < 0) or oblate (ε > 0), while
ε = 0 corresponds to a sphere with a radius of a.

9(c) show the large influence of the shape, at δ/a = 5, with
the prolate spheroid in Fig. 9(c) yielding an additional pair
of vortices, compared to the oblate spheroid in Fig. 9(a).
The magnitude is also significantly greater for the oblate
spheroid [Fig. 9(a)]. However, for a small particle at δ/a = 5
in Figs. 9(b) and 9(d), the streaming patterns for the prolate
and oblate spheroid closely resemble each other in shape and
magnitude. The patterns also resemble those around a sphere
(|ε| = 0), in Fig. 5(f), but the magnitude is slightly ampli-
fied with the increased eccentricity, no matter the orientation
(oblate/prolate).

A more extreme example of shape deviation from the
sphere is a sphere with multiple crowns protruding the surface
[Fig. 1, Figs. 10(h) and 10(i)]. The sharp edges that form the
crowns are known to produce a strong streaming field [61,63–
66] or even attract and repel the nearby particles [67–69]. The
sharp edge streaming can be exploited for mixing [70,71],
pumping [72,73], and similar shapes are known to facilitate
propulsion of microswimmers [74,75]. In Fig. 10 we analyze
the individual contributions to the total ARF for the mul-
ticrown model (Fig. 1), where four 10 ◦ angle crowns are

distributed at 20 ◦ intervals starting from r = 0 on each hemi-
sphere (z > 0 and z < 0) — “whole,” or only on the upper
hemisphere (z > 0) — “half.” The parameter L represents the
length of an individual crown from the sphere surface as a
fraction of the radius ã of the underlying sphere. The total vol-
ume of the multicrown particle is constrained to V = 4πa3/3,
making a an effective radius of the particle. The tip of crowns
is rounded with a radius of ã/100, to avoid singularities.

For a dense copper (Cu) particle, we can see from Fig. 10
that the influence of crowns on all the contributions to the
ARF [Figs. 10(a)–10(c)], relative to the results for a sphere
(“Sphere”), increases with the increasing length of the crowns
(L). The contribution of the shape to the inviscid scattering
(F̃scat) is constant with respect to δ/a, and is magnitude-wise
a dominant contribution at δ/a � 1. The viscous scattering
contribution F̃vsc experiences minimal boosting influence of
the crowns at δ/a < 1, but is decreased for up to ≈40 %
relative to the sphere, at δ/a = 5 [L = 2; “half” in Fig. 10(b)].
Furthermore, comparison of “whole” and “half” results in
Figs. 10(a) and 10(b) indicates that both of the scattering
contributions are increasing also with the overall amount of
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FIG. 9. Influence of the orientation and size of a copper
spheroidal particle on the microstreaming. [(a)–(d)] The Eulerian
streaming patterns around the copper particle. [(a), (b)] Oblate
spheroid with eccentricity |ε| = 0.95 and [(c), (d)] prolate spheroid
with eccentricity |ε| = 0.95. The particle is in all cases in water,
positioned in the middle between the pressure node and antinode of
a standing wave with an amplitude of 500 kPa and a frequency of
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crowns. In contrast, the microstreaming contribution F̃str in-
creases with the increase in the asymmetry of the crowns
[Fig. 10(c)]. At δ/a = 5, the crowns decrease F̃str for up to
≈20 % relative to the sphere [L = 2; “half” in Fig. 10(c)].
Interestingly, particles with asymmetric placement of crowns
(“half”) also influence F̃str at δ/a � 1 [Fig. 10(c)], which
probably stems from the regular sharp-edge streaming that
propels the particle similarly to how the microswimmers from
Kaynak et al. [75] are propelled. The streaming pattern at
δ/a = 0.2, in Fig. 10(f), indicates that the streaming velocity
is indeed the highest at the tip of one of the crowns, and
that it follows the well-known pattern of the outflow from
the tip with two vortices on each side [63,66]. The crown
producing the strongest streaming field is the crown that is
most parallel to the r axis. Since the background first-order
velocity is aligned with the z axis, this implies that mainly
the first-order velocity component that is perpendicular to the
crown is responsible for the observed sharp-edge streaming
[Fig. 10(d)].

The outer streaming pattern surrounding a multicrown par-
ticle at δ/a = 0.2 in Fig. 10(f) generally resembles the pattern
around the oblate spheroid in Fig. 9(a), but the crown pro-
vides ∼6-fold increase in the streaming velocity magnitude

compared to the oblate spheroid, and ∼13-fold increase com-
pared to the sphere in Fig. 5(d). At δ/a = 5, the magnitude
of the streaming velocity is comparable to the magnitude at
δ/a = 0.2, but the pattern becomes more similar to that of
the sphere [Fig. 5(f)] and the spheroid [Figs. 9(b) and 9(d)].
Ovchinnikov et al. [63] and Zhang et al. [61] predicted that the
streaming around sharp edges is not affected by the geometry
of the sharp edge tip, as long as the geometrical features are
smaller than the thickness of the viscous boundary layer. This
implies that the geometry of the particle, when the particle
and all its geometrical features are small compared to δ, is
not significantly affecting the microstreaming pattern in the
δ/a > 1 range, as confirmed by comparing the microstream-
ing patterns for the multicrown model from Fig. 10(g) and
the sphere model from Fig. 5(f). However, for δ/a � 1, the
differences between the sphere and the multicrown model in
terms of the streaming pattern and the F̃str would probably
decrease further.

The particles of lower density, such as polystyrene in
Fig. 11, experience much lower relative contributions already
for a sphere (Fig. 2). We see from Fig. 11 that the addition
of crowns affects these contributions in the same manner
as it does for the denser copper particle in Fig. 10, but the
contributions in the end do not significantly influence the total
ARF in the investigated range.

C. Influence of the particle position in the standing wave

The equilibrium position of a particle in a standing wave is
ultimately defined by the spatial dependency of the acoustic
radiation force. For an inviscid fluid, this dependency follows
from Eq. (19) as sin(2kz), with pressure node at z = λ/4
and pressure antinodes (velocity nodes) at z = 0 and z = λ/2.
While ARF acting on a sphere in a viscous fluid still retains
the same spatial dependency [39], the deviations in shape have
so-far unknown influence on the spatial dependency of the
ARF in a viscous fluid. In Fig. 12 we explore this dependency
and show that the addition of an asymmetric multicrown
structure (“half” with L = 1) to the spherical copper particle
shifts the particle’s equilibrium position away from the pres-
sure node. Comparing the behavior at δ/a = 0.5 and δ/a = 1
reveals that the asymmetry influences the equilibrium position
more significantly in the intermediate δ/a region, where the
geometrical features are not small compared to δ.

The spatial dependency of relative force contributions,
analyzed in Fig. 13, indicates the streaming contribution as
the only contribution with a spatial dependency deviating
from sin(2kz), and consequently responsible for the shift in
the equilibrium position of the asymmetric multicrown par-
ticle. The spatial dependency of F̃str at δ/a = 0.5, showing
maximum at the location of the pressure node (velocity antin-
ode), reinforces our theory that the sharp-edge streaming is
responsible for the deviation in the ARF at δ/a < 1, since
the sharp-edge streaming intensifies as the first-order velocity
increases, and in a standing wave, the first-order velocity is
maximal at the pressure node.

V. CONCLUSION

We expanded a previously validated numerical model [39]
to investigate the influence of the shape and material on the
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total volume of the multicrown particle is constrained to V = 4πa3/3. The angle of an individual crown is constrained to 10 ◦. [(d), (e)] The
instantaneous first-order velocity field around the copper particle and [(f), (g)] the corresponding Eulerian streaming patterns. The arrows in
(d) and (e) are scaled logarithmically with the magnitude of the instantaneous first-order velocity, while they are normalized in (f) and (g).
[(d), (f)] δ/a = 0.2; [(e), (g)] δ/a = 5. [(h), (i)] 3D views of the axisymmetric “half” geometry with L = ã.

ARF, for a particle of radius a that is comparable to or smaller
than the viscous boundary layer thickness δ. On a range of ma-
terials spanning from polystyrene to gold, in water, we showed
that the ARF for δ/a > 1 is generally dominated by the mi-
crostreaming contribution to the ARF, except for the nearly
neutrally buoyant particles (e.g., polystyrene). Furthermore,
we found that at δ/a ≈ 1, the viscous scattering contribution
can be larger than the microstreaming contribution to the ARF,
and that the greater density of the particle surprisingly shifts
the rise of the microstreaming contribution towards higher
δ/a.

Our analysis suggests that when the particle is comparable
or smaller than δ, using simplified first-order models that
neglect the microstreaming, such as the model by Settnes and
Bruus [42], can lead to substantial quantitative and qualitative
errors. Instead, we propose to use a relatively simple analyti-

cal model that combines the density-related viscous scattering
and microstreaming contributions to the ARF from Doinikov
[22], and the compressibility-related inviscid scattering con-
tribution from Yosioka and Kawasima [32]. The proposed
hybrid model is in agreement with our numerical model for
the studied range of particle materials and sizes.

Studying spheroids and spheres with protruding crowns
revealed that the influence of shape on the ARF is insignificant
for the particles with low density contrast to the surrounding
fluid (e.g. polystyrene in Fig. 11), as is the case for biological
cells. This could be relevant for the measurements of the
acoustic compressibility of cells through the acoustic contrast
factor [56], which can be used to assess, for example, the
metastatic potential of a cell [76]. For denser particles, the
influence of the spheroidal shape on the viscous contributions
to the ARF is relatively insignificant. This happens in part
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FIG. 11. Influence of a multicrown particle shape on the ARF
and microstreaming with respect to the effective particle radius a.
(a) The inviscid scattering contribution to the ARF due to the particle
shape (F̃scat), (b) the viscous scattering contribution to the ARF
(F̃vsc), and (c) the microstreaming contribution to the ARF (F̃str).
The polystyrene (PS) particle is in water, positioned in the middle
between the pressure node and antinode of a standing wave with a
frequency of 500 kHz, yielding δ = 0.74 µm. The multicrown shape
includes four crowns placed on the z > 0 hemisphere with a 20 ◦

step from the z = 0 plane (“half”); crown length L from the sphere
surface is varied between 1.5ã and 2ã, with ã defined as the radius of
the base sphere on which the crowns are attached. The total volume
of the multicrown particle is constrained to V = 4πa3/3.

due to these contributions being negligible at δ/a < 1, and
in part due to the viscous boundary layer extending past the
geometrical features that are O(a) when the viscous contri-
butions become relevant at δ/a > 1. In contrast, the extreme
shape perturbations in the form of sharp crowns can give
rise to viscous ARF contributions at δ/a � 1 (e.g., copper in
Fig. 10).

In the future, the influence of the geometry on the vis-
cous ARF contributions could be experimentally verified by
tracking and comparing the motion of, for example, silver
nanourchins [77] that resemble the shape of our multicrown
model to the motion of spheres of equivalent volume in a
standing wave. Furthermore, the ARF for cases investigated
here could be experimentally measured directly, using an
optical trap in combination with a standard bulk acoustic
wave (BAW) device that can provide a quasi-one-dimensional
standing acoustic wave, as demonstrated by Lamprecht et al.
[78]. A study equivalent to Ref. [78] would not be feasible for
a particle that satisfies the condition δ/a > 1, since the drag on
the particle from the environmental acoustic streaming in the
BAW device would dominate the total measured force on the
particle [24]. However, using an adjusted optical trap, Goering
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FIG. 12. Influence of the position of a copper (Cu) particle in
a standing wave on the ARF, for δ/a = 0.5. The particle is in wa-
ter, with the position varied from one pressure antinode to another,
passing through a pressure node, as indicated by the vertical dotted
lines. The wave has an amplitude of 500 kpascal and a frequency
of 500 kHz, yielding δ = 0.74 µm. The multicrown shape includes
four crowns placed on the z > 0 hemisphere with a 20 ◦ step from
the z = 0 plane (“half”); crown length L from the sphere surface
is equal to ã, with ã defined as the radius of the base sphere on
which the crowns are attached. The total volume of the multicrown
particle is constrained to V = 4πa3/3. For a reference, the ARF on
an equivalent sphere is computed with our viscous numerical model
(ARFstr), with the inviscid model (Fyos) by Yosioka and Kawasima
[32], and with the viscous rigid-particle model (Fdoi) by Doinikov
[22].

and Dual [79,80], recently measured that the build-up time of
the ARF in such a BAW device is significantly shorter than
the build-up time of the environmental streaming. This would
potentially allow for the measurement of the ARF in the time
span prior to the build up of the environmental streaming,
consequently minimizing the influence of the environmental
streaming on the measured force. This would be possible un-
der the assumption that the microstreaming and the scattering
contributions to the ARF on the particle would both build up
significantly faster than the environmental streaming.

To bring the theoretical analysis closer to the experimental
configuration, the numerical model could be extended to ac-
count for thermal effects. The effect of walls in experimental
devices on the inviscid ARF is understood to be mostly neg-
ligible, except for some fluid-particle material combinations
in close proximity to the walls [81]. However, in the case
of the ARF that is dominated by the viscous contributions,
the interaction between the walls and the particle could be
much more significant, as indicated by the recent study on the
microstreaming-inclusive acoustic interactions between two
particles in a standing wave [59]. The wall effects could be
studied in the future, by adding the wall domain to the model,
and expanding the computational domain along the z axis.

The findings of our study bear the most significance for the
acoustic manipulation of particles that are smaller than δ. The
manipulation of such particles is very challenging in regular
acoustofluidic devices due to the prevailing influence of the
acoustic streaming at the scale of the fluidic cavity [24,82].
However, the continuous efforts towards the suppression of
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FIG. 13. Influence of the position of a copper (Cu) particle in a
standing wave on the relative contributions to the ARF. (a) The invis-
cid scattering contribution to the ARF due to the particle shape (F̃scat),
(b) the viscous scattering contribution to the ARF (F̃vsc), and (c) the
microstreaming contribution to the ARF (F̃str). The particle is in
water, with the position varied from one pressure antinode to another,
passing through a pressure node, as indicated by the vertical dotted
lines. The wave has a frequency of 500 kHz, yielding δ = 0.74 µm.
The multicrown shape includes four crowns placed on the z > 0
hemisphere with a 20 ◦ step from the z = 0 plane (“half”); crown
length L from the sphere surface is equal to ã, with ã defined as the
radius of the base sphere on which the crowns are attached. The total
volume of the multicrown particle is constrained to V = 4πa3/3.

the latter [25,26,30,83] will inevitably open the door to the
manipulation of particles smaller than δ.

APPENDIX A: INFLUENCE OF THE ROTATIONAL
FIRST-ORDER VELOCITY FIELD

The simplified expression for the ARF from Eq. (18), intro-
duced by Settnes and Bruus [42], neglects the microstreaming,
while accounting for the viscous scattering effects at the first
order. This is made possible through the arbitrary integration
surface S0 enclosing the particle in Eq. (15) that allows for
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FIG. 14. Influence of the distance Rint of the spherical integration
surface S0 from the particle surface (radius a) on the first-order vis-
cous ARF (FnoStr

rad ) that neglects the microstreaming and the rotational
first-order velocity field. The force FnoStr

rad · ez is normalized by the
force at Rint = 15δ, for the respective particle radii a = 5δ, a = 1δ,
and a = 0.2δ. The gold (Au) particle is in water, positioned in the
middle between the pressure node and antinode of a standing wave
with an amplitude of 500 kPa and a frequency of 500 kHz, yielding
δ = 0.74 µm.

integration over the irrotational velocity field in the bulk of
the fluid, away from the rotational viscous boundary layer
δ that develops around the particle. In Fig. 14 we analyze
the distance from the particle at which the simplified first-
order viscous ARF neglecting the microstreaming (FnoStr

rad )
becomes independent of the integration surface. This distance,
at ∼5δ, appears to be consistent with the predictions in the
literature [42].

APPENDIX B: DOINIKOV’S ANALYTICAL ARF MODEL
ACCOUNTING FOR MICROSTREAMING AROUND AN

INCOMPRESSIBLE PARTICLE

Here we describe Fdoi that stems from Eqs. (5.15) and
(6.1)–(6.8) of Ref. [22] and is valid for the acoustic radia-
tion force on an incompressible spherical particle (radius a)
in a viscous fluid in the Rayleigh limit (ka � 1), with no
restriction on δ/a. The ARF along the direction of the pressure
gradient of the standing wave follows as

Fdoi = 3

4
πρ0ϕaϕ

∗
a

1∑
n=0

(−1)n(n + 1)

×(Dn sin 2kh + D∗
n sin 2k∗h), (B1)

with the distance between the center of the particle and the
nearest velocity node h. The coefficients D0 and D1 are com-
puted as

D0 = 2x3

9
+ x3

3x3
V

− x3G0(xV , λρ )
[
G1(xV )

+x3
V

(
12 + x2

V

)
f (xV )

]
, (B2)

D1 = x3

3x2
V

+ x3G∗
0(xV , λρ )

1 + xV

{
G2(xV )

− x3
V

[
2G3(xV ) f (xV ) + iG4(xV ) f (−ixV )

− 2(1 + i)
(
9 + x2

V

)
f (xV − ixV )

]}
, (B3)

with

G0(xV , λρ )= (1 − λρ )
{
72

[
9λρ + 9λρxV + (2 + λρ )x2

V

]}−1
,

(B4)
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G1(xV ) = 48 − 96xV + 2x2
V − 14x3

V + x4
V − x5

V , (B5)

G2(xV ) = 48 + (48 + 192i/5)xV

+ (122 + 192i)x2
V /5 + 42(1 − i)x3

V /5

+ (49 + 36i)x4
V /10 − (31 − 17i)x5

V /10

+ (6 + 31i)x6
V /30 + (1 + 6i)x7

V /30 + ix8
V /30,

(B6)

G3(xV ) = 3 − 3ixV − x2
V , (B7)

G4(xV ) = 9 + 9xV + 41x2
V /10 + 11x3

V /10 + x4
V /5 + x5

V /30,

(B8)

f (z) = zezE1(z), (B9)

where E1(z) is the integral exponent of the first order [84],
λρ = ρ0/ρp is the density ratio, and xV = a(1 + i)/δ.
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