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Numerical simulation of superparamagnetic nanoparticle motion in blood vessels
for magnetic drug delivery
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A numerical model is developed for the motion of superparamagnetic nanoparticles in a non-Newtonian blood
flow under the influence of a magnetic field. The rheological properties of blood are modeled by the Carreau flow
and viscosity, and the stochastic effects of Brownian motion and red blood cell collisions are considered. The
model is validated with existing data and good agreement with experimental results is shown. The effectiveness
of magnetic drug delivery in various blood vessels is assessed and found to be most successful in arterioles and
capillaries. A range of magnetic field strengths are modeled using equations for both a bar magnet and a point
dipole: it is shown that the bar magnet is effective at capturing nanoparticles in limited cases, while the point
dipole is highly effective across a range of conditions. A parameter study is conducted to show the effects of
changing the dipole moment, the distance from the magnet to the blood vessel, and the initial release point of the
nanoparticles. The distance from the magnet to the blood vessel is shown to play a significant role in determining
nanoparticle capture rate. The optimal initial release position is found to be located within the tumor radius in
capillaries and arterioles to prevent rapid diffusion to the edges of the blood vessel prior to arriving at the tumor
and near the edge of the magnet when a bar magnet is used.

DOI: 10.1103/PhysRevE.106.015104

I. INTRODUCTION

Magnetic drug delivery is a promising method for non-
invasive, targeted treatment for certain diseases, including
cancer [1–4]. This is achieved by injecting superparamagnetic
iron oxide nanoparticles containing therapeutic drugs into the
bloodstream and using an external magnet to guide these
nanoparticles to the tumor site [5–9]. Superparamagnetic
nanoparticles can orient themselves to an applied magnetic
field and randomly reorient themselves once the field is re-
moved due to their single domain structure [10]. Once the
magnetic field is removed, superparamagnetic nanoparticles
are unable to agglomerate, avoiding vessel occlusion. Unlike
current cancer treatments such as chemotherapy, radiation,
and excision surgeries, which are either systemic or invasive
treatments that destroy both healthy and cancerous cells, mag-
netic drug delivery has the potential to target topical tumors
and localize drug delivery without circulating throughout the
body [5].

Recent reviews present several advantages of magnetic
drug delivery [3,4,11–14]. Mody et al. [3] highlight the prac-
ticality of magnetic drug delivery for targeting tumors due to
its simplicity and adaptability to a broad range of applica-
tions. They note its potential to treat tumors in low-oxygen
environments where traditional cancer treatments are not as
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effective, as well as its ability to minimize invasive procedures
and reduce harmful effects to healthy tissues [3]. Because
magnetic drug delivery has the ability to induce apoptosis in
cancer cells located around the tumor region, such a proce-
dure could reduce the risk of cancer recurrence in patients
[5]. Liu et al. also observe that magnetic drug delivery itself
has no known side effects in the human body, although side
effects may result from the specific drug used during treatment
[4].

Clinical trials in mice have shown that using an external or
subdermal magnet results in a higher concentration of drug-
infused nanoparticles at the tumor site and a low concentration
in healthy organs [15–17]. These in vivo studies, however,
either released nanoparticles in locations other than the blood-
stream [15], or far from the tumor site [16,17], leading to
lower capture rates. While these studies provide evidence
that magnetic drug delivery can be effective, further studies
are required to increase the nanoparticle capture rate before
moving on to human clinical trials.

However, many challenges must be overcome before
magnetic drug delivery becomes a successful clinical treat-
ment. Nanoparticle biocompatibility and potential long-term
toxicity remains unstudied [3,12]. Additional research on
nanoparticle size, shape, stiffness, material, and surface coat-
ing is also necessary to optimize nanoparticle design and
avoid rapid phagocytosis by leukocytes [12,13,18]. Other
obstacles include the need for a strong magnetic gradient,
potential nanoparticle accumulation in smaller vessels and
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blocking blood flow, and the spatial geometry and limita-
tions on the strength and gradient of the field [11]. Above
all, optimizing the conditions for magnetic drug delivery is
critical for the success of the procedure and cannot eas-
ily be studied through in vivo studies due to the extensive
number of factors and practical considerations of cost and
time. The current lack of optimal conditions for magnetic
drug delivery leads studies to underestimate the procedure’s
effectiveness, and the variety of experimental designs for
the procedure makes subsequent results difficult to compare
directly.

Past research has determined that external magnetic fields
are unable to treat tumors within internal organs [7]. Similarly,
nanoparticles released in large blood vessels such as the aorta
are unable to withstand the comparatively vast distance and
high blood velocity [19]. Therefore, superficial tumors, such
as melanomas, that surround smaller vessels are the focus
of this study. Fanelli et al. [20] recently showed the com-
monly used Newtonian model overemphasizes the effect of
the magnetic field, while the Carreau and Ellis models of non-
Newtonian blood flow are more accurate. Previous research
such as Yue et al. [5] assumes blood to be a Newtonian fluid,
while Rukshin et al. [6] considers various viscosity models but
retains the traditional parabolic velocity profile; this research
incorporates both viscosity and velocity components of non-
Newtonian blood flow. Additionally, nanoparticles experience
substantial levels of Brownian motion in the bloodstream,
resulting in unstable and random trajectories [5]. Red blood
cells (RBCs) and their collisions with nanoparticles also have
significant impacts on nanoparticle trajectories [6]. The extent
of RBC collisions depends on various factors such as the
particle volume fraction and the local shear rate [21]. Due to
the importance of RBC collisions as shown in Ref. [6] and the
various factors that influence their magnitude [21], we vary
the amount of RBC collisions in our model. We also study
individual particle trajectories, unlike Refs. [7,22] which use
an advection-diffusion model.

This study uses a stochastic ordinary differential equa-
tion model to simulate nanoparticle trajectories in Carreau
blood flow and to determine the optimal conditions for mag-
netic drug delivery. We consider the effects of Brownian
motion, Stokes drag force, and varying levels of RBC colli-
sions. We first validate our model with experimental results
and show that it approximates nanoparticle motion well. We
then examine nanoparticle motion in capillaries, arterioles,
and arteries to determine which vessel types are best suited for
the procedure. We consider the effects of changing the initial
release point of the nanoparticles and the distance between
the magnet and the vessel. Additionally, we study nanopar-
ticle motion under magnetic fields generated by both a bar
magnet and a much stronger point dipole to assess the effect
of the magnetic field strength. This research combines key
properties of blood flow into a single model and provides
insight into how to optimize magnetic drug delivery for great-
est nanoparticle capture, which can assist the design of future
experimental studies and clinical trials.

II. GOVERNING EQUATIONS

A schematic of our model is shown in Fig. 1.

FIG. 1. Schematic of both the bar magnet and point dipole
model. The blood vessel with inner radius R is centered around the x
axis with flow direction toward the positive x axis. Relative blood
flow velocity shown by the parallel black arrows. Nanoparticles
represented by blue circles, with two sample trajectories shown by
dashed lines. Two red blood cells provided for reference. The tumor
is centered at (0, 0, −R) with a radius of rt = 0.01 m. In the bar
magnet model, the magnet has width 2a, length 2b, by height L
with the top of the magnet located at (0, 0, −R − d ), where d is
the distance from the inner vessel wall to the top of the magnet. In
the point dipole model, magnetic moment m points vertically along
the the z axis from the point dipole, located at (0, 0, −R − d ) where
d is the distance from the inner vessel wall to the point dipole, and
rp is the vector from the dipole to the particle.

A. Carreau Flow

Here we model the blood vessel as a cylindrical pipe with
radius R. Letting u denote the blood flow velocity and ignor-
ing the effects that the particles have on the flow, we obtain
the Navier–Stokes equations for an incompressible flow,

ρ

[
du
dt

+ (u · ∇)u
]

= −∇p + ∇ · τ, (1)

∇ · u = 0, (2)

where ρ is fluid density, and p is pressure. Furthermore, τ is
the stress tensor defined as

τ = η(γ̇ )γ̇, (3)

where η is viscosity,

γ̇ = ∇u + ∇uT , (4)

and

γ̇ =
[

1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)(
∂ui

∂x j
+ ∂u j

∂xi

)] 1
2

. (5)

To account for the non-Newtonian effects of blood, we use
the Carreau viscosity model, which models both viscosity
plateaus at high and low shear rates [20]. In the Carreau
model, viscosity is given by

η(γ̇ ) = η∞ + (η0 − η∞)(1 + λ2γ̇ 2)
nc−1

2 , (6)

where η∞ is the viscosity at high shear rates, η0 is the viscosity
at low shear rates, λ is the Carreau coefficient, and nc is the
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TABLE I. Table of Constants. Note that χ , λ, nc are dimensionless. Values for R and umax are given in Sec. V for the blood vessel radius
and maximum flow velocity. Carreau constants are from [20].

Notation Value Definition

μ0 4 × 10−7π N/m2 Permeability of free space
kb 1.3806503 × 10−23 J/K Boltzmann constant
T 312 K Temperature
ap 1 × 10−7 m Nanoparticle radius (unless otherwise specified)
χ 0.2 Magnetic susceptibility
rrbc 4 × 10−6 m RBC radius
η∞ 0.00345 Pa s Carreau viscosity at high shear rate
η0 0.056 Pa s Carreau viscosity at low shear rate
λ 3.313 s Carreau coefficient
nc 0.3568 Carreau exponent
Br 1.48 T Magnetic remanence
2a 0.018 m Bar magnet width
2b 0.08 m Bar magnet length
L 0.1 m Bar magnet height
rt 0.01 m Tumor radius

Carreau exponent. Their values and those of other constants
used throughout this study are given in Table I. Note that when
η∞ = η0, we have that viscosity is constant and the model
reduces to Newtonian flow.

The effects of blood pulsation can be modeled by the
nondimensional Womersley parameter α = R( ωρ

η
)

1
2 , where R

is the blood vessel radius, ω is the angular frequency of
pulsatile flow, ρ is fluid density, and η is dynamic viscosity
of the fluid [23]. Values of the Womersley parameter in the
capillaries and arterioles have been previously calculated as
α = 0.04 in arterioles and α = 0.05 in capillaries [24]. Since
α is much less than 1, the effects of pulsation are negligible
in capillaries and arterioles. In the arteries, blood pulsation
is more significant, with α = 3.5 in the femoral artery [24].
However, simulations with and without the effect of blood
pulsation in the arteries showed no significant change in par-
ticle trajectories under the conditions described in Sec. V B 4.
The effects of pulsation on nanoparticles under different con-
ditions than those described in Sec. V B 4 may be further
studied in the future.

In addition, letting u = [u, v,w]T , we impose the follow-
ing no-slip conditions at the boundary given by

u(x, y, z) = [0, 0, 0]T , (7)

whenever
√

y2 + z2 = R. Furthermore, we also prescribe the
maximum flow velocity umax inside the blood vessel which
gives us the following condition:

u(x, y, z) = [umax, 0, 0]T , (8)

whenever y = z = 0. Assuming a constant pressure gradient
in the x direction, i.e., u = [u, 0, 0]T and converting the flow
equations into polar coordinates, we obtain

γ̇ = |u′(r)|, (9)

and

η(γ̇ ) = η∞ + (η0 − η∞){1 + λ2[u′(r)]2} nc−1
2 , (10)

where

r =
√

y2 + z2. (11)

Thus, from Eq. (1) we obtain the following ordinary differ-
ential equation (ODE) for u(r)

∂ p

∂x
=

(
η∞

u′(r)

r
+ (η0 − η∞)

u′(r)

r
{1 + λ2[u′(r)]2} nc−1

2

)

+ u′′(r)

(
η∞ + (η0 − η∞){1 + λ2[u′(r)]2} nc−1

2

+ (η0 − η∞)(nc − 1)λ2[u′(r)]2{1 + λ2[u′(r)]2} nc−3
2

)
,

(12)

where ∂ p
∂x is a constant chosen to satisfy Eq. (8).

Last, note that when η∞ = η0 = η, viscosity is constant
and we obtain the following parabolic flow

u(r) = umax

(
1 − r2

R2

)
. (13)

B. Magnetic field

In this study, we consider both the magnetic field generated
by a magnetic dipole approximation denoted by Hd and the
magnetic field generated by a bar magnet denoted by Hb. For
the dipole field, the external magnetic field potential around
the nanoparticle is given by

φd (rp) = − 1

4π

m · rp

r3
p

, (14)

where m is the magnetic dipole moment, rp is the vector from
the dipole to the particle, and rp = |rp|. From here we obtain
the following magnetic field,

Hd (rp) = ∇φd = − 1

4π

m
r3

p

+ 3

4π

m · rp

r4
p

rp

rp
. (15)

In addition, the equations for the magnetic field Hb surround-
ing a bar magnet with width 2a, length 2b, height L, and
residual magnetization Br are given in the Appendix.
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C. Equations of motion

Here we let the vector x(t ) denote the nanoparticle position
in space. The two main forces acting on the nanoparticle are
the viscous drag force and the force from the magnetic field,
which we denote by Fv and Fm, respectively. We approximate
the nanoparticle as a sphere of radius ap, in which case the
Stokes drag force is given by

Fv = −Dvs, (16)

where

D = 6πη(x)ap, (17)

and vs is the slip velocity given by

vs = dx
dt

− u(x). (18)

Note that the viscosity that appears in Eq. (17) depends on the
shear rate and is given in Eq. (6). In general, the stokes drag
formula given in Eq. (17) does not hold for non-Newtonian
fluids. However, for the low Reynolds numbers and high shear
rates that are seen in blood vessels, the stokes drag formula
given in Eq. (17) can be used [25,26].

In general, the magnetic force on an object in the external
magnetic field He is given by

Fm =
∫

V
μ0(M · ∇)HedV. (19)

Here V is the set occupied by the object and M = χH is
the magnetization, where χ denotes the magnetic suscepti-
bility of the object (which we assume to be constant), and
H denotes the true field in the presence of the magnetic
object.

Since the magnetic particles are small, the external mag-
netic field is approximately uniform throughout the particle.
In this case, the magnetization inside the particle is given by
the Clausius-Mossotti formula [27]

M = 3χ

3 + χ
He. (20)

Thus, from Eqs. (19) and (20) we obtain that the magnetic
force on a particle in an external magnetic field He, is given
by

Fm = 4πa3
pμ0χ

3 + χ
(He · ∇)He. (21)

Now since the particle is small, we consider the force balance
given by

Fv + Fm = 0. (22)

Thus, from Eqs. (16), (21), and (22) we obtain the following
ODE:

dx
dt

= u(x) + 2a2
pμ0χ

3(3 + χ )η(x)
(He · ∇)He. (23)

Finally, to account for Brownian motion and for the shear
induced diffusion that the red blood cells (RBC) create [7], we
add the following stochastic term:

dx
dt

= u(x) + 2a2
pμ0χ

3(3 + χ )η(x)
(He · ∇)He

+
√

2kbT

D
+ 2Kshr2

rbcγ̇
N(0, 1)√

dt
, (24)

where kb is the Boltzmann constant, T is temperature, and rrbc

is the red blood cell radius. Ksh is a dimensionless physical
parameter describing shear-induced particle diffusion in some
suspension. It is derived from the equation Dsh = Kshr2

rbcγ̇ ,
[7] where Dsh is the particle diffusion coefficient of a concen-
trated shear flow. Ksh can be modeled as a function of particle
volume fraction, or in other terms, blood cell concentration.
In addition, as it is shear-induced, we refer to the Ksh parame-
ter as controlling the presence and significance of red blood
collisions, as it is red blood cells that form the suspension
in a blood vessel. N(0, 1) is a vector of three independently
generated standard normal random variables. Note that in the
dipole model we have that

He(x, y, z) = Hd (x, y, z + d + R), (25)

and in the bar magnet model we have that

He(x, y, z) = Hb(x, y, z + d + R), (26)

where in the dipole case d is the distance from the center of
the dipole to (0, 0,−R), and in the bar magnet case d is the
distance from the top of the magnet to (0, 0,−R) (see Fig. 1).

From above, we nondimensionalize by letting

x̄ = x
R

(27)

and

t̄ = umax

R
t . (28)

In the dipole case, with this nondimensionalization, we obtain
the following equation:

d x̄
dt̄

= ū(x̄) + CD

η̄(x̄)
(H̄e · ∇)H̄e +

√
CT

η̄(x̄)
+ Crbc ¯̇γ

N(0, 1)√
dt̄

,

(29)

where

H̄e(x̄) = H̄d

(
x̄, ȳ, z̄ + d

R
+ 1

)
, (30)

H̄d (x̄) = − 1

4π

m
m|x̄|3 + 3

4π

m · x̄
m|x̄|4

x̄
|x̄| , (31)

where m = |m| and

CD = 2a2
pμ0χm2

3(3 + χ )R7η∞umax
, (32)

CT = kbT

3πapη∞Rumax
, (33)

Crbc = 2Kshr2
rbc

R2
, (34)
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η̄( ¯̇γ ) = 1 +
(

η0

η∞
− 1

)(
1 + λ2u2

max

R2
¯̇γ 2

) nc−1
2

, (35)

¯̇γ = |ū′(r̄)|, (36)

and

ū(r̄) = u(Rr̄)

umax
. (37)

III. NUMERICAL METHODS

In this section we give a brief overview of the numerical
methods used to solve the governing equations. First, to solve
for the velocity profile given in Eq. (12) we use Matlab’s
bvp5c function. Furthermore, the constant pressure gradient is
an unknown, which is determined by using a bisection method
to satisfy Eq. (8).

In addition, the stochastic differential equation given in
Eq. (24), can be expressed in the general format as

dx = f (x)dt + g(x)dW t , (38)

where W t is the standard Wiener process, i.e., dW t is a vector
of three noncorrelated random numbers

√
dtN (0, 1),

f (x) = u(x) + 2a2
pμ0χ

3(3 + χ )η(x)
(He · ∇)He, (39)

and

g(x) =
√

2kbT

D
+ 2Kshr2

rbcγ̇ . (40)

Last, to solve Eq. (38) we use the standard first order Euler-
Maruyama method [5,28].

IV. MODEL VALIDATION

In this section we compare our model with the experi-
mental results given in Ref. [29]. In Ref. [29], Lim et al.
placed superparamagnetic nanoparticles in deionized water
with no background flow and analyzed the balance between
the Brownian motion and the magnetic force. To attract the
nanoparticles, Lim et al. used a magnetic tweezer, which
generates a large magnetic field gradient of up to 3000 T/m
at the tweezer tip. Because of this, our bar magnet model does
not apply and we only use the dipole approximation.

Since there was no background flow or red blood cell
collisions in the experiments given in Ref. [29], our dipole
model in Eq. (24) reduces to

dx
dt

= 2a2
pμ0χ

3(3 + χ )η
(He · ∇)He +

√
2kbT

D

N(0, 1)√
dt

, (41)

where

He(x) = − 1

4π

m
|x|3 + 3

4π

m · x
|x|4

x
|x| . (42)

Note that here we set d = 0 m, η = 0.00089 Pa s, ap = 18.8
nm, χ = 0.2, and T = 298 K to match the parameters given
in Ref. [29]. Furthermore, we let the magnetic dipole mo-
ment m = [0, 0, 4.5 × 10−7] A m2, which was obtained by
matching the field gradient given in Ref. [29] at a distance
of 100 μm from the tweezer tip.

FIG. 2. The probability of hitting the magnetic dipole is plotted
for varying x and z values. Yellow represents a capture rate of one
and blue represents a capture rate of zero. The experimental data
from Ref. [29] is also plotted, where X stands for a target hit and
O stands for a target miss. Last, the radius of the red circle is given
analytically by Eq. (44).

Since the magnetic field surrounding the dipole is rotation-
ally symmetric we only look at a two dimensional slice of
the problem and set y = 0. We then run 100 simulations to
calculate the probability of the nanoparticle hitting the target
after 25 s. In Fig. 2, we vary x and z and plot the probability of
hitting the target on a color scale. Furthermore, the experimen-
tal data is also plotted where an X stands for a target hit and
an O stands for a target miss. Here we see a good agreement
between the experimental data and the numerical data.

From Fig. 2, we see a region of attraction that lies inside
the red circle. An approximation to the radius of this region
of attraction can be expressed analytically by considering the
problem in the absence of Brownian motion, which is given
by

dx
dt

= 2a2
pμ0χ

3(3 + χ )η
(He · ∇)He. (43)

Moreover, if we assume that x = 0 and y = 0, then Eq. (43)
reduces to a single ODE for z(t ), and for a travel time of ttr the
maximum initial z value, i.e., rmax that still reaches the target
is given by

rmax =
(

4m2μ0χa2
pttr

(3 + χ )π2η

) 1
8

. (44)

Furthermore, when the background flow velocity is small (41)
can also be used to predict particle motion. For example,
Eq. (44) can be used to approximate the influence that the
magnetic field has on the nanoparticles after they exit the
blood vessel and enter into the interstitial fluid. Although,
our study only concerns the particle motion inside the blood
vessel. We note that for interstitial fluid with a viscosity of
3.5 × 10−3 Pa s, a magnetic dipole moment of 500 A/m2 will
attract nanoparticles that are within 1 cm of the dipole [30].
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FIG. 3. Particle trajectories along the x-z, x-y, and y-z planes in the absence of a magnetic field in capillaries. Note the horizontal drift of
particles is minimal and diffusion to the edges of the pipe is extremely rapid. Particles are released from (−0.01, 0, 0); 100 trajectories are
shown. R = 4 × 10−6 m and umax = 9.3 × 10−4 m/s. Ksh = 0.05.

V. RESULTS AND DISCUSSION

We present the following numerical analysis by solving
the equations of motion. We focus on capillaries, arterioles,
and arteries because they transport drugs to the tumor site,
whereas venules and veins transport drugs away from the
tumor site, making them ineffective for drug delivery. We
use experimentally found constants for the maximum blood
velocity and vessel radii in humans: R = 4 × 10−6 m and
umax = 9.3 × 10−4 m/s in capillaries, R = 1.5 × 10−5 m and
umax = 3.26 × 10−3 m/s in arterioles, and R = 2 × 10−3 m
and umax = 0.19 m/s in arteries [31–34].

We define a capture as a particle whose trajectory ter-
minates within the radius of the tumor and on the bottom
half of the pipe (i.e., z < 0). We calculate particle trajectories
numerically and terminate trajectories when they contact the
vessel wall. We assume no-slip conditions and that particles
that contact the vessel wall are immediately absorbed, since
movement after the particle contacts the wall occurs on a
timescale of 103 s [5]. We take advantage of the vessel sym-
metry and release 100 particles on the right half of the pipe for
each cross section. The capture rate is the number of particles
captured divided by the total number of particles released.

Additionally, while including RBC collisions in this model,
we set Ksh, a dimensionless coefficient describing shear-
induced diffusion in some suspension, to 0.05. This is because
0.05 is a representative Ksh value for RBC suspensions with a
particle volume fraction of 0.4, and is corroborated in Zyd-
ney and Colton [21], and experimentally shown in Wang and
Keller [35]. When RBC collisions and their corresponding
shear-induced diffusion are not considered in this model (rea-
soning shown in Sec. V B 1 b), Ksh = 0.

A. Motion in the absence of a magnetic field

In the absence of a magnetic field, particle diffusion due
to Brownian motion and RBC collisions occurs extremely
quickly, and the majority of particles released inside capil-
laries hit the wall within 0.01 cm as shown in Fig. 3. Similar
results are observed in arterioles, but over a distance of 2 cm
(not shown). This makes it exceedingly difficult to direct parti-
cles over long distances due to diffusion. However, if particles
are released within the radius of the tumor, then diffusion will
lead to a capture rate of 0.5 even in the absence of a magnetic

field. In capillaries and arterioles, the stochastic forces acting
on the nanoparticles are enough to cause significant diffusion
such that half the particles hit the bottom half of the vessel and
the tumor, while the other half diffuses upwards and hit the top
half of the vessel, missing the tumor. Although a capture rate
of 0.5 is a direct consequence of our capture definition, Fig. 3
shows that diffusion causes particles to hit the vessel wall
extremely quickly and that nanoparticle endpoints are evenly
distributed, a result independent of the capture definition. A
previous review of nanoparticle delivery found that a median
value of 0.7% of the nanoparticle dose reached the tumor
target [36], but did not consider where particles were released;
these results show that nanoparticle delivery can potentially be
much more effective if particles are released within the tumor
radius, even in the absence of a magnetic field. Particle motion
in arteries in the absence of a magnetic field is discussed in
Sec. V B 4.

FIG. 4. Capture rates in capillaries at various magnetic moments
and distances from the blood vessel. Color bar represents the capture
rate, where red represents a capture rate of 1 and blue represents a
capture rate of 0.5. Capture rates remain the same along multiple
release points (not shown). Ksh = 0.05.
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FIG. 5. Capture rates in capillaries at various magnetic moments
and distances from the blood vessel in the absence of RBC collisions.
Color bar represents the capture rate probability, where red represents
capture rate of 1 and blue represents a capture rate of 0.5. Capture
rates remain the same along multiple release points (not shown).
Ksh = 0.

B. Point dipole model

We first consider the magnetic field Hd generated by
a point dipole. We use this model to approximate strong
magnetic fields comparable to those generated by an elec-
tromagnet. Weaker magnetic fields generated by physical bar
magnets are considered in Sec. V C. The dipole is located at
(0, 0,−R − d ), where the point dipole is placed some dis-
tance d below the vessel. The tumor is centered at (0, 0,−R)
and has a radius rt of 0.01 m. We conduct a parameter study by
varying the dipole moment m, the distance from the magnet to
the vessel d , and the x coordinate of the initial release position
within the tumor radius from −200R to 100R. We discuss
the effect of releasing particles outside the tumor radius in
Sec. V D.

1. Nanoparticle motion in capillaries

a. Motion with RBC collisions. The results of changing the
initial release point, the dipole moment, and the distance from
the vessel on the capture rate in a capillary are shown in Fig. 4.
The results show the distance from the magnet has a larger
impact on capture rate than the dipole moment. From Eq. (15),
it is evident the magnetic field strength relies more heavily
on rp than on m, and thus smaller values of d correspond
to lower values of rp and higher magnetic field strengths.
This high magnetic field strength causes the nanoparticles to
be pulled quickly downward and hit the target with minimal
influence of background blood flow. At distances less than
1.5 cm, r3

p is extremely small, so the capture rate remains
at 1 regardless of the dipole moment due to extremely high
magnetic field strengths. Furthermore, this explains the wide
variation in capture rate at different distances from the blood
vessel and limited variation in capture rate across increasing
dipole moments.

FIG. 6. Capture Rate in capillaries as a function of changing
Ksh. Particles are released from −100R from 100 points in the cross
section. m = 700 A m2, d = 3.5 cm.

As d increases to 5.0 cm, the capture rate across all dipole
moments below 1000 A m2 decreases to 0.5. This rapid de-
crease in capture rate across all dipole moments reflects the
rapid decrease in the magnetic force as d increases and the
increased impact of diffusion. This sensitivity indicates that
small changes in distance can lead to large changes in cap-
ture rate, making precision in magnet placement critical to
the success of magnetic drug delivery. These results also indi-
cate that large magnetic moments are not necessary to achieve
high capture rates, but instead the effectiveness of magnetic
drug delivery is determined primarily by the distance between
the magnet and the blood vessel. Clinically, this means the
procedure can be done with weaker electromagnets as long

FIG. 7. Capture rates in arterioles at various magnetic moments
and distances from the blood vessel. Color bar represents the capture
rate, where red represents a capture rate of 1 and blue represents a
capture rate of 0.5. Capture rates remain the same along multiple
release points (not shown). Ksh = 0.05.
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FIG. 8. 100 particle trajectories in arteries along the x-z planes.
Top panel shows trajectories in the absence of a magnetic field;
middle panel shows trajectories with d = 0.03 m, m = 1000 A m2;
bottom panel shows trajectories with d = 0.02 m, various m. ap =
500 nm. Particles released from (−0.01, 0, 0) m.

FIG. 9. Capture rates at various distances from the bar mag-
net for different Ksh values. (a) Squares represent capture rates
in capillaries with Ksh = 0; (b) diamonds represent capture rates
in capillaries with Ksh = 0.05, (c) circles represent capture rates in
arterioles with Ksh = 0.025; (d) crosses represent capture rates in
arterioles with Ksh = 0.05. Inset shows data graphed on a log-log
scale.

as the magnet can be placed within 1.5 cm of the tumor.
However, if the magnet must be placed farther away from the
tumor, stronger electromagnets are capable of sustaining high
capture rates up until distances of 5.0 cm.

FIG. 10. Capture rates in arterioles as a function of distance for
different particle sizes. (a) Squares represent capture for 500 nm
particle radius. (b) Diamonds represent capture for 400 nm particle
radius. (c) Triangles represent capture for 300 nm particle radius.
(d) Asterisks represent capture for 200 nm particle radius. (e) Circles
represent capture for 100 nm particle radius. Inset shows data on a
log-log scale.
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FIG. 11. Top left and top right images show cross sections with d = 0.02 m and particles released in capillaries from x = −0.01 m and
x = −0.011 m, respectively. Bottom left and bottom right images show cross sections with d = 0.03 m and particles released in capillaries
from x = −0.01 m and x = −0.011 m, respectively. Color bar represents capture rate. m = 500 A m2. Ksh = 0.05.

Interestingly, the capture rate does not vary with the initial
release position of the particles when the dipole moment and
distance from magnet to vessel are kept constant. This is partly
due to rtumor � R so that at distances of −200R and 100R,
the particles are still released within the radius of the tumor.
Due to the small radius of capillaries and weak background
blood flow, particles are pulled directly downwards by the
strong magnetic field and do not travel very far forwards
before hitting the vessel wall. Downstream of the magnet,
the magnetic field strength counteracts the background blood
flow and actually leads to some retrograde particle motion.
In this case, no particles are swept away by the background
blood flow and miss the target; this is crucial to minimizing
unintended side effects of drugs on the rest of the body.

b. Motion in the absence of RBC collisions. Although red
blood cell collisions are significant for larger blood vessels,
their effects are greatly diminished in capillaries. Due to
the extremely small radius of capillaries, red blood cells are
forced to undergo slight deformation and pass through the
capillary single file. Thus, particle motion in the capillary
can be alternatively considered as constrained to a pipe with
a length equivalent to the distance between two red blood
cells and devoid of collisions. We consider this case by setting
Ksh = 0 to remove red blood cell collisions, although Brown-
ian motion is still considered.

The results in Fig. 5 show the effect of setting Ksh = 0 on
capture rate. In this case, the capture rate remains at 1 for
all magnetic moments until a distance of 3 cm. Additionally,
for different magnetic moments, there is substantial variation
in the maximum distance at which capture rate remains at 1.
At a magnetic moment of 1000 A m2, a capture rate of 1 can
be achieved at a distance of 6.0 cm from the blood vessel,
compared to a distance of 3.0 cm for a magnetic moment of
100 A m2. This variation across magnetic moments is due to
the absence of RBC collisions, leading to weaker magnetic
fields to continue influencing particle motion and causing
them to hit the tumor. When RBC collisions are included,
the stochastic forces compete with the magnetic force and
cause particles to diffuse towards the vessel wall instead of
being pulled towards the tumor, causing capture rate to begin
decreasing at lower distances.

Nevertheless, the distance between the magnet and the
blood vessel remains the most critical factor for capture rate:
similar to our previous results, there is a sensitive area where
capture rate rapidly decreases from 1 to 0.5. Furthermore, the
capture rates remain identical for particles released at various
distances away from the tumor. This is because the magnetic
field strength over the range of the tumor is high compared to
the background blood flow, minimizing particle drift in the x
direction.
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FIG. 12. Top left and top right images show cross sections with d = 0.02 m and particles released in arterioles from x = −0.01 m and
x = −0.011 m, respectively. Bottom left and bottom right images show pipe cross sections with d = 0.03 m and particles released in arterioles
from x = −0.01 m and x = −0.011 m, respectively. Color bar represents capture rate. m = 500 A m2. Ksh = 0.05.

The results shown here and in the previous section depict
two extremes in which RBC collisions are either present or
completely absent. Due to the complex physiology of blood
flow and other factors not considered in our model such as
RBC deformation in capillaries and varying RBC concentra-
tions, the reality likely lies in between these two scenarios.

We study this in the following section by analyzing changes
in capture rate as a result of varying the Ksh parameter.

2. Nanoparticle motion with varying Ksh

Figure 6 shows the effect of changing the Ksh value on
capture rate. The results show capture rate decreases almost

FIG. 13. Particles released in arteries from x = −0.01 m (left image) and x = −0.03 m (right image). Color bar represents capture rate.
m = 560 A m2, d = 0.02 m, Ksh = 0.05, and ap = 500 nm.
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FIG. 14. Two sets of particle trajectories along the x-z plane for
m = 500 m A2, d = 0.02 m. Top panel shows particles released from
(−0.011, 0, 0) with capture rate of 0; bottom panel shows particles
released from (−0.01, 0, 0) with capture rate of 1. The tumor is
located at x = −0.01 m and lies to the right of the image, not shown.
Particles are released in capillaries and 100 trajectories shown per
release point.

linearly with Ksh. At high Ksh values, greater stochasticity
from RBC collisions causes many particles to diffuse towards
the top of the vessel faster than the magnetic field pulls parti-
cles down toward the tumor, resulting in lower capture rates.
At low Ksh values, the magnetic field exerts a greater influence
on particle trajectories due to less competing stochastic forces.
Although these results are calculated for a fixed dipole mo-
ment, magnet distance, and initial release position, we expect
this relationship to hold for similar values in the area where
capture rate decreases quickly with distance. Points in this
area are extremely sensitive to small parameter changes, mak-
ing the Ksh term very important. However, we do not expect
this relationship to be present at extreme distances when the
magnet is placed either very close or very far from the vessel.
When the magnet is close to the vessel (<1.5 cm), the mag-
netic force is much greater than the stochastic force, causing
particle trajectories to be unaffected by minor changes in Ksh.

Similarly, when the magnet is far from the vessel (>5 cm),
the magnetic force is much weaker than the stochastic force
and particles already exhibit pure diffusion. While increases
in Ksh may shorten the time it takes for particles to diffuse, the
capture rate will still remain at 0.5. Therefore, the value of Ksh

will have major effects on capture rate only in the sensitive
area, while capture rates will remain high when the magnet
distance is small.

3. Nanoparticle motion in arterioles with RBC collisions

We now consider the motion of nanoparticles in arterioles.
Due to R � rRBC, there is significant stochasticity resulting
from red blood cell collisions and Ksh = 0.05. Results from
varying the dipole moment and the magnet distance are shown
in Fig. 7. Similar to motion in capillaries with Ksh = 0.05,
the capture rate remains at 1 for all dipole moments until
the magnet is placed a distance of 1.5 cm away from the
vessel. The decrease in capture rate, however, occurs over
a larger range than in capillaries. Due to the larger radius
of arterioles, stochastic forces do not immediately cause the
particles to hit the vessel walls. The greater blood velocity also
competes with stochastic forces and diffusion in the z direc-
tion. At larger distances, the magnetic field can thus influence
particle trajectories for a slightly longer period of time and
continue to capture particles before they diffuse. Interestingly,
at high dipole moments the capture rates in both capillaries
and arterioles are very similar. In both cases, a capture rate
of 1 is not sustained at distances more than 3 cm, once again
emphasizing the need for the magnet to be placed close to the
tumor regardless of the dipole moment or vessel type. Overall,
these results show that magnetic drug delivery can be effective
in both capillaries and arterioles, and that the differences in
vessel radius and blood velocity do not have a major impact
on capture rate when using the point dipole model

4. Nanoparticle motion in arteries

Finally, we consider nanoparticle motion in arteries, where
the radius is much larger and the blood velocity is much
faster than in arterioles and capillaries. Due to the strength
of the background blood flow, it becomes very difficult to
capture nanoparticles of size ap = 100 nm. However, previ-
ous studies [37–39] indicate high capture rates are possible
with clusters of particles. We represent this by considering
particles of size ap = 500 nm, making them larger and thus
more responsive to the magnetic field. The results are shown
in Fig. 8.

In the absence of a magnetic field, we find the larger par-
ticle radius greatly decreases the effects of Brownian motion
and RBC collisions. Although particles still diffuse, the veloc-
ity of the background blood flow is strong enough to prevent
particles from hitting the vessel wall. Unlike capillaries and
arterioles, where particles must be released very close to or
within the tumor radius to be captured, larger particles in
the arteries can be released much farther upstream of the
tumor site without diffusing to the vessel walls. This is further
discussed in Sec. V D.

However, much stronger magnets than those needed in
capillaries and arterioles are required to overcome the back-
ground blood velocity and they must be placed close to

015104-11



MATTHEW LEE et al. PHYSICAL REVIEW E 106, 015104 (2022)

FIG. 15. Capillary cross sections using the bar magnet with Ksh = 0, d = 0 m. Top left panel shows particles released from
x = −0.011 m, top right panel shows particles released from x = −0.01 m, bottom left panel shows particles released from x = −0.00902 m,
bottom right panel shows particles released from x = −0.008 m. Color bar shows particle capture rate for each point within the cross section.

the vessel. When m = 1000 A m2 and d = 3 cm, the mag-
netic force is not strong enough to pull the particles all
the way to the tumor. Instead, the magnetic force acts on
the particle trajectories for a short period of time and pulls
it downwards; once the particle passes over the magnet,
it resumes its normal trajectory with relatively little diffu-
sion. Distance from the vessel to the magnet remains the
most significant determinant of capture rate, since even ex-
tremely strong dipole moments are insufficient to capture the
particles.

If the magnet is placed 2 cm away from the vessel, how-
ever, a much wider range of dipole moments are sufficient to
capture the particles. A dipole moment of 560 A m2 is suffi-
cient to capture particles. However, dipole moments of 550
and 540 A m2 are able to attract all the particles to the vessel
wall, but outside the radius of the tumor. The difference in tra-
jectory endpoints is due to the high velocity of the background
blood flow, causing particles to drift substantially in the x
direction. This further suggests an all-or-none phenomenon
in arteries where particles are either completely captured or
completely miss the target. At a dipole moment of 500 A m2,
the magnetic force is too weak and particle trajectories re-
semble what occurs when d = 0.03 m. Although the lack of
particle diffusion allows for more flexibility in the particle re-

lease location, magnetic drug delivery will only be effective if
the magnet can be placed <2 cm from the tumor. Stronger
dipole moments of at least 560 A m2 are also required to
capture particles, compared to 100 A m2 in capillaries and
arterioles. These results show that the high velocity of back-
ground blood flow presents a significant barrier towards the
use of magnetic drug delivery in arteries.

C. Bar magnet model

We study the effectiveness of magnetic drug delivery at
lower magnetic field strengths by replacing the point dipole
with a bar magnet. The equations for the magnetic field
surrounding a bar magnet are given in the Appendix. The
schematic for this model is illustrated in Fig. 1, with the
bar magnet placed below the blood vessel at (0, 0,−R − d ),
where d is the distance from the surface of the magnet to
the blood vessel wall. The bar magnet used has a fixed size
with a width of 1.8 cm, a height of 10.0 cm, and a length
of 8.0 cm. It represents an N52 Grade Neodymium magnet,
the strongest commercially available permanent magnet [40],
and has a Br (residual magnetization) value of 1.48 T. Re-
sults with magnets of other dimensions should exhibit similar
trends, with larger magnets leading to higher capture rates
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FIG. 16. Capillary cross sections using the bar magnet with Ksh = 0, d = 0.001 m. Top left panel shows particles released from x =
−0.011 m, top right panel shows particles released from x = −0.01 m, bottom left panel shows particles released from x = −0.00902 m,
bottom right panel shows particles released from x = −0.008 m. Color bar shows particle capture rate for each point within the cross section.

and smaller magnets leading to lower capture rates, assuming
all else is kept constant. All of the particles are released
at an x position of −0.00902 m, which is right before at
the left edge of the magnet. We study the effects of vary-
ing the distance between the magnet and the blood vessel,
and different levels of red blood collisions. In addition, the
particle size is varied in arterioles to simulate nanoparticle
clusters.

1. Nanoparticle motion in capillaries

a. Motion with RBC collisions. Figure 9 details the effect
of increasing distance between the magnet and capillary wall
on the capture rates of the nanoparticles for various Ksh values.
This model demonstrates that at a distance of 0 cm, the capture
rate of the nanoparticles is 1. However, as the distance is in-
creased slightly to 0.1 cm, the capture rate drops dramatically
to 0.55. This is caused by the rapid diffusion from Brownian
motion and RBC collisions compared to the relatively weak
influence of the magnetic field at a distance of 0.1 cm.

In addition, at distances greater than 0.1 cm, an asymptote
at the capture rate of 0.5 is present. This asymptote occurs
because the magnetic field strength weakens with distance,
approaching a scenario similar to what presented in Sec. V A
due to Brownian motion and RBC collisions. The asymptote
present in Fig. 9 demonstrates that at distances of 0.1 cm and

higher, the force from the magnetic field is not sufficiently
high to overcome stochastic forces, showing the bar magnet is
ineffective for magnetic drug delivery when Ksh = 0.05 (we
note that Ksh value likely lies somewhere between 0 and 0.05).
We study the case of Ksh = 0 next.

b. Motion without RBC collisions. When nanoparticles are
released into the capillaries and Ksh = 0, capture rates remain
above 0.75 at larger distances of up to 1 cm between the
magnet and capillary wall, instead of dropping dramatically
at a distance of 0.1 cm in the Ksh = 0.05 case. In addition,
Fig. 9(a) (Ksh = 0) resembles a logistic curve and continues
to have an asymptote at a capture rate of 0.5. This logistic
curve provides evidence that the distance between the bar
magnet and the blood vessel is the most influential factor on
the capture rate. It also shows that there is a particular region
of distances in which the capture rate dramatically declines.
When Ksh = 0.05, this occurs between 0 and 0.1 cm, where
the magnitude of the derivative of the graph is the greatest.
When Ksh = 0, the decline occurs between 0.8 to 1.4 cm. The
decline occurs at a larger distance when Ksh = 0 because there
is considerably less diffusion than when Ksh = 0.05.

These results indicate the bar magnet could be effective at
distances up to 1 cm if RBC collisions are minimal in cap-
illaries. Future experimental results will determine whether a
Ksh of 0 is representative of red blood cells moving single file
through capillaries.
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FIG. 17. Capillary cross sections using the bar magnet with Ksh = 0.05, d = 0 m. Top left panel shows particles released from x =
−0.011 m, top right panel shows particles released from x = −0.01 m, bottom left panel shows particles released from x = −0.00902 m,
bottom right panel shows particles released from x = −0.008 m. Color bar shows particle capture rate for each point within the cross section.

2. Nanoparticle motion in arterioles with larger particles

Figure 10 shows the effect of increasing particle size on
capture rate as distance from the arteriole wall increases. All
particle sizes had a capture rate of 1 at 0 cm and approached a
horizontal asymptote of 0.5 at larger distances. As distance in-
creased, smaller particles dropped in capture rate more rapidly
than particles of larger sizes did. At a distance of 0.5 cm, the
100 nm particle had a capture rate of about 0.52, while the
300 nm particle had a capture rate of 0.66, and the 500 nm
particle had a capture rate of 0.8, suggesting that particle size
is a significant factor in capture rate.

In the previous section, the Ksh term caused the bar magnet
model to be ineffective at distances greater than 0.1 cm when
ap = 100 nm. These results show that while the bar magnet
model is still not as effective in arterioles as the point dipole,
using a larger particle size can make the magnetic field ef-
fective at larger distances. Larger particles also decrease the
influence of Brownian motion and RBC collisions. However,
particle size is limited by the arteriole radius, and particles
must be designed to prevent occlusion in arterioles and cap-
illaries if any particles are not captured. Thus, using larger
particles increases their responsiveness and may allow the
bar magnet to be applied to arterioles very close to the skin
surface.

D. Optimal particle release location

In Sec. V B, we found the capture rate does not vary within
the radius of the tumor from −200R to 100R. Here we show
that the optimal particle release location lies within the radius
of the tumor for both the point dipole model and the bar mag-
net model, and that the capture rate is near 0 when particles are
released outside the tumor radius. In capillaries and arterioles,
it is crucial for particles to be released within the radius of the
tumor to avoid early diffusion of particles to the vessel wall
prior to entering the tumor radius. This limits the availability
of the particle injection site and suggests the procedure will
not be effective if particles are allowed to circulate in the
bloodstream before reaching their target. Instead, particles
must be injected directly at the tumor site. However, particle
clusters may be released at farther distances in the arteries.

1. Point dipole model

For particles released in capillaries and arterioles, we
choose m = 500 A m2 and d = 0.02 m to be representative
of particles with capture rates of 1 when released within the
tumor radius, and m = 500 A m2 and d = 0.03 m to be repre-
sentative of particles with capture rates within the sensitive
area, based off of the results in Figs. 4 and 7. We release
particles from the edge of the tumor at x = −0.01 m and at
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FIG. 18. Arteriole cross sections using the bar magnet with Ksh = 0.05, d = 0 m. Top left panel shows particles released from x =
−0.011 m, top right panel shows particles released from x = −0.01 m, bottom left panel shows particles released from x = −0.00902 m,
bottom right panel shows particles released from x = −0.008 m. Color bar shows particle capture rate for each point within the cross section.

x = −0.011 m (1 mm before the tumor) to assess the effect of
releasing particles outside the tumor.

The effect of releasing particles outside the tumor radius in
capillaries is shown in Fig. 11. When d = 0.02 m, the capture
rate averaged across the cross section is 0.96 when particles
are released at the edge of the tumor, but is 0 when particles
are released 1 mm before the tumor radius. Likewise, when
particles are released from d = 0.03 m, the average capture
rates are 0.65 and 0, respectively. This difference in capture
rate is due to the magnetic field strength attracting particles
to the vessel wall prior to reaching the tumor radius. Particles
released at both x = −0.01 m and x = −0.011 m experience
a horizontal drift of approximately 1.5 × 10−5 m. Particles
released slightly outside the tumor radius continue to expe-
rience the full force of the magnetic field, and subsequently
hit the vessel wall before reaching the tumor. The same effect
is present in arterioles as shown in Fig. 12. At d = 0.02 m,
the average capture rates are 0.99 at x = −0.01 m and 0 at
x = −0.011 m. At d = 0.03 m, the average capture rates are
0.85 at x = −0.01 m and 0.14 at x = −0.011 m. We observe
that particles released from x = −0.011 m with nonzero cap-
ture rates are located along the center of the top half of the
vessel; this can be attributed to both the higher background
blood velocity in the center of the vessel and the larger vessel
radius, allowing particles to travel farther distances and enter

the tumor radius. We expect this capture rate to go to zero as
particles are released farther from the tumor due to the small
amount of horizontal drift.

Due to the high background blood velocity in arteries, we
use m = 560 A m2 and d = 0.02 m in accordance with the
results found in Sec. V B 4. Figure 8 shows that diffusion does
not cause particles to immediately hit the vessel wall, unlike
capillaries and arterioles. We extend this by showing in Fig. 13
that the capture rate remains high at 0.82 and 0.72 when par-
ticle clusters of ap = 500 nm are released from x = −0.01 m
and x = −0.03 m. Although the capture rate decreases, it re-
mains relatively high and shows magnetic drug delivery can
be effective in arteries when particles are released outside the
tumor radius. Figure 14 further illustrates the trajectory of two
sets of particles released at x = −0.01 m and x = −0.011 m,
demonstrating the difference in capture.

2. Bar magnet model

When the bar magnet model is used, we find the optimal
release location is at the edge of the magnet when RBC
collisions are considered. When RBC collisions are absent,
the same capture rate can be achieved anywhere within the
radius of the tumor. When d = 0.001 m, we find the magnetic
field strength is too weak for the initial release location to
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FIG. 19. Capillary cross sections using the bar magnet with Ksh = 0.05, d = 0.001 m. Top left panel shows particles released from x =
−0.011 m, top right panel shows particles released from x = −0.01 m, bottom left panel shows particles released from x = −0.00902 m,
bottom right panel shows particles released from x = −0.008 m. Color bar shows particle capture rate for each point within the cross section.

have a significant impact on capture rate as long as parti-
cles are released within the tumor. We release particles from
outside the tumor (x = −0.011 m), at the tumor boundary
(x = −0.01 m), just before the edge of the bar magnet (x =
−0.00902 m), and past the edge of the bar magnet (x =
0.008 m) to assess multiple release locations. We simulate
particle motion in both capillaries and arterioles for distances
of d = 0 m and d = 0.001 m, both with and without RBC
collisions. Figures 15 and 16 show the capture rate is close
to 1 in capillaries for all particles released within the radius
of the tumor when Ksh = 0. In the absence of RBC collisions,
particles rapidly reach the vessel wall with minimal horizontal
drift, leading to a situation similar to Fig. 14 for the dipole
model. However, Figs. 17 and 18 show that when RBC colli-
sions are present, the capture rate remains near 1 only at the
edge of the bar magnet in both capillaries and arterioles. This
is due to the magnetic force being the strongest at the edge of
the bar magnet due to the sharp corners. At both x = 0.01
and x = 0.008 m, the decreased magnetic field strength is
not sufficient to maintain such a high capture rate, although
substantial capture still occurs. At x = −0.011 m, we observe
a capture rate of 0 in capillaries and approximately 0.29 in
arterioles. In arterioles, particles in the center of the vessel are
most likely to hit the tumor because they are located farthest
from the vessel wall, allowing the magnetic field to pull them
into the tumor radius.

Figures 19 and 20 show when d is increased to 0.001 m, the
capture rates remain relatively constant across release points
within the tumor radius. Capture rates are 0.51, 0.57, and
0.56 in capillaries and 0.6, 0.62, and 0.58 in arterioles at
x = −0.01, x = −0.00902, and x = −0.008 m, respectively.
At d = 0.001 m, the magnetic field strength is too weak for
the initial release site to have a significant impact on the
capture rate.

VI. CONCLUSION

We study the motion of superparamagnetic nanoparticles
in the magnetic field of both a point dipole and a physical
bar magnet. We analyze particle behavior in capillaries, ar-
terioles, and arteries, and find that while high capture rate is
possible in all three vessel types, magnetic drug delivery is
effective over a wide range of conditions only in capillaries
and arterioles. Even in the absence of a magnetic field, we find
diffusion occurs so rapidly in capillaries and arterioles that a
0.5 capture rate is still possible if nanoparticles are released
at or within the tumor radius. We show that the distance from
the magnet to the vessel is the most significant determinant of
particle capture rate in both the point dipole and bar magnet
models. Capture rates of 1 can be sustained up to a distance
of 1.5 cm in both capillaries and arterioles before diminishing
rapidly. The high blood velocity in arteries presents a major
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FIG. 20. Arteriole cross sections using the bar magnet with Ksh = 0.05, d = 0.001 m. Top left panel shows particles released from x =
−0.011 m, top right panel shows particles released from x = −0.01 m, bottom left panel shows particles released from x = −0.00902 m,
bottom right panel shows particles released from x = −0.008 m. Color bar shows particle capture rate for each point within the cross section.

barrier to magnetic drug delivery, although it can be effective
if larger particles of size ap = 500 nm are used, the mag-
net is placed within 2 cm of the vessel, and has a strength
of at least 560 A m2. We consider a range of Ksh values to
represent various degrees of red blood cell collisions and
find that capture rate decreases linearly with Ksh for particles
located in the sensitive area; this relationship is not expected
to hold at extreme distances close to or far from the magnet
due to the overwhelmingly strong or weak magnetic force.
When a bar magnet is used, we find the weaker magnetic
field limits its effectiveness and only leads to high capture
rate when placed <1 mm from the vessel when Ksh = 0.05.
However, the bar magnet achieves high capture rate up to
1 cm when Ksh = 0, indicating a need to better understand
the extent of RBC collisions in blood vessels. Finally, we
find that larger particles significantly increase capture rates,
making further study of particle clusters a promising direc-
tion, although potential vessel occlusion in smaller vessels
must be considered and limits the maximum particle size.
Applying a polymer coating or surfactant to nanoparticles has
been discussed in Ref. [41] and prevents nanoparticle agglom-
eration, decreasing the probability of negative effects on the
cell.

Our results suggest a few key recommendations for future
research and transition to clinical applications: (i) nanoparti-
cles should be released as close to the tumor site as possible
to prevent particles diffusing to the vessel wall too early;
(ii) magnets should be placed as close to the tumor as possible,
and that increasing the magnetic strength does not signifi-
cantly extend the range of magnet placements; (iii) magnetic
drug delivery should be used in capillaries and arterioles,
although it is effective in limited cases in arteries only if
the particle size is increased; (iv) using larger nanoparticles
or clusters of nanoparticles can lead to significantly higher
capture rates in arterioles. Our computational model pro-
duces data to support these conclusions, which provides a
theoretical basis on which other experiments and further re-
search can be done to improve the magnetic drug delivery
procedure.

Finally, an underlying assumption of our model is that
blood flow is analogous to pipe flow; however, this may only
be an appropriate approximation for healthy individuals. For
patients with atherosclerosis or other conditions that modify
the vessel wall, these results may no longer be representative.
Additionally, medications such as blood thinners would affect
the blood velocity and viscosity profiles, and cause particle
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trajectories to deviate from these results. Vessel bifurcations
and more complex geometries are also possible directions
for future research. We assume a constant tumor size since
magnetic drug delivery can deliver nanoparticles to the tumor
site in seconds, whereas tumor development occurs on the
timescale of days or weeks; however, dynamic tumor devel-
opment or abnormal tumor growths over time may require
a reevaluation of magnet placement in order for magnets to
be placed sufficiently close to the blood vessel and attract
nanoparticles. Nevertheless, our results present clear guide-
lines for nanoparticle release location, magnet placement, and
magnet strength.
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APPENDIX: BAR MAGNET FIELD EQUATIONS

Here we state the equations for the magnetic field sur-
rounding a bar magnetic with width 2a, length 2b, and height
L, which were obtained from Ref. [42]. Note that here the
origin is located at the top of the Bar magnet (see Fig. 1).

Hx = Br

4πμ0
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