
PHYSICAL REVIEW E 106, 015103 (2022)

Nanoparticle transport within non-Newtonian fluid flow in porous media
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Control over dispersion of nanoparticles in polymer solutions through porous media is important for sub-
surface applications such as soil remediation and enhanced oil recovery. Dispersion is affected by the spatial
heterogeneity of porous media, the non-Newtonian behavior of polymer solutions, and the Brownian motion
of nanoparticles. Here, we use the Euler-Lagrangian method to simulate the flow of nanoparticles and inelastic
non-Newtonian fluids (described by Meter model) in a range of porous media samples and injection rates. In
one case, we use a fine mesh of more than 3 million mesh points to model nanoparticles transport in a sandstone
sample. The results show that the velocity distribution of nanoparticles in the porous medium is non-Gaussian,
which leads to the non-Fickian behavior of nanoparticles dispersion. Due to pore-space confinement, the
long-time mean-square displacement of nanoparticles depends nonlinearly on time. Additionally, the gradient
of shear stress in the pore space of the porous medium dictates the transport behavior of nanoparticles in the
porous medium. Furthermore, the Brownian motion of nanoparticles increases the dispersion of nanoparticles
along the longitudinal and transverse direction.
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I. INTRODUCTION

The migration and dispersion of nanoparticles in porous
media are of considerable importance in various commercial,
industrial, and natural systems [1–3]. The addition of nanopar-
ticles in the polymer solution enhances the liquid’s functional
properties [4]. Therefore, the nanoparticles are widely used
in various biological and industrial applications. For example,
the use of nanoparticles to improve oil recovery has shown
promising results for application in the field [5,6]. Nanopar-
ticles in polymeric solutions improve the wetting properties
of the pore surfaces [7], modify viscosity, reduce surface
tension [8], control mobility, and has the potential to act as
a catalyst [7]. Pore accessibility is an essential factor for
nanoparticle transport in heterogeneous porous media, mainly
in applications where nanoparticles are used as catalyst or
property modifiers, e.g., soil remediation [9,10]. However, the
fate and transport of nanoparticles within polymeric solutions
at the pore scale are not fully understood due to the Brownian
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motion of nanoparticles and the non-Newtonian rheology of
polymeric fluids.

Understanding the nanoparticle transport in porous materi-
als is challenging due to multiple reasons. (i) The complex
geometry of porous media, viz. voids accessibility, spatial
structure, and connectivity govern nanoparticles’ mobility in
porous media [11]. (ii) Sizes of particles and pores affect
the nanoparticles’ dispersion [3,11,12]. (iii) Confinement in
disordered porous media results in a non-Gaussian distri-
bution of nanoparticle displacements [2]. (iv) Spatial and
temporal variations in the fluid flow path affect the lon-
gitudinal and transverse displacement of nanoparticles. (v)
The non-Newtonian shear-dependent rheology of the poly-
meric fluid further influences the migration and dispersion
of nanoparticles in porous media [3,13]. Therefore, it is
important to incorporate above-mentioned factors and dis-
tinguish different processes to elucidate the nanoparticle
transport and dispersion in porous media under realistic
conditions.

Advection and diffusion control dispersion of nanopar-
ticles in heterogeneous porous media. Most studies of
dispersion have focused on Newtonian fluids [11,14–23]. Few
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studies in literature have evaluated the dispersion of nanopar-
ticles in the longitudinal and transverse directions in porous
media by tracking the movement of nanoparticles of non-
Newtonian fluids. Scholz et al. observed a nonlinear increase
in the dispersion coefficient of nanoparticles (size, 3 μm)
in the polyacrylamide solution flowing in a square periodic
array of obstacles [12]. They attributed the increase in dis-
persion with Weissenberg number to the cumulative effects
of rheology-dependent velocity fluctuations arising from the
periodic order in the medium. Babayekhorasani et al. [2]
suggested that fluid rheology-dependent velocity fluctuations
could be suppressed by random mixing in a heterogeneous
porous medium compared to the ordered porous medium.
In another work, Babayekhorasani et al. [24] reported that
an increase in the confinement of porous medium decreases
the diffusive mobility of nanoparticles in both Newtonian
and non-Newtonian fluids due to hydrodynamic interactions.
The pore-scale trajectories of nanoparticles motion tracked
by Jacob et al. [3] showed that the elastic turbulence-based
velocity fluctuations in hydrolysed polyacrylamide are higher
in ordered porous media than they are in disordered porous
media.

Using microfluidic experiments, Maitri et al. [25] found
that nanoparticle channelization and distribution depend on
the elasticity and Weissenberg number in ordered and disor-
dered porous media. They suggested that a simplified structure
may not always give a realistic overview of mass trans-
port phenomena in a complex porous medium [25]. Finally,
Aramideh et al. [26] used direct numerical simulation to in-
vestigate the dispersion of nanoparticles in a viscoelastic fluid.
They observed that the elasticity did not alter the nanopar-
ticles’ long-term dispersion in viscoelastic fluids flowing
through a 2D porous medium of a random array with a
porosity of 40%. The viscoelasticity of non-Newtonian flu-
ids lead to local velocity fluctuation during non-Newtonian
fluid through porous media [27–31]. These chaotic velocity
fluctuations significantly affect dispersion of nanoparticles in
heterogeneous porous media [24,32].

A. This study

One can track the motion of individual particles at the
pore scale to upscale the microscopic mass transport mech-
anisms and determine the macroscopic transport properties.
This helps explain the pore-scale mass transport mechanism
and provides representative macroscopic transport properties
in the porous media. Although particle tracking in Newtonian
fluids and 2D porous media has been extensively studied
[11,33–35], there are no adequate investigation of nanoparti-
cle transport in non-Newtonian fluids and 3D porous medium
(with an exception of Refs. [2,24]).

The dependence of hydrodynamic interaction on dimen-
sionality is different in 2D and 3D [36,37]. Therefore, it is
not clear whether dispersion would be similar in 2D and
3D domains. Likewise, there are conflicting reports about
the role of disorder in elastic fluctuations and dispersion in
porous media (see Refs. [2,24] versus Ref. [12]). Previous
research on nanoparticle tracking was primarily carried out
at a significantly small domain in 2D due to instrumental
limitations [2,3,12,38]. An exception to this is the work of

Refs. [24,39]. Furthermore, the porosity considered in these
studies was considerably larger than the natural porous media.
It is expected that reducing porosity and increasing hetero-
geneity will significantly alter dispersion. Previous studies
on nanoparticle dispersion were carried out in a viscoelastic
fluid [3,24]. Hence, it is pertinent to know how nanoparticles
migrate in an inelastic fluid. Therefore, we simulated nanopar-
ticle transport of an inelastic non-Newtonian fluid flowing
through a converging-diverging microchannel in 3D, homoge-
neous ordered 2D porous medium, and Mt. Simon sandstone
in 3D over a range of injection rates. The objectives of the
present work include:

(i) developing an Eulerian-Lagrangian framework to simu-
late nanoparticle transport within non-Newtonian fluid and 3D
porous media incorporating particle-fluid, particle-particle,
particle-wall interactions, and Brownian motion;

(ii) evaluating pore-accessibility of nanoparticles in hetero-
geneous domains;

(iii) determining dispersion coefficient along transverse
and longitudinal direction over a range of fluid injection rates
and porous media geometries.

This study aims to make two new contributions. To our
knowledge, there is no 3D pore-scale two-phase simula-
tion study that incorporates nanoparticles as a distinct phase
(using the Euler-Lagrangian method) during an inelastic non-
Newtonian fluid flow in a real 3D heterogeneous porous
medium, which is the first contribution of the work. Second,
contrary to the results in the literature [40,41], our results
show anomalous behavior of nanoparticle dispersion in both
homogeneous and heterogeneous porous media during flow
in a Newtonian and an inelastic non-Newtonian fluid over a
range of Péclet numbers. In addition, we have also shown that
the gradient of shear stress formed during fluid flow modulates
the migration of nanoparticles in porous media.

II. GOVERNING EQUATIONS

To investigate nanoparticle transport in a polymeric non-
Newtonian fluid, we use the Eulerian-Lagrangian approach.
In this approach nanoparticles are treated as suspended in the
solution. We solve governing equations of the inelastic Meter
model fluid. The nanoparticle motions are predicted based on
the previously calculated flow field and Newton’s second law
at each time step. We use an OpenFOAM C++ library to per-
form Eulerian-Lagrangian-based particle-fluid simulations.

A. Eulerian frame

We describe the single-phase, laminar flow of non-
Newtonian fluids using continuity [Eq. (1)] and momentum
[Eq. (2)] equations,

∇ · uf = 0, (1)

ρf

(
∂uf

∂t
+ uf · ∇uf

)
= −∇P + ∇ · τ − Sp, (2)

where ρf [kg/m3] is the density of fluid, uf [m/s] is the
velocity vector of fluid phase, P [Pa] is pressure, t [s] is time,
τ [Pa] is the fluid stress tensor, and Sp is an additional source
term that considers the effect of particle forces on the fluid
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motion at each time step. The constitutive equation of the
inelastic stress-dependent Meter model is defined as [42–44]

τ = 2 η(τ ) D = η(τ ) [∇uf + (∇uf )
T ]. (3)

In the present work we use Meter model [Eq. (4)], which
describes S-shaped rheology of most of the shear thinning
and shear thickening fluids. This model describes the stress
dependence of the shear viscosity as [42–44]

η = η∞ + η0 − η∞
1 + (

τ
τm

)S , (4)

where η [Pa s] is the shear viscosity at a given shear stress, η0

[Pa s] is the zero-shear viscosity, η∞ [Pa s] is an infinite shear
viscosity, τm [Pa] is the critical shear stress parameter, and S
is an exponent representing slope.

B. Lagrangian frame

Particles interact with each other, with the wall, and with
the surrounding fluid while migrating in the porous medium.
The Discrete Element Model (DEM) can be used to solve the
governing equations of particle motion [45–47] in porous me-
dia. Newton’s second law governs the motion of the particles
in the Lagrangian framework [Eq. (5)] [45,46,48]

mp
dup

dt
= F = FC + FF, (5)

where mp (kg) is the particle mass, up (m/s) is the particle
velocity, F is the total forces acting on particles, FC is the
contact forces acting on the particles due to interparticle inter-
action or particle-wall interactions, and FF is the particle-fluid
interaction forces acting on particles. Readers are referred
to Ref. [46] for details on the implementation of DEM in
OpenFOAM.

1. Particle-fluid interaction

Several particle-fluid interaction forces can act on the par-
ticle during its migration in the fluid [36]. In the present work,
we defined particle-fluid forces as

FF = FD + FG,B + FP + FB, (6)

where FD, FG,B, FP, FB are the drag force, combined gravity
and buoyancy force, pressure force, and Brownian motion
forces acting on the particle, respectively. The drag force (FD)
acting on the particle is given by

FD = 3Cd Rep mp η (uf − up)

4 ρp d2
p

, (7)

where Cd is the drag coefficient, Rep is the particle Reynolds
number, ρp [kg/m3] is the density of the particle, and dp

[m] is the diameter of the particle. The Reynolds number of
particles in the flow is below 10 in the present work, thus,
Cd Rep = 24 (1 + 1

6 Re2/3
p ) [46]. The combined buoyancy and

gravity forces (FG,B) due to gravity g [m/s2] and the force
act on the particle due to local pressure gradient (FP) are
estimated as [46]

FG,B = mp g

(
1 − ρf

ρp

)
, (8)

FP = π d3
p

6
�P. (9)

Nanoparticles exhibit Brownian motion, which is expected
to strongly affect their dispersion in a porous medium. Thus,
we implemented the Brownian force (FB) as a Gaussian white
noise random process following Lee and Ahmadi [49] as

FB = ξi

⎛
⎝ π

�t
δij

216 ν kB T

π2 d5
p ρf Cc

( ρp

ρf

)2

⎞
⎠

1
2

, (10)

where ξi is the Gaussian random number with zero mean
and unit variance, �t is the time step, δij is the Kronecker
δ function, kB (J/K) is the Boltzmann constant, T (K) is the
temperature, ν (m2/s) is the kinematic viscosity, and Cc is the
Stokes-Cunningham slip correction, which is a function of the
molecular mean free path (λm), given as

Cc = 1 + 2λm

dp

⎛
⎜⎝1.257 + 0.4e

1.1dp

2λm

⎞
⎟⎠. (11)

2. Particle contact forces

We use a simple spring-slider-dashpot model implemented
in OpenFOAM to determine contact forces due to particle col-
lisions. The dashpot represents viscous dissipation, whereas
the spring represents elastic deformation. This model uses
the Hertzian contact theory [48]. Readers are referred to
Refs. [46,48,50–52] for a detailed description of particle con-
tact forces. In summary, the force Fp,ij acting during collision
between two particles i and j is divided into normal (Fn,ij) and
tangential (Ft,ij) components and is given as

Fp,ij = Fn,ij + Ft,ij = (
knδ

b
n + γnνn

) + (ktδt + γtνt ), (12)

where kn and kt are stiffness coefficients in the normal and
tangential directions of particles, δn and δt are normal and
tangential displacements due to particle-particle interactions,
b = 1.5 is a collision constant, γn and γt are normal and
tangential viscous damping constants, and νn and νt are the
relative velocities between particles in normal and tangential
directions. Similarly, the force Fw,i acting during a collision
between particle i and wall w is decomposed into normal Fn,wi

and tangential Ft,wi parts and are calculated as

Fw,i = Fn,wi + Ft,wi = (
knwδb

nw + γnwνnw
)

+ (ktwδtw + γtwνtw), (13)

where knw and ktw are stiffness coefficients in the normal and
tangential direction of the particles-wall interaction, respec-
tively. δnw and δtw are normal and tangential displacements
due to the particle-wall interactions, respectively. γnw and γtw

are normal and tangential viscous damping constants for the
particle-wall interactions, respectively. νnw and νtw are the
relative velocities between particle and wall in normal and
tangential directions, respectively. The total force acting on
the particle due to particle-particle and particle-wall interac-
tion will be as

FC = Fp,ij + Fw,i. (14)
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FIG. 1. Geometry of (a) symmetric converging-diverging microchannel with 20 repetitive elements (3D), (b) homogeneous ordered porous
medium (2D), and (c) Mt. Simon sandstone (3D). Red indicates pore spaces. Fluid flows along positive x direction.

C. Numerical scheme and the solver

The DPMFoam solver is a discrete particle modeling solver
of OpenFOAM, designed to couple Eulerian and Lagrangian
frames. A detailed description of the DPMFoam is pre-
sented in Ref. [46]. We modified the DPMFoam solver of
OpenFOAM to implement the Meter model. For simulating
inelastic Meter model fluid, we used backward scheme to
discretize time, Gauss linear upwind to discretize divergence,
Gauss linear scheme to discretize gradient, and Gauss-linear
corrected scheme to discretize the Laplacian term. PIMPLE
algorithm was used for pressure-velocity coupling [53,54].
We used the Euler scheme to integrate velocity during La-
grangian particle transport. The computationally expensive
simulations were carried out in parallel in the high per-
formance computing cluster facility of the University of
Manchester.

D. Numerical domain and boundary conditions

We simulated nanoparticle transport (dp of 400 nm) in
3D converging-diverging microchannel having 20 repetitive
elements, in a 2D homogeneous porous medium having poros-
ity of 70%, and in 3D Mt. Simon sandstone of Ref. [55]
having porosity of 24%, as shown in Fig. 1. The pore-
sizes of microchannel, homogeneous medium, and sandstone
ranged from 32–108 μm, 150 μm, and 2–100 μm, re-
spectively. The degree of anisotropy of sandstone is 0.255,
whereas microchannel and homogeneous 2D porous medium
are isotropic.

No-slip velocity and zero fixed flux pressure boundary
conditions were applied at front, back, top, bottom, and solid
surfaces of 3D domain. Zero flux corrected velocity and

total pressure boundary conditions were applied to the right
boundary (outlet) of the porous medium domain. Constant
injection velocity boundary condition was applied at the inlet
(left boundary) of the porous medium. We injected 500 (unless
otherwise noted) polystyrene nanoparticles per second for 1 s
at the inlet (left boundary) during numerical experiments.
The polystyrene nanoparticle had a density of 1050 kg/m3,
a Young modulus of 1.25 × 109 N/m2, and a Poisson’s ratio
of 0.33. For Brownian motion force calculation, we fixed
the temperature of the polymeric solution at 300 K and the
mean free path of the particle in the polymeric solution as
1 × 10−9 m. Polyacrylamide solution [56,57] is a commonly
employed polymeric solution for enhanced oil recovery ap-
plications [58–60]. Thus, we investigated the transport of
nanoparticles in 0.125% polyacrylamide (PAA) fluid having
density of 1300 kg/m3 of Ref. [3]. The Meter model parame-
ters of PAA are η0 = 2.1 Pa s, η∞ = 0.001 Pa s, τm = 0.3 Pa,
and S = 1.8 [3]. We simulated the flow of polymeric non-
Newtonian fluid and Newtonian fluid (η = 2.1 Pa s) over a
range of injection rates. The Courant number C = u�t

�x , where
�t is the timestep and �x is the length interval, was main-
tained below 0.9 in all simulations. A fine mesh of more
than 3 million mesh points were generated in the pore space
of porous medium using snappyHexMesh module of Open-
FOAM. The volume fraction of the nanoparticles was lower
than 0.005 during all simulations, which implies that the sys-
tem is dilute and particle interaction was limited. The rebound
module of OpenFOAM was used to consider the aggregation
of nanoparticle particles and the adsorption of nanoparticles
at porous media boundaries. During the simulation, the coef-
ficient of restitution (e) was 0.95 [45,46,48], which implies
a real-world inelastic collision between nanoparticles. The
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particles were randomly distributed in the inlet plane at the
start of the numerical experiments to evaluate the effect of ran-
dom particle distribution at the inlet on dispersion. The spatial
distribution of nanoparticles at the inlet was significantly dif-
ferent at each Péclet number, as we injected a constant number
of nanoparticles per second.

III. NANOPARTICLE TRAJECTORY ANALYSIS

The mean-square displacement (MSD) of the nanoparticles
as a function of a lag time (t ′) in a porous medium was
calculated as [11]

MSD(t ′) = 〈r(t ′)2〉 = 〈[r(t + t ′) − r(t ′)]2〉, (15)

where r(t ) is position of nanoparticles in porous medium
at time t , and 〈 〉 indicates an ensemble or time-averaged
value. The MSD was fitted to 〈r(t ′)2〉 = 2DL,T t ′ to determine
dispersion coefficient [61]. In addition, using the particle
velocity data, we calculated longitudinal (DL, along flow
direction) or transverse (DT, normal to flow direction) disper-
sion coefficients using Eq. (16) [3,62]:

DL,T = 1

2

dσ 2
L,T

dt2
=

∫
CL,T(t ′) dt ′, (16)

where CL,T(t ′) = 〈[vx,y(t + t ′) − 〈vx,y〉][vx,y(t ) − 〈vx,y〉]〉 is
the autocorrelation of velocity vx,y(t ′), and σ 2

L,T(t ) which is the
second moment of the particle displacement in a longitudinal
or transverse direction. Here, vx,y(t ) and vx,y(t + t ′) are the
longitudinal and transverse velocity of a particle at the start
of trajectory and after a lag time t ′, respectively; and 〈vx,y〉 is
the average velocity of particles over all time and trajectories
[3,62]. The Stokes-Einstein equation was used to determine
the molecular diffusion coefficient of spherical nanoparticles
in a non-Newtonian fluid [61],

DSE = kB T

3π η0 dp
, (17)

where DSE [m2/s] is the Stokes-Einstein-based molecular dif-
fusion coefficient. The dispersion coefficient was normalized
by DSE. We define the relative variation in the rate of advec-
tion and diffusion using Péclet number (Pe), and the relative
variation of inertial forces and viscous forces using Reynolds
number (Re) following

Pe = Uavg δL

DSE
, (18)

Re = ρf Uavg δL

ηeff
. (19)

Here, Uavg (m/s) is the average pore-scale velocity of the
fluid, ηeff (Pa s) is the effective viscosity of the fluid flow,
and δL (m) is the characteristic length scale. The velocity,
viscosity, shear rate, and pore size vary spatially in the porous
medium; thus, to estimate the representative dimensionless
number of the fluid flow in the porous medium, we use
volume-averaged values of velocity, viscosity, and shear rate.
We integrate the pore-scale velocity, shear rate, shear stress,
and viscosity over a pore space filled with polymeric non-
Newtonian fluids to determine the volume-averaged velocity
(Uavg), volume-averaged shear rate (γ̇avg), volume-averaged

shear stress (τavg), and volume-averaged effective viscosity
(ηeff) [44]. The dimensionless time is defined as

tD = t Uavg

δL
. (20)

IV. ASSUMPTIONS AND LIMITATIONS

Most non-Newtonian fluids show viscoelastic properties
(e.g., relaxation time, normal stress, extensional viscosity, and
shear modulus). However, the rheology of non-Newtonian
fluids has been studied in the past by looking at the flow
as either a generalized Newtonian fluid (like power-law,
Bingham, Cross, Carreau, Elis, and Meter models) or a vis-
coelastic fluid (like Maxwell, Oldroyd-B [63], Giesekus [64],
Phan-Thien-Tanner [65], and Bautista-Manero [66] models).
These models were created using an empirical approach
with several simplified assumptions [67]. As a result, each
model has its own limitations and cannot be applied to all
types of non-Newtonian fluids. In the present paper, we
used the Meter model [42], which is an empirical equa-
tion that fits the shear viscosity-shear stress data of most
shear thinning as well as shear thickening fluids. Please see
our recent work [43,44,68,69] for more details on the Meter
model. The fluids’ viscoelasticity is not taken into account
by the Meter model equation. As a result, the impact of
elastic turbulence-based velocity fluctuations on nanoparticle
transport is overlooked in this study. The Euler method-
based viscoelastic fluid flow simulations have numerical
stability issues [50,70,71]. Furthermore, there is still a chal-
lenge to coupling Euler method-based viscoelastic models
with a Lagrangian framework. Readers are referred to Refs.
[67,70–72] for detailed information on the assumptions and
limitations of GNF and viscoelastic fluid flow simulations.
These models provide some understanding of the fluid dy-
namics of non-Newtonian fluids, despite the fact that they are
based on specific assumptions and have limits.

V. RESULTS AND DISCUSSION

A. Homogeneous porous medium

Tracking nanoparticle transport in 3D provides insight
into transport in real (or practical) settings compared
to 2D. Therefore, we simulated the flow of nanopar-
ticles in Newtonian and inelastic non-Newtonian fluids
and in 3D converging-diverging microchannel over a
range of Pe (106–108). Figure 2 and movie S1 of the
Supplemental Material [73] show nanoparticle transport be-
havior in Newtonian and non-Newtonian fluids at Pe of 2.48 ×
106. Although fluid flow velocity is low (i.e., 10−4 m/s),
nanoparticles show channelized motion along a flow direc-
tion with time in both Newtonian and non-Newtonian fluids.
Movie S1 of the Supplemental Material [73] shows that the
spatial distribution of nanoparticles after 2 s is relatively dense
compared to the spatial distribution at 5 and 10 s in both New-
tonian and non-Newtonian fluids. The local spatial density of
particles at 2 s was 1.72 × 105 particles/mm3, whereas spatial
density of particles at 10 s were 1.44 × 104 particles/mm3.
This is expected as there is axial dispersion even in straight
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FIG. 2. Spatial distribution of nanoparticles at tD = 12 in converging-diverging microchannel: (a) with non-Newtonian fluid and (b) New-
tonian fluid at Pe = 2.48 × 106. Spatial distribution of (c), (d) velocity, (e), (f) shear stress, and (g) viscosity at the middle section of the
microchannel. The spatial distribution of nanoparticles at section x-x: (h) non-Newtonian fluid and (i) Newtonian fluid. (j), (k) Probability
density function (PDF) of normalized shear stress and normalized shear stress gradient in Newtonian (N) and non-Newtonian (NN) fluids.
Shear stress and shear stress gradient are normalized using average value.

channels. This also suggests that converging-diverging geom-
etry influenced the dispersion of nanoparticles.

The velocity of the nanoparticles depended on the spa-
tial location of particles. The particles at the center had
high velocity, whereas particles near boundaries had much
lower velocity. Figures 2(c)–2(g) show a spatial profile of
the velocity, shear stress and viscosity of the non-Newtonian
fluid and Newtonian fluid at the center of the microchannel.
Figures 2(e) and 2(f) depict that shear stress at the corner
and center of the channel is minimum in both Newtonian
and non-Newtonian fluids. This spatial distribution of shear
stress imparts resistance for the transport of nanoparticles in
those regions, which slows down the velocity of nanoparticles
trapped at a corner. Figures 2(e) and 2(f) show that shear stress
at the center of the microchannel is minimum, and the gradient
of shear stress initially increases and then decreases spatially
from the center toward outer boundaries in both converging
and diverging regions of the microchannel. This spatial dis-
tribution of shear stress of fluid flow governs the location
of nanoparticles during their transport. Figures 2(h) and 2(i)
show that most nanoparticles avoided the regions with lower
shear stress, i.e., the center of the microchannel. Therefore,

most nanoparticles were mostly channelized toward equilib-
rium position, i.e., in the region with maximum shear stress.
This result agrees with channelization of nanoparticles in
non-Newtonian fluids reported by Refs. [74–77]. Figures 2(e)
and 2(f) show distinct difference in shear stress distributions
between the non-Newtonian fluid and the Newtonian fluid
due to spatial variation of viscosity in a non-Newtonian fluid
[see Fig. 2(g)]. The probability density function (PDF) of
normalized shear stress and normalized shear stress gradient
of Newtonian and inelastic non-Newtonian fluid shows signif-
icant difference [see Figs. 2(j) and 2(k)]. This result imply that
the slight spatiotemporal variation in nanoparticle distribution
in Newtonian and non-Newtonian fluids at the same Pe is due
to spatial viscosity and shear stress variations.

Figure 3 shows the spatial distribution of nanoparticles
at tD = 2, and 7 in Newtonian and inelastic non-Newtonian
fluids in the 2D homogeneous porous medium at Pe of
1.13 × 106. These results indicate that nanoparticles fol-
low a similar channelized flow path and but slightly dif-
ferent spatiotemporal distribution in both Newtonian and
non-Newtonian fluids. The slight variation of resident con-
centration of nanoparticles [Fig. 3(e)] in both Newtonian and

015103-6



NANOPARTICLE TRANSPORT WITHIN NON-NEWTONIAN … PHYSICAL REVIEW E 106, 015103 (2022)

tD= 2

Newtonian Non-Newtonian

0
0.2

yticolev 

0.4
0.6
0.8

1

0
0.2

 
N

or
m

al
iz

ed
 

N
or

m
al

iz
ed

 
raehs

st
re

ss

0.4
0.6
0.8

1

tD= 7

(a) 

(b) 

(c) 

(d) 

(e) 

(f)

(g) 

(h) 

(i) 

(j)  

Normalized time

FIG. 3. (a), (f) Spatial distribution of nanoparticles at tD = 2,
(b), (g) at tD = 7. (c), (h) Normalized velocity of fluid and (d,
i) normalized shear stress in 2D homogeneous porous medium in
Newtonian (N) and non-Newtonian (NN) fluids. (e) Normalized con-
centration of nanoparticles in the porous medium as a function of
dimensionless time (tD). (j) Mean-square displacement (MSD) along
longitudinal direction and transverse direction (Pe = 1.13 × 106).
Black line shows that short time MSD is function of t ′2 indicating
superdiffusive dispersion and long time transverse MSD is function
of t ′0.3 indicating subdiffusive dispersion.

non-Newtonian fluids is due to the shear-thinning property
of non-Newtonian fluids. The non-Newtonian curve is not
consistently on one side of the Newtonian curve in Fig. 3(e).
Figure 3(j) shows an overlap of MSD profile along lon-
gitudinal and transverse direction for both Newtonian and
non-Newtonian fluids. These results imply that the dispersion
of nanoparticles in an inelastic non-Newtonian fluid is not
significantly affected by inelastic shear thinning nature of the
non-Newtonian fluid in a 2D homogeneous porous media of
porosity 70%.

Figure 3(j) shows that nanoparticles follows anomalous
dispersion. Nanoparticle dispersion deviates from a linear
relationship and adopted an asymptotic form of MSD ∝
t ′α , here α is the anomalous dispersion exponent [78,79],
α = 1 indicates Fickian dispersion, α < 1 indicates subdiffu-

sive dispersion, and α > 1 indicates superdiffusive dispersion
[11,78]. Figure 3 shows that MSD ∝ t ′2, which corresponds
to non-Fickian ballistic superdiffusive dispersion process at
short time [11,19,78,79]. MSD ∝ t ′0.3 along transverse direc-
tion implies that nanoparticles follows subdiffusive process at
long time. Furthermore, we were not able to fit the analytical
solution of the advection-dispersion equation (Fickian trans-
port) in Fig. 3(e) to estimate the dispersion coefficient. These
results indicate that nanoparticles transport is non-Fickian
and this likely arises from the strong confinement for both
Newtonian and inelastic non-Newtonian fluids. The overlap
of the MSD curves of Newtonian and non-Newtonian fluids
in Fig. 3(j) means that the rheology of inelastic fluids does
not play an important role in the non-Fickian behavior of
nanoparticles transport in homogeneous 2D porous media.

B. Mt. Simon sandstone

Figure 4 depicts the spatial distribution of nanoparticles
at dimensionless time of 6 and 45 in Newtonian and in-
elastic non-Newtonian fluids at Pe of 1.26 × 106 along with
spatial distribution of shear stress gradient in the Mt. Si-
mon sandstone. Movies S2, S3, and S4 of the Supplemental
Material [73] show nanoparticle transport behavior in Mt.
Simon sandstone at Pe of 1.26 × 106, 2.51 × 107, and 1.26 ×
108, respectively. At Pe of 1.26 × 106, the spatial distribution
of nanoparticles is scattered [Figs. 4(a) and 4(b)]; on the
contrary, due to the channelled migration of nanoparticles,
this scattered distribution was not observed at higher Pe (i.e.,
1.26 × 107 and 1.26 × 108). Furthermore, there are drastic
spatial variations of shear stress gradient values in sandstone
for Newtonian and non-Newtonian fluids [Figs. 4(c) and 4(f)].
Figure 4(g) shows that normalized shear stress distributions
in Newtonian and non-Newtonian fluid over a range of Pe
are different. Similarly, normalized gradient of shear stress
in Newtonian and non-Newtonian also show significant dif-
ference in the order of values [Fig. 4(h)] over a range of Pe.

The local shear stress gradient governs the spatiotem-
poral distribution of nanoparticles in Newtonian and non-
Newtonian fluids. Figures 4(g) and 4(h) indicate that the
probability density function (PDF) of distribution normalized
shear stress and normalized shear stress gradient of Newto-
nian and non-Newtonian fluid is significantly different. The
normalized shear stress PDF curve during non-Newtonian
fluid flow shows a flat region at low shear stress values,
whereas Newtonian fluid flow shows a continuously decreas-
ing profile. The flat region of the normalized shear stress
PDF curve of non-Newtonian fluid in Fig. 4(g) indicates
that a large portion of sandstone has low shear stress values
during non-Newtonian fluid flow as compared to the Newto-
nian fluid flow. Furthermore, the shear stress gradient PDF
of Newtonian fluid is higher than non-Newtonian fluids PDF
[see Fig. 4(h)]. These results indicate that Newtonian fluid
flow has more regions with high shear stress values and high
shear stress gradients as compared to the non-Newtonian fluid
flow. The transport of nanoparticles in the high-shear stress
zone is much stronger compared to the low-shear stress zone.
Thus, the dispersion of nanoparticles in a Newtonian fluid is
expected to be more as compared to the dispersion in non-
Newtonian fluid in sandstone.
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FIG. 4. Spatial distribution of nanoparticles in Mt. Simon sandstone at normalized time (tD) 6 and 45 and spatial distribution of shear stress
gradient at Péclet number 1.26 × 106 in Newtonian and non-Newtonian fluids. (g), (h) Probability density function (PDF) of normalized shear
stress (τ/τavg) and normalized shear stress gradient in Newtonian (N) and non-Newtonian (NN) fluids over range of Péclet number. Size of
nanoparticles in the images were enlarged for visibility. Shear stress and shear stress gradient is normalized using average value.

To evaluate further, we segmented pore space of sand-
stone into immobile and mobile regions. The immobile
regions are defined as regions in which fluid velocity is 3
orders of magnitude lower than the average velocity [44].
Figure 5 shows immobile regions during Newtonian and in-
elastic non-Newtonian fluid flow at Pe of 6.28 × 107 along
with spatial distribution of nanoparticles at tD of 12. 22%
and 25% of pore-space regions of sandstone were immo-
bile during Newtonian and non-Newtonian fluid flow at Pe
of 6.28 × 107, and large portion of immobile zones were
dead-end zones of sandstone. Likewise, we observed that
channelized fluid transport at Pe > 107 in the heterogeneous
porous medium leads to a slightly higher stagnant/immobile
region in the non-Newtonian fluid than the Newtonian fluid.

We evaluated nanoparticle dispersion using the mean-
square displacement and velocity autocorrelation function
approach [2,3,12,24,26]. Figures 6(a) and 6(b) show that
MSD is a nonlinear function of lag-time along longitudinal
and transverse directions in the Mt. Simon sandstone over
a range of Péclet numbers. Figures 6(a) and 6(b) indicate
that the difference between Newtonian and non-Newtonian
for MSD curves increases for higher lag-times. Figures 6(a)
and 6(b) show that short time MSDL,T ∝ t ′1.7, whereas long
time MSDL,T ∝ t ′0.3 over a range of Pe. These results suggest
that nanoparticles shows non-Fickian superdiffusive disper-
sion process at short time whereas it shows non-Fickian
subdiffusive dispersion process along longitudinal as well as
transverse direction at long time [11,19,78,79].
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FIG. 5. Spatial distribution of immobile/stagnant regions (in red) and nanoparticles (in blue) in a Mt. Simon sandstone during flow of
(a) Newtonian fluid, and (b) inelastic non-Newtonian fluid at Pe of 6.28 × 107 and at tD = 12. (c) Difference between immobile region during
Newtonian and inelastic non-Newtonian fluid flow. Pore space of 22% and 25% was immobile during Newtonian and non-Newtonian flow,
respectively.

Figure 6(c) shows that DL and DT of Newtonian and
non-Newtonian fluids increase linearly with increase in Pe.
However, DL and DT of Newtonian fluid are consistently
higher than non-Newtonian fluid. Two-sample statistical T
test had a p value of 0.23-0.62 for Pe less than 107, in-
dicating an insignificant difference in dispersion coefficient
for Newtonian and non-Newtonian fluids at Pe <107. The

p value of 0.007–0.04 at Pe higher than 107 indicates a
significant difference in dispersion coefficient for Newtonian
and non-Newtonian fluids. The long-time MSD at Pe higher
than 107 in Figs. 6(a) and 6(b) shows the significant dif-
ference in MSD curve for Newtonian and non-Newtonian
fluids. This difference arises due to spatiotemporal difference
in shear stress distribution in Newtonian and non-Newtonian
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transverse dispersion coefficients over a range of Péclet numbers in Newtonian (N) and non-Newtonian (NN) fluids and Mt. Simon sandstone.
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FIG. 9. Spatial distribution of nanoparticles in Mt. Simon sandstone at normalized time of 60, (a) with and (b) without Brownian force.
(c) Normalized resident concentration of nanoparticles as a function of dimensionless time (tD). (d) Mean-square displacement (MSD) along
longitudinal direction and transverse direction with and without Brownian force in non-Newtonian fluid (Pe = 1.26 × 106). Black line indicate
that short time MSD is function of t ′1.7, suggesting superdiffusive dispersion along longitudinal and transverse direction.

fluids [see Figs. 4(g) and 4(h)]. Our results are in contrast
with the result of Refs. [12,24]. Scholz et al. [12] observed
higher dispersion of nanoparticles for elastic non-Newtonian
fluids and homogeneous porous media due to elastic turbu-
lence. Babayekhorasani et al. [24] reported that dispersion of
nanoparticle is independent of rheology in disordered porous
media at same Pe.

Figures 7(a)–7(c) show the distribution of the velocities
of nanoparticles in longitudinal and transverse directions
normalized by the average velocity of all nanoparticles in
the domains considered. The distribution of velocity along
the longitudinal direction is skewed non-Gaussian with an
exponential stretch in the positive direction. Although ve-
locity distributions of nanoparticles along transverse y and
z directions do not overlap, both are symmetric about zero
velocity and are non-Gaussian. Nanoparticles along longitu-

dinal direction are channelized along flow direction and thus,
it has skewed profile along the positive direction. Whereas,
in transverse directions, distributions are non-Gaussian and
symmetric. These results are similar to the observation of
Refs. [2,3,24].

Figures 7(d) and 7(e) show the normalized autocorrelation
function (VACF) over a range of Pe in the non-Newtonian
fluid. We normalized lag time using t Vavg

δL
. The longitu-

dinal velocity autocorrelation function indicates a positive
correlation over the range of Pe’s, whereas the transverse
velocity autocorrelation function indicates no significant cor-
relation. Since fluid injection velocity is relatively high,
advection plays the dominant role in nanoparticle migration,
and most nanoparticles move along the fluid flow direc-
tions. This leads to a positive correlation along longitudinal
directions.
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FIG. 10. Effect of nanoparticles concentration and Brownian force (BF) on normalized dispersion coefficient along (a) longitudinal
direction and (b) transverse direction in non-Newtonian (NN) fluid and Mt. Simon Simon sandstone. Each symbol represent number of
nanoparticles injected per second.

We determined dispersion coefficient along the longitu-
dinal and the transverse directions by fitting a linear-part
of MSD curve to 2DL,T t ′. We compared dispersion com-
puted using MSD with long-time dispersion coefficient
estimated using a velocity autocorrelation function (VACF).
We obtained a similar dispersion coefficient using both
methods with a difference of less than 10%. Figure 7(f) de-
picts dispersion coefficients versus Pe estimated using the
VACF method and MSD method for the non-Newtonian
fluid.

C. Particle displacement distribution

The mean averaged displacement of particles in a het-
erogeneous porous medium as measured by Ref. [40] using
pulsed-field gradient nuclear magnetic resonance has been
used by Refs. [80,81] to validate lattice Boltzmann solute
transport simulations and by Ref. [41] to validate OpenFOAM
simulations. We note that we have injected 10 000 nanoparti-
cles at the inlet of a 2D homogeneous porous medium and
Mt. Simon sandstone, whereas the solute was uniformly dis-
tributed in the porous media domain at the start of experiments
by Refs. [40,41,80]. Thus, our results could not quantitatively
match those of Refs. [40,41,80].

The displacement probability (propagator) for Newto-
nian and non-Newtonian fluids is plotted at the same flow
condition, i.e., at Pe = 6.28 × 106. Figure 8 shows that
the distribution of Newtonian and non-Newtonian fluids is
non-Gaussian, indicating non-Fickian behavior in both 2D
homogeneous porous medium and 3D Mt. Simon sand-
stone. This result suggests that pore-scale confinement is the
dominant factor compared to fluid characteristics, leading
to non-Fickian behavior. These results partially agree with
the results of Refs. [40,41,80], which suggest heterogeneity-
dependent non-Fickian transport of solute in porous media.
Similar to the observation of Refs. [40,41] for heterogeneous
sandstone and carbonate rock, we observed a large number of

immobile regions with very slow velocity in the Mt. Simon
sandstone pore, as described in Fig. 5. Figure 3(c) depicts
immobile (very slow velocity) regions before and after the
circular solid boundary of a 2D homogeneous porous medium
along fluid flow directions. The large peak in Fig. 8 could be
attributed to these immobile regions. This result implies that
a large immobile region in a confined porous medium gives
anomalous behavior for nanoparticle transport in both New-
tonian and non-Newtonian fluids. Furthermore, Fig. 8 shows
that the stagnation of the propagator distribution is more sig-
nificant for Newtonian fluids as compared to non-Newtonian
fluids in both homogeneous and heterogeneous porous media.
This could be due to the higher viscosity of Newtonian fluid
in pore space during fluid flow as compared to the inelastic
non-Newtonian fluids.

D. Effect of Brownian motion and nanoparticle concentrations

We injected 500 nanoparticles for 1 s in Mt. Simon sand-
stone over a range of Pe’s with and without Brownian force.
Figures 9(a) and 9(b) show spatial distribution of nanopar-
ticles at normalized time of 60 and Pe of 1.26 × 106. The
normalized resident concentration of nanoparticles [Fig. 9(c)]
in sandstone indicates that more than 58% of the nanoparticles
are still trapped in the sandstone due absence of Brownian
force. These results imply that the nanoparticles’ Brownian
motion helps nanoparticles migrate from the confined region
to the fluid flow region. Furthermore, the Brownian motion of
nanoparticles in the heterogeneous porous medium influences
pore-accessibility. The mean-square displacement of nanopar-
ticles with Brownian force is much larger than nanoparticles
without Brownian force [see Fig. 9(d)]. Figure 10 shows that
dispersion of nanoparticles (DL, DT) with Brownian force in
the heterogeneous porous medium is 1–2 orders of magnitude
larger than the dispersion of nanoparticles without Brownian
force over a range of Pe’s.
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To evaluate the effect of nanoparticles concentration on
dispersion, we injected 1000, 5000, and 10 000 nanoparticles
per second along with non-Newtonian fluid in Mt. Simon
sandstone over a range of Pe’s. Figure 10(a) shows insignif-
icant variation of DL over a range of Pe’s and nanoparticle
concentrations. However, Fig. 10(b) indicates significant in-
crease in DT with increase in nanoparticle concentration at Pe
higher than 107.

Contrary to the earlier experimental observations of
Refs. [2,3,24], we did not observe the collapse of normal-
ized dispersion coefficients on a single master curve over a
range of Pe and porous medium geometries. These results
imply that the gradient of shear stress affects the dispersion
coefficient in three-dimensional space. Furthermore, although
earlier experimental works [2,3,24] were carried out in 3D, the
measurement of nanoparticle displacement was carried out in
2D. Thus, the measurement of nanoparticle displacement in
transverse z direction was missing.

VI. CONCLUSIONS AND FUTURE WORK

We have shown that the Eulerian-Lagrangian approach
can be adopted to study nanoparticles transport and
dispersion in an inelastic non-Newtonian fluid (described by
Meter model fluid) and heterogeneous porous media in 3D.

Measurements of nanoparticle transport in 3D provide in-
sights into nanoparticles dispersion in the longitudinal and
transverse directions. We found that nanoparticles adopt dif-
ferent flow paths in the porous medium at different Péclet
numbers due to the porous medium’s pore-scale spatial het-
erogeneity. Lower shear stress of the fluid in the stagnant
zone creates resistance for nanoparticles to access pores in
stagnant zones in heterogeneous porous media. The Brownian
motion of nanoparticles increases the dispersion of nanoparti-
cles along the longitudinal and transverse direction.

Most non-Newtonian fluids are viscoelastic [32]. Previ-
ous studies have shown that viscoelastic fluids exhibit elastic
turbulence with low Reynolds number flows [3,28,32]. There-
fore, in future, we will develop the Eulerian-Lagrangian
method to simulate the transport of nanoparticles in a
non-Newtonian viscoelastic fluid modeled using the Phan-
Thien-Tanner fluid model. This will help to understand
the effect of pore-scale viscoelasticity on the dispersion of
nanoparticles in 3D heterogeneous porous media.
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