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Discrete Boltzmann modeling of Rayleigh-Taylor instability:
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The two-dimensional Rayleigh-Taylor instability (RTI) in compressible flow with intermolecular interactions
is probed via the discrete Boltzmann method. The effects of interfacial tension, viscosity, and heat conduction are
investigated. It is found that the influences of interfacial tension on the perturbation amplitude, bubble velocity,
and two kinds of entropy production rates all show differences at different stages of RTI evolution. It inhibits
the RTI evolution at the bubble acceleration stage, while at the asymptotic velocity stage, it first promotes and
then inhibits the RTI evolution. Viscosity and heat conduction inhibit the RTI evolution. Viscosity shows a
suppressive effect on the entropy generation rate related to heat flow at the early stage but a first promotive
and then suppressive effect on the entropy generation rate related to heat flow at a later stage. Heat conduction
shows a promotive effect on the entropy generation rate related to heat flow at an early stage. Still, it offers a
first promotive and then suppressive effect on the entropy generation rate related to heat flow at a later stage.
By introducing the morphological boundary length, we find that the stage of exponential growth of the interface
length with time corresponds to the bubble acceleration stage. The first maximum point of the interface length
change rate and the first maximum point of the change rate of the entropy generation rate related to viscous stress
can be used as a criterion for RTI to enter the asymptotic velocity stage.
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I. INTRODUCTION

Hydrodynamic instabilities are found in a wide range
of natural sciences and engineering such as solar helium,
space ionospheric flows, inertial confinement fusion (ICF),
pulsed burst engines, and supercombustion ram engines
and even in artistic creation [1–4]. Rayleigh-Taylor in-
stability (RTI), Richtmyer-Meshkov instability (RMI), and
Kelvin-Helmhotz instability are all common hydrodynamic
instabilities. Rayleigh-Taylor instability refers to the instabil-
ity when a light medium supports a heavy medium or when a
light medium accelerates a heavy medium [5,6]. Richtmyer-
Meshkov instability refers to the instability when a shock
wave passes through the material interface [7,8]. Richtmyer-
Meshkov instability can also be considered a special case of
RTI that can be treated as an impulsive analog of the RTI.
The presence of hydrodynamic instabilities can be beneficial
in some cases, such as aeroengine combustion, where the
presence of hydrodynamic instabilities facilitates fuel mixing
and improves the combustion efficiency of the engine. It can
also be undesirable in other cases, such as inertial confinement
fusion, where hydrodynamic instabilities and the nonlinear
complex flows they cause can seriously affect ICF ignition and
cause fusion performance cliff problems [9]. Whether from an
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interest in natural science or the need for engineering applica-
tions, experts and scholars from all backgrounds are working
on problems that interest them in this highly multidisciplinary
field.

As the research progresses, the problem being studied and
the models being used are becoming more and more practical
and complex [10–26]. In recent years, the results in statistical
physics perspectives obtained with the help of the discrete
Boltzmann method (DBM) and complex physical field anal-
ysis techniques have also provided a range of new insights
into the study of hydrodynamic instabilities. Examples in-
clude the relationship between the nonuniformity of various
macroscopic quantities and different forms of nonequilib-
rium behavior in terms of correlations [27,28], the entropy of
mixing during RTI development, and the relationship be-
tween the mixed entropy and nonequilibrium characteristic
quantities of a system [29] and employing nonequilibrium
characteristic quantities and morphological characteristics to
trace and characterize the instabilities interfaces, the mixed
layer widths, the stages of development, and the rates of
growth [30–32].

The actual medium has an intermolecular interaction po-
tential. Suppose the intermolecular interaction potential is
modest compared to the external force acting on the medium.
In that case, we can temporarily overlook the effect of the
intermolecular interaction potential and capture the problem’s
primary paradox, which can also help us get a relatively
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satisfactory answer. However, when the intermolecular in-
teraction potential is no longer negligible, the case is more
complex. It will lead to complex physical processes such as
perturbation stabilization, tensile fracture, and melting phase
transitions [33–36]. As another example, in creating jet mod-
els and theories for microjet problems, which are significant
in engineering domains such as hypervelocity impact, ICF ig-
nition, and implosion, it is also crucial to consider the strength
effects of materials [37]. It is known that in many RTI studies
intermolecular interactions were neglected and the ideal gas
equation of state was used. However, the intermolecular inter-
action potential in a fluid medium can also cause some unique
events in the evolution of interfacial instability. The difference
in the intermolecular interaction potential between two fluids
causes the well-known interfacial tension. It is a manifestation
of the medium strength effect at the medium interface.

The existence of interfacial tension will also result in a
cutoff wavelength for the development of RTI. The pertur-
bation will be stabilized when the wavelength is smaller
than the cutoff wavelength [38]. The study of Banerjee and
Kanjilal also reflects this fact from another perspective [39].
They found that when the interfacial tension was less than
the critical value, the degree of inhibition of the bubble tip
growth rate was highly dependent on the interfacial tension.
On the other hand, oscillatory behavior of the interface was
observed when the interfacial tension was greater than the crit-
ical threshold. The Atwood number and the vortex volume’s
intensity are both related to the critical value of interfacial
tension. Both theoretical analysis and numerical simulations
show that interfacial tension inhibits bubble growth during the
linear stage of RTI [40–42]. During the nonlinear stage of RTI
development, most scholars’ studies showed that interfacial
tension decreases the asymptotic velocity of bubbles [41,43–
45]; however, Huang et al. showed that the growth of bub-
ble amplitude does not always slow down with increasing
interfacial tension but is promoted within a small range of
interfacial tension [46]. In addition to its effect on bubble
growth rate and amplitude, interfacial tension also exhibits
effects such as squeezing of spikes, inhibition of interfacial
coiling, and induction of interfacial pinch-off to form discrete
droplets [47–49]. Capillary waves, squeezing, and rupture
during the evolution of RTI are also caused by interfacial
tension [50]. It has been suggested that the formation of some
heavy fluid droplets, which fall freely into the vacuum in the
early stages of RTI, is also associated with interfacial tension
cutting continuous surfaces [51]. For the turbulent mixing of
RTI, Young and Ham’s results show that interfacial tension
reduces the effective mixing rate of multiple bubbles, de-
creases the flow’s anisotropy, and induces more homogeneous
mixing [52]. Sohn and Baek found that the mixing rate of
bubbles decreases with increasing interfacial tension at the
early nonlinear stage and increases with increasing interfacial
tension at the self-similar stage [53]. Previous studies mainly
focused on the effect of interfacial tension on the growth
rate and amplitude of RTI development, the turbulent mixing
rates, etc. Furthermore, these studies are based on various
assumptions such as inviscid, incompressible, isothermal, etc.,
conditions. Current studies on hydrodynamic instabilities us-
ing the DBM are still in the early stages. They are all based
on the relatively simple ideal gas model which ignores the

influence of the intermolecular interaction potential. It should
provide new insight into statistical physics and complex phys-
ical field analysis perspectives and valuable additions to the
existing research findings when including the intermolecular
interaction potential in the DBM to study the hydrodynamic
instabilities.

In this paper, we use the DBM that considers the
intermolecular interaction potential and combine it with mor-
phological analysis to provide insight into the evolution of
two-dimensional RTI from a statistical physics perspective. In
Sec. II we describe the DBM modeling approach used in this
paper. In Sec. III we change the interfacial tension coefficient,
viscosity coefficient, and heat conduction coefficient to study
the effects of interfacial tension, viscosity, and heat conduc-
tion on the evolution of RTI. Section IV provides conclusions
and a summary.

II. NUMERICAL METHODS

A. Discrete Boltzmann method

The discrete Boltzmann method is a mesoscale kinetic
modeling method that has been rapidly developed in re-
cent years. Unlike traditional fluid modeling methods, it is
not based on the continuous medium assumption and near-
equilibrium approximation. It can describe more rationally the
local noncontinuity and discrete effects due to small struc-
tures and local thermodynamic nonequilibrium (TNE) effects
due to fast flow modes. Since the description of the system
behavior needs more physical variables with increasing the
noncontinuity and/or TNE effects, Xu et al. [54] proposed to
use the nonconservative moments of fi − f eq

i to describe how
and how much the system deviates from the thermodynamic
equilibrium state and to check the corresponding TNE effects,
where fi is the discrete distribution function and f eq

i is the cor-
responding equilibrium, with i the index of discrete velocity.
Xu et al. [55] proposed to use the nonconservative moments of
fi − f eq

i to open phase space. The phase space and subspaces
are used to describe the TNE states and behaviors. The dis-
tance between a state point and the origin is used to describe
the TNE strength from a perspective. In [56], the distance D
between two state points was used to describe the difference
of two states deviating from their thermodynamic equilibria.
The reciprocal of the distance, S = 1/D, is defined as the sim-
ilarity of the two states deviating from their thermodynamic
equilibria. The mean value of D within a time interval, D̄,
is used to roughly describe the difference of the two kinetic
processes from a perspective, and the reciprocal of the mean
distance, SP = 1/D̄, is defined as the similarity of the two ki-
netic processes. Therefore, the DBM is a further development
of the statistical physical phase-space description method in
the form of the discrete Boltzmann equation. In [57], the
phase-space description method was further extended to any
system characteristics. A set of (independent) characteristic
quantities is used to open phase space and this space and its
subspaces are used to describe the system properties. A point
in the phase space corresponds to a set of characteristic behav-
iors of the system. Distance concepts in the phase space or its
subspaces are used to describe the difference and similarity
of behaviors. The DBM makes it clear that any definition
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of nonequilibrium strength is dependent on the perspective
of study and that the nonequilibrium behavior of complex
flows needs to be studied from multiple perspectives. The
DBM can go beyond traditional fluid modeling in terms of
both depth and breadth of the description of nonequilibrium
behavior [57–60].

The DBM model is built in a three-step process. The first
step is to introduce an appropriate kinetic equation with sim-
ple collision operator. The second step is the discretization
of the velocity space. The third step is the description of
nonequilibrium states and nonequilibrium behavior. Among
them, the first two steps are coarse-grained physical mod-
eling, which requires that the system behaviors concerned
remain during the process of model simplification. The third
step is the purpose and core of the DBM. Based on the
fact that (i) the intermolecular interaction potential is far
from weak and simple as required by the Boltzmann equa-
tion and (ii) the degree of nonequilibrium concerned may
be far beyond the quasiequilibrium required by the original
Bhatnagar-Gross-Krook (BGK) model [61], the kinetic be-
havior of most systems cannot be studied by the original BGK
kinetic theory alone. Consequently, the BGK-like model used
in practice can be regarded as a modified version based on
mean-field theory. The main responsibilities of the mean-field
theory are twofold: (i) to supplement the description of the
intermolecular interaction potential effect that the Boltzmann
equation misses and (ii) to modify the application range of the
BGK-like model so that it can be extended to a higher degree
of nonequilibrium [60].

The DBM has been successfully applied to the study of
fluid instability problems, and a series of research results and
insights have been gained with its help [62–66]. Including the
van der Waals (vdW) equation of state in the existing discrete
Boltzmann BGK model for RTI systems and considering the
contribution of the density gradient to the entropy and internal
energy of the system, we can obtain the DBM model as

∂t f ji + v ji · ∇ f ji − a · (v ji − u)

RT
f eq

ji = − 1

τ

[
f ji − f eq

ji

] + I ji,

(1)

where f ji and f eq
ji are the discrete distribution function and the

discrete equilibrium distribution function, respectively, and I ji

is the intermolecular interaction potential term [67,68],

I ji =−[A + B · (v ji − u) + (C + Cq)(v ji−u) · (v ji−u)] f eq
ji ,

(2)
where

A = −2(C + Cq)T, (3)

B = 1

ρT
∇ · [(P − ρT )I + �], (4)

C = 1

2ρT 2

[
(P − ρT )∇ · u + � : ∇u + aρ2∇ · u

− K
(

1
2∇ρ · ∇ρ∇ · u + ρ∇ρ · ∇(∇ · u)

+ ∇ρ · ∇u · ∇ρ
)]

, (5)

Cq = 1

ρT 2
∇ · (qρT ∇T ), (6)

where

� = p1I + M∇n∇n, (7)

p1 = −nT ∇ M

T
· ∇n − nM∇2n + (nM ′ − M ) 1

2 |∇n|2

= nμb − eb + T sb − P, (8)

P = ρT

1 − bρ
− aρ2. (9)

In the DBM we can describe the nonequilibrium behavior
and characteristics of complex flows with the help of noncon-
servative moments of f ji − f eq

ji ,

�∗
n = M∗

n( f ji ) − M∗
n

(
f eq

ji

)
, (10)

where M∗
n( f ji ) and M∗

n( f eq
ji ) are the nth-order kinetic mo-

ments of the discrete distribution functions f ji and f eq
ji with

respect to the molecular rise and fall velocity v ji − u, respec-
tively, i.e., the nth-order central moment of f ji and f eq

ji . Here
�∗

n is called the TNE characteristic quantity of the system.
Thermodynamic nonequilibrium quantities of different orders
describe the nonequilibrium state of the system in their own
way. For example, �∗

2αβ denotes viscous stress and �∗
(3,1)α

denotes heat flow. The subscripts 2 and (3, 1) denote the
second-order tensor and the first-order tensor reduced from
the third-order tensor, respectively. The subscripts αβ and α

denote the coordinate components of the tensor.
With the help of these nonequilibrium quantities, we can

study the entropy increase of the system, the spatial corre-
lation of the system, the temporal correlation of the system,
the spatiotemporal correlation of the system, and the com-
petition and cooperation between different nonequilibrium
behaviors of the system [69]. Using the phase space and its
subspaces opened by the nonequilibrium characteristic quan-
tity, we can study the degree or intensity of state deviation
from equilibrium, the similarity of two nonequilibrium states,
the similarity of two kinetic processes, etc. [55,70–72].

B. Entropy production of the system

When considering the contribution of the density gradient
to entropy and internal energy, the generalized form of the
total entropy of the system can be written as [67,73]

Sb =
∫

[ns(n, e) − 1
2C|∇n|2]dr, (11)

where the space integrals extend to the entire computational
domain, n is the particle-number density, s is the entropy per
particle, C is a constant, and the gradient term represents a
decrease of entropy because of the inhomogeneity of n. Then
we can get

dSb

dt
=

∫ (
1

T
∇ · j + 1

T
� : ∇u

)
dr, (12)

where j and � are heat flux and viscous stress, respectively.
The time partial derivative of the entropy density can be ob-
tained from the relationship of the material derivatives,

∂sb

∂t
= −∇ ·

(
usb − 1

T
j
)

− j · ∇
(

1

T

)
+ 1

T
� : ∇u. (13)
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TABLE I. Cases and parameters.

No. dx and dy dt λ = d y0 = 0.05d k = 2π/λ g τ Pr μ = τρT κ = μcp/Pr K

Effect of interfacial tension
1 0.001 6 × 10−6 0.256 0.0128 24.54 0.2 4 × 10−5 0.6 4ρ0T0 × 10−5 6.67ρ0T0 × 10−5 1 × 10−5

2 0.001 6 × 10−6 0.256 0.0128 24.54 0.2 4 × 10−5 0.6 4ρ0T0 × 10−5 6.67ρ0T0 × 10−5 8 × 10−6

3 0.001 6 × 10−6 0.256 0.0128 24.54 0.2 4 × 10−5 0.6 4ρ0T0 × 10−5 6.67ρ0T0 × 10−5 6 × 10−6

4 0.001 6 × 10−6 0.256 0.0128 24.54 0.2 4 × 10−5 0.6 4ρ0T0 × 10−5 6.67ρ0T0 × 10−5 4 × 10−6

5 0.001 6 × 10−6 0.256 0.0128 24.54 0.2 4 × 10−5 0.6 4ρ0T0 × 10−5 6.67ρ0T0 × 10−5 2 × 10−6

6 0.001 6 × 10−6 0.256 0.0128 24.54 0.2 4 × 10−5 0.6 4ρ0T0 × 10−5 6.67ρ0T0 × 10−5 1 × 10−6

7 0.001 6 × 10−6 0.256 0.0128 24.54 0.2 4 × 10−5 0.6 4ρ0T0 × 10−5 6.67ρ0T0 × 10−5 0
Effect of viscosity

1 0.001 6 × 10−6 0.256 0.0128 24.54 0.2 1 × 10−5 0.15 ρ0T0 × 10−5 6.67ρ0T0 × 10−5 8 × 10−6

2 0.001 6 × 10−6 0.256 0.0128 24.54 0.2 2 × 10−5 0.3 2ρ0T0 × 10−5 6.67ρ0T0 × 10−5 8 × 10−6

3 0.001 6 × 10−6 0.256 0.0128 24.54 0.2 4 × 10−5 0.6 4ρ0T0 × 10−5 6.67ρ0T0 × 10−5 8 × 10−6

4 0.001 6 × 10−6 0.256 0.0128 24.54 0.2 6 × 10−5 0.9 6ρ0T0 × 10−5 6.67ρ0T0 × 10−5 8 × 10−6

5 0.001 6 × 10−6 0.256 0.0128 24.54 0.2 8 × 10−5 1.2 8ρ0T0 × 10−5 6.67ρ0T0 × 10−5 8 × 10−6

Effect of heat conduction
1 0.001 6 × 10−6 0.256 0.0128 24.54 0.2 4 × 10−5 0.15 4ρ0T0 × 10−5 2.67ρ0T0 × 10−4 8 × 10−6

2 0.001 6 × 10−6 0.256 0.0128 24.54 0.2 4 × 10−5 0.2 4ρ0T0 × 10−5 2ρ0T0 × 10−4 8 × 10−6

3 0.001 6 × 10−6 0.256 0.0128 24.54 0.2 4 × 10−5 0.3 4ρ0T0 × 10−5 1.33ρ0T0 × 10−4 8 × 10−6

4 0.001 6 × 10−6 0.256 0.0128 24.54 0.2 4 × 10−5 0.6 4ρ0T0 × 10−5 6.67ρ0T0 × 10−5 8 × 10−6

5 0.001 6 × 10−6 0.256 0.0128 24.54 0.2 4 × 10−5 0.9 4ρ0T0 × 10−5 4.44ρ0T0 × 10−5 8 × 10−6

6 0.001 6 × 10−6 0.256 0.0128 24.54 0.2 4 × 10−5 1.1 4ρ0T0 × 10−5 3.64ρ0T0 × 10−5 8 × 10−6

The entropy production rate can be divided into two parts.
One part is contributed by the heat flow

ṠNOEF =
∫

(�∗
(3,1) − cpqρT ) · ∇ 1

T
dr (14)

and the other part is contributed by the viscous stress

ṠNOMF =
∫

− 1

T
�∗

2 : ∇u dr. (15)

In the continuous limit, �∗
(3,1) − cpqρT = −κ∇T , where cp

is the isobaric specific-heat capacity, κ is the heat conductiv-
ity, and �∗

2 = −μ[∇u + (∇u)T − (∇ · u)I], where μ is the

viscosity coefficient. Substituting them into Eqs. (14)
and (15), respectively, we get that

ṠNOEF =
∫

κ|∇T |2
T 2

dr, (16)

ṠNOMF =
∫

μ[∇u : ∇u + (∇u)T : ∇u − |∇ · u|2]

T
dr.

(17)

III. RESULTS AND DISCUSSION

We investigated the two-dimensional RTI flow by the
DBM that considers the interfacial tension. In a computational
domain with a width of 0.256 and a height of 1.024, the

FIG. 1. Density contour of the flow field at different times for an interfacial tension coefficient of K = 1 × 10−5: (a) t = 0, (b) t = 1.008,
(c) t = 2.016, (d) t = 3.948, (e) t = 6, and (f) t = 8.016. Densities range within [0.29, 0.73], increasing from blue to red.
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FIG. 2. Evolution of RTI for different interfacial tension coefficients at K = 0, 2 × 10−6, 4 × 10−6, 6 × 10−6, 8 × 10−6, and 1 × 10−5 for
(a)–(f) t = 6 and (g)–(l) t = 8.016.

upper half is heavy fluid and the lower half is lighter fluid.
At the initial time, an initial disturbance yc(x) = y0 cos(kx) of
amplitude y0 = 0.05d exists at the light-heavy fluid interface

that is at y = 0, where d is the width of the computational
domain, k = 2π/λ is the wave number, and λ = d is the
wavelength of the disturbance. The computational domain

FIG. 3. Evolution of (a) bubble amplitude and (b) bubble velocity over time for different interfacial tension coefficients.
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FIG. 4. Variation of asymptotic bubble velocity with interfacial
tension coefficients.

grid size is 256 × 1024, and the grid length is 0.001 in the x
and y directions. The time step is 6 × 10−6. The upper and
lower boundaries are set as wall boundary conditions, and
the left and right boundaries are set as periodic boundary
conditions. The temperatures of the light and heavy fluids at
the initial moment are set to be constant:

T0(y) = 1.5, y > yc(x)

T0(y) = 3.0, y � yc(x). (18)

The density at the top of the flow field is set to be 0.667, i.e.,

ρ0(1.024) = 0.667. (19)

Fluid in the flow field satisfies hydrostatic equilibrium, i.e.,

∂yP0(y) = −gρ0(y). (20)

Substituting the vdW equation of state into Eq. (20) gives

∂yρ0(y) = g/2a − 1

2a

T g

T − 2aρ0(y)[1 − bρ0(y)]2 , (21)

where a = 9
8 and b = 1

3 in this paper.

A. Effect of interfacial tension on RTI

We first investigate the effect of interfacial tension on the
evolution of RTI. In this section, the gravitational accelera-
tion is g = 0.2, the relaxation time is τ = 4 × 10−5, and the
Prandtl number is Pr = 0.6. The cases and parameter settings
can be found in Table I. Figure 1 shows the density contour
of the flow field at different times for an interfacial tension
coefficient of K = 1 × 10−5.

Figure 2 shows the flow field at t = 6 and 8.016 for
interfacial tension coefficients K = 0, 2 × 10−6, 4 × 10−6,
6 × 10−6, 8 × 10−6, and 1 × 10−5. The average value of the
light fluid density and the heavy fluid density at the initial
interface is used to capture the interface of the light fluid and
the heavy fluid. Rayleigh-Taylor instability evolution becomes
increasingly delayed and the “mushroom” structure becomes
more “full” with the increasing interfacial tension coefficient,
as illustrated in Fig. 2.

Figure 3 show the growth of bubble amplitude and bubble
velocity over time for different interfacial tension coefficients.
It can be seen that the effect of interfacial tension on the
development of RTI is stage specific. At the stage of bub-
ble acceleration, the bubble amplitude and bubble velocity
decrease with increasing interfacial tension coefficient, and
the interfacial tension exhibits a suppressive effect on RTI
development. At the asymptotic velocity stage, the bubble
amplitude and bubble velocity tend to first increase and then
decrease with increasing interfacial tension coefficient, and
the interfacial tension exhibits a first facilitating and then
suppressive effect on RTI development. The brown solid line
in Fig. 3(b) shows the growth of the bubble velocity when
the interfacial tension coefficient is 0. The brown dashed line
shows the corresponding theoretical value of the asymptotic
bubble velocity calculated by

ub =
√

2Atg

3k(1 + At )
+ 4

9
k2vh

2 − ξKk

9ρh
− 2

3
kvh, (22)

which is the theoretical equation for calculating the asymp-
totic velocity of the bubble [40,43]. The results obtained from
the numerical simulation and Eq. (22) are in good agree-
ment, demonstrating that the numerical simulation results are

FIG. 5. Evolution of (a) At and (b) K/ρh at the top of the bubble over time for different interfacial tension coefficients.
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FIG. 6. Evolution of (a) L and (b) dL/dt over time for different interfacial tension coefficients.

correct. The asymptotic bubble velocity obtained from the
numerical simulation is lower than the theoretical value. This
is mainly due to the fact that the Atwood number At at the top
of the bubble decreases gradually during the evolution of the
RTI, whereas the theoretical value is calculated from At at the
initial moment. The decrease of At leads to a lower asymptotic
velocity.

Figure 4 shows the curve of the asymptotic bubble velocity
versus the interfacial tension coefficient. It can be seen that
the variation of the asymptotic bubble velocity with the in-
terfacial tension coefficient shows an approximately quadratic
variation pattern. Equation (22) can help us comprehend what
is going on here. It can be seen that the asymptotic bubble
velocity is related to the Atwood number At, the gravitational
acceleration g, the disturbance wave number k, the heavy
hydrodynamic viscosity coefficient vh, the heavy fluid density
ρh, and the interfacial tension coefficient K . Here ξ is the co-
efficient in σ = ξK , where σ is the interfacial tension per unit
length. The coefficient of heavy hydrodynamic viscosity and
the number of perturbation waves are constant in this section,
so the variation of the asymptotic bubble velocity is mainly
caused by the variation of At at the top of the bubble and
the variation of K/ρh. The asymptotic velocity of the bubble
increases with increasing At and decreases with increasing
K/ρh. Figure 5(a) shows the evolution of At at the top of
the bubble over time. It can be seen that At increases as the
interfacial tension increases. This leads to the increase of the
asymptotic bubble velocity with increasing interfacial tension
coefficient. Figure 5(b) shows the evolution of K/ρh over time.
It can be seen that K/ρh increases as the interfacial tension
increases. This leads to the decrease of the asymptotic bubble
velocity with increasing interfacial tension coefficient. The
two competing factors cause the asymptotic bubble velocity
to first increase and then decrease as the interfacial tension
factor increases, as shown in Fig. 4.

Figure 6(a) shows the evolution of the interfacial length
over time for different interfacial tension coefficients. Figure 7
shows the first maximum value of the interfacial length for
different interfacial tension coefficients. It can be seen that
before the interfacial length reaches its first maximum, it de-
creases with the increasing interfacial tension coefficient. The
first maximum of the interfacial length tends first to increase

and then decrease with the increase of the interfacial tension
coefficient. These are due to the different effects of interfacial
tension on the growth rate of interfacial length at different
stages of RTI development.

Figure 6(b) shows the evolution of interfacial length
change rate over time for different interfacial tension coeffi-
cients. It can be seen that the effect of the interfacial tension
on the change rate of the interfacial length is stage specific.
Before dL/dt reaches its first maximum, the interfacial length
change rate decreases with the increase of the interfacial ten-
sion coefficient. At this stage, the mushroom structure at the
spikes has not yet formed, as shown in Figs. 1(a)–1(d). The
dL/dt is mainly influenced by the movement of spikes into
the light fluid and it increase with time. At this stage, dL/dt
decreases with increasing interfacial tension coefficient due to
the suppressive effect of the interfacial tension on the evolu-
tion of RTI. After it reaches its first maximum, the mushroom
structure forms. The dL/dt is mainly influenced by the curling
of the spikes into the lighter fluid. It decreases with time at this

FIG. 7. First maximum value of interface length for different
interfacial tension coefficients.
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FIG. 8. Interface length change rate and bubble velocity profiles.

stage. As shown in Fig. 2, as the interfacial tension increases,
the mushroom structure formed at the spike becomes more
full and more aggregated. The higher the interfacial tension is,
the more heavy fluids are converged at the head of the spike.
This facilitates the curling of the spikes into the lighter fluid.

This induces the dL/dt increase with increasing interfacial
tension coefficient. When the mushroom becomes small, as
shown in Figs. 2(g)–2(i), the dL/dt is mainly influenced by
the falling of the spikes into the light fluid again. So the dL/dt
increases with time and decreases with increasing interfacial
tension coefficient again.

Figure 8 shows the change rate of the interface length
and the bubble velocity profiles. Although the interface
length and bubble amplitude are descriptions of RTI devel-
opment from two different perspectives, there is a correlation
between the two. We find that the change rate of the inter-
face length increases exponentially with time in the bubble
acceleration stage and the first maximum point of the in-
terface length change rate can be used as a criterion for
the development of RTI to enter the asymptotic velocity
stage.

Figures 9(a) and 9(b) show the evolution of ṠNOEF and
ṠNOMF, respectively. It can be seen that the interfacial tension
exhibits different effects on ṠNOEF and ṠNOMF at different
stages. This can be understood with the help of Figs. 9(c)
and 9(d). As shown in Eqs. (16) and (17), ṠNOEF and ṠNOMF

can be written as functions of temperature and velocity gra-
dients, respectively, in the continuous limit. So the evolution
of the flow field total |∇T |2total and (∇u : ∇u)total can, to a
certain extent, represent the evolution of ṠNOEF and ṠNOMF,
respectively. As shown in Figs. 9(a) and 9(c), the evolution
of ṠNOEF and that of |∇T |2total are almost the same. Similarly,

FIG. 9. Evolution of (a) ṠNOEF, (b) ṠNOMF, (c) |∇T |2total, and (d) (∇u : ∇u)total over time for different interfacial tension coefficients.
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FIG. 10. Evolution of (a) d|∇T |2total/dt and (b) d (∇u : ∇u)total/dt over time for different interfacial tension coefficients.

it can be seen from Figs. 9(b) and 9(d) that the evolution of
ṠNOMF and that of (∇u : ∇u)total are almost the same.

At the initial time, the temperature of the heavy fluid is
1.5 and the temperature of the light fluid is 3.0. So |∇T |2total
mainly develops from the interface of heavy and light fluids
and it is strongly influenced by the change of the interface
length. Figure 10(a) shows the evolution of d|∇T |2total/dt over
time for different interfacial tension coefficients. It can be
seen that the evolution of d|∇T |2total/dt is very similar to
that of dL/dt . On the one hand, the increase of the interface
length can increase |∇T |2total. The larger dL/dt is, the larger
d|∇T |2total/dt is. On the other hand, heat conduction can lead
to a decrease in |∇T |2total. There is a competition between
the increase of the interface length and the heat conduction.
At an early time, the growth of RTI is very slow and the
increase of the interface length is very small. The |∇T |2total is
mainly influenced by the heat conduction at the interface. So
d|∇T |2total/dt is smaller than 0 and |∇T |2total decreases with
time at this stage. After a short period, the interface instabil-
ity begins to increase rapidly. So the interface length gets a
rapid growth and this induces the increase of |∇T |2total. With
the development of RTI, the interface length is much longer,
promoting the heat conduction between the heavy fluid and
the light one. So d|∇T |2total/dt can be negative even though
the interface length increases just like at t = 6, as shown in
Figs. 6(b) and 10(a).

As mentioned before, dL/dt decreases with increasing
interfacial tension coefficients at first, then increases with
increasing interfacial tension coefficients, and decreases with
increasing interfacial tension coefficients again. This induces
d|∇T |2total/dt to change with the increasing interfacial tension
coefficients in the same way. Consequentially, |∇T |2total and
ṠNOEF decrease with increasing interfacial tension coefficients
before they reach their maximum and first increase and then
decrease with increasing interfacial tension coefficients after
that.

Similarly, (∇u : ∇u)total also mainly develops from the
interface of heavy and light fluids. So it is also strongly in-
fluenced by the change of the interface length. As shown in
Fig. 10(b), d (∇u : ∇u)total/dt is also strongly influenced by
dL/dt . The evolution of dL/dt induces d (∇u : ∇u)total/dt to
evolve in the way shown in Fig. 9(d), which further leads to

the evolution of (∇u : ∇u)total. This is how interfacial tension
influences ṠNOMF. By studying and calculating the entropy
production rate, it is interesting to find that the first maximum
value of dṠNOMF/dt can be used as another criterion for the
development of RTI to enter the asymptotic velocity stage, as
shown in Fig. 11.

B. Effect of viscosity on RTI

In this section, the gravitational acceleration is set to be
g = 0.2 and the interfacial tension coefficient is set to be
K = 8 × 10−6 to simulate the evolution of RTI for different
viscosity coefficients to investigate the effect of viscosity on
RTI evolution. Various viscosity coefficients are obtained by
changing the relaxation time τ since μ = τρT . In order to
keep the heat conductivity κ = μcp/Pr constant while varying
the relaxation time, we simultaneously change the Prandtl
number so that the ratio of the viscosity coefficient to the
Prandtl number is constant. The bubble amplitude and bubble
velocity curves for different viscosity coefficients are shown

FIG. 11. Curves of dṠNOMF/dt , Vbubble, and dL/dt over time
when the interfacial tension coefficient is zero.
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FIG. 12. Growth of (a) bubble amplitude, (b) bubble velocity, (c) interface length, and (d) interface length change rate over time for
different viscosity coefficients.

in Figs. 12(a) and 12(b). It can be seen that as the viscosity
increases, the bubble amplitude and bubble velocity decrease.
Figures 12(c) and 12(d) show the evolution of the interface
length and interface length change rate over time for dif-
ferent viscosity coefficients, respectively. With the increase
of viscosity coefficient, the interface length and its change
rate decrease. Viscosity shows an inhibiting influence on the
growth of RTI.

Figure 13(a) shows the evolution of the entropy production
rates ṠNOEF for different viscosity coefficients. The influence
of viscosity on ṠNOEF can be seen to be stage specific. Before
it reaches its maximum, ṠNOEF decreases as viscosity coef-
ficients increase and viscosity exhibits a suppressive effect
on ṠNOEF. After ṠNOEF reaches its maximum, ṠNOEF shows a
trend of first increasing and then decreasing as the viscosity
coefficient increases and viscosity exhibits a first facilitating

FIG. 13. Evolution of (a) ṠNOEF, (b) |∇T |2total, and (c) d|∇T |2total/dt over time for different viscosity coefficients.
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FIG. 14. Evolution of (a) ṠNOMF, (b) (∇u : ∇u)total, and (c) d (∇u : ∇u)total/dt over time for different viscosity coefficients.

and then suppressive effect on ṠNOEF. This is mainly because
of the competing effects of viscosity on the inhibition of heat
convection between light and heavy fluids and the inhibition
of RTI development by viscosity. As previously mentioned,
ṠNOEF is closely related to |∇T |2total. Figure 13(b) shows the
evolution of |∇T |2total for different viscosity coefficients. Fig-
ure 13(c) shows the evolution of d|∇T |2total/dt for different
viscosity coefficients. It can be seen that before d|∇T |2total/dt
reaches its maximum, it decreases with the increase of the vis-
cosity coefficient. After d|∇T |2total/dt reaches its maximum, it
increases with the increase of the viscosity coefficient.

The |∇T |2total mainly develops from the interface of light
and heavy fluids. On the one hand, the increase in viscosity
inhibits the development of RTI, which hinders dL/dt . On
the other hand, the increase in viscosity inhibits the relative
movement along the interface, which hinders the heat convec-
tion between the light and heavy fluids. The relative motion
along the interface of the light and heavy fluids is relatively
weak until d|∇T |2total/dt reaches its maximum value. The
inhibition on the development of RTI lead to the decrease of
d|∇T |2total/dt as the viscosity coefficient increases. This leads
to the decrease of |∇T |2total and ṠNOEF with increasing vis-
cosity coefficient. After d|∇T |2total/dt reaches its maximum
value, the relative motion along the interface of the light and
heavy fluids is strong. The inhibitory effect of the viscosity
on the relative motion becomes essential at this time. This
leads to the increase of d|∇T |2total/dt as viscosity coefficient
increases. This is the reason |∇T |2total and ṠNOEF decrease with
the increase of the viscosity coefficient at the early time before
they reach their maximum and first increase and then decrease
with the increase of the viscosity coefficient at the later time
after they reach their maximum.

Figure 14(a) depicts the evolution of ṠNOMF over time for
different viscosity coefficients. It can be observed that ṠNOMF

grows as viscosity increases, implying that viscosity facilitates
ṠNOMF. This can be understood with the help of Figs. 14(b)
and 14(c). Figure 14(b) depicts the evolution of (∇u : ∇u)total
over time for different viscosity coefficients. Figure 14(c)
shows the development of d (∇u : ∇u)total/dt over time
for different viscosity coefficients. Both (∇u : ∇u)total and
d (∇u : ∇u)total/dt show a decreasing trend as the viscosity
coefficient increases. This is because of the inhibiting influ-
ence of viscosity on the growth of RTI. Although the evolution

of ṠNOMF is close to (∇u : ∇u)total, it shows a different change
trend with the increasing viscosity. As shown in Eq. (17),
ṠNOMF can be represented as a function of the product of
(∇u : ∇u)total and the viscosity factor μ. As the viscosity
coefficient increases, the product of the two increases. This
leads to the increase of ṠNOMF as the viscosity coefficient
increases.

C. Effect of heat conduction on RTI

In this section, the gravitational acceleration, the relaxation
time, and the interfacial tension coefficient are set as g = 0.2,
τ = 4 × 10−5, and K = 8 × 10−6, respectively. The effect of
heat conduction on RTI is investigated by varying the Prandtl
number to simulate the evolution of RTI for different heat
conductivities. Figures 15(a) and 15(b) illustrate the bubble
amplitude and bubble velocity curves for various heat con-
ductivities. The bubble amplitude and velocity decrease as the
heat conductivity increases. Figures 15(c) and 15(d) depict
the evolution of interface length and its change rate over time
for different heat conductivities. Both the interface length and
its change rate decrease with the increasing conductivities.
This leads to the conclusion that heat conduction shows a
suppressive influence on the evolution of RTI.

Figure 16(a) depicts the evolution of entropy production
rates ṠNOEF for various heat conductivities. The ṠNOEF in-
creases with increasing heat conductivity at an early stage,
but it first increases and then decreases with increasing heat
conductivity later. This can be understood with the help of
Figs. 16(b) and 16(c). Figure 16(b) depicts the evolution of
|∇T |2total for various heat conductivities. Figure 16(c) shows
the development of d|∇T |2total/dt for different heat conduc-
tivities. As can be seen, |∇T |2total decreases with increasing
heat conductivity. The d|∇T |2total/dt decreases with increas-
ing conductivity coefficient at an early stage and increases
with increasing conductivity coefficient at a later stage. There
is a close correlation between d|∇T |2total/dt and dL/dt . Heat
conduction has a suppressive influence on the evolution of
RTI. The change rate of the interface length decreases with the
increasing conductivity. At an early stage, with the increas-
ing conductivity, dL/dt decreases and the heat conduction
is stronger. This leads to d|∇T |2total/dt decreasing as heat
conductivity increases. At a later time, the interface length
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FIG. 15. Evolution of (a) bubble amplitude, (b) bubble velocity, (c) interface length, and (d) interface length change rate over time for
different heat conductivities.

for lower conductivity is much longer than that for a higher
conductivity. The mixing and contact between the light and
heavy fluids are sufficient, which promotes the heat transfer
between the light and heavy fluids. So d|∇T |2total/dt for a
lower conductivity is smaller than that for a higher conduc-
tivity. At an early time, dL/dt is small and |∇T |2total is mainly
influenced by the heat conduction at the interface of the light
and heavy fluids. This induces |∇T |2total to decrease with time
at first. With the increasing heat conduction coefficient, the

heat conduction is stronger. So |∇T |2total decreases with the
increasing heat conduction coefficient. With the evolution of
RTI going, dL/dt is larger and L is much longer. This in-
duces |∇T |2total to increase with time. As already stated, the
increasing conductivity leads to the decrease of dL/dt and
stronger heat conduction. So the growing rate of |∇T |2total
for a higher heat conductivity is lower. As time goes on, the
interface length becomes much longer and the mixing and
contact between the light and heavy fluids are more sufficient.

FIG. 16. Evolution of (a) ṠNOEF, (b) |∇T |2total, and (c) d|∇T |2total/dt over time for different heat conductivities.
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FIG. 17. Evolution of (a) ṠNOMF, (b) (∇u : ∇u)total, and (c) d (∇u : ∇u)total/dt over time for different heat conductivities.

So |∇T |2total decreases with time. With the decrease of heat
conductivity, the interface length is much longer and the mix-
ing and contact between the light and heavy fluids are more
sufficient. This leads to the higher rate of decrease of |∇T |2total
for lower heat conductivity. As shown in Eq. (16), ṠNOEF can
be represented as a function of the product of |∇T |2total and
the heat conductivity κ . This induces ṠNOEF to increase with
increasing heat conductivity at an early stage, and ṠNOEF first
increases and then decreases with increasing heat conductivity
at a later time.

Figure 17 depicts the evolution of entropy production rates
ṠNOMF, (∇u : ∇u)total, and d (∇u : ∇u)total/dt over time for
different heat conductivities. As heat conductivity increases,
the evolution of RTI is inhibited, the dL/dt and L are smaller,
and the mutual movement between the light and heavy fluids
is weaker. This induces d (∇u : ∇u)total/dt , (∇u : ∇u)total,
and ṠNOMF to decrease with increasing heat conductivity.

IV. CONCLUSION

In this paper, a DBM considering the intermolecular
interactions was developed and used to investigate the
two-dimensional single-mode RTI problem. The effects of
interfacial tension, viscosity, and heat conduction on the evo-
lution of RTI and on the two kinds of entropy production rates
related to viscous stress (ṠNOMF) and heat conduction (ṠNOEF)
were investigated. For the interfacial tension effect, it was
discovered that interfacial tension has a suppressive effect on
RTI evolution at the bubble acceleration stage. However, at the
asymptotic velocity stage, interfacial tension first facilitates
and then inhibits the RTI evolution. The interfacial tension
also exhibits different effects on ṠNOMF and ṠNOEF at different
stages. It inhibits ṠNOMF and ṠNOEF at an early stage and
first promotes and then inhibits them at a later time. For the
viscosity and heat conduction effect, it was discovered that
both viscosity and heat conduction show a suppressive effect
on the evolution of RTI. However, there is a little difference
between the effects of viscosity and heat conduction on the
two kinds of entropy production rates. Viscosity promotes
ṠNOMF, but it inhibits ṠNOEF at an early stage and first promotes
and then inhibits ṠNOEF at a later time. The effects of heat
conduction on the two kinds of entropy production rates also
show a difference. It was found that heat conduction inhibits

ṠNOMF but promotes ṠNOEF at the early stage and first promotes
and then inhibits ṠNOEF later.

In addition, it was found that the morphological interface
length can be a helpful complement to a two-dimensional
depiction of the RTI development process. The first maximum
value point of the interface length change rate can be used as
a criterion for RTI evolution to enter the asymptotic velocity
stage. The first maximum value of the change rate of the
entropy product rate related to viscous stress can be utilized
as an additional criterion for the evolution of RTI to enter the
asymptotic velocity stage.

When interfacial tension, viscosity, and heat conductivity
are present together, viscosity and heat conduction also show
an inhibitory effect on RTI development. This is consistent
with the results of previous studies when interfacial tension
was not considered. However, as the coefficients of viscosity
and heat conduction of a fluid are related to the fluid’s density
and temperature, the introduction of intermolecular forces will
lead to the evolution characteristics of density and temperature
different from that based on an ideal gas model, thus affecting
the viscosity and heat conduction during the evolution of

FIG. 18. Discrete-velocity model.
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FIG. 19. Comparison of density at time t = 6 for different nu-
merical resolutions: (a) 256 × 1024 meshes, (b) 320 × 1280 meshes,
and (c) comparison of the flow fields for the two mesh numbers
where black and red lines represent 256 × 1024 meshes and 320 ×
1280 meshes, respectively. Five equally spaced contour lines range
from ρ = 0.3 to ρ = 0.7.

the system. We found that the variation patterns of certain
nonequilibrium quantities of the system with viscosity and
heat conduction may be influenced by the interfacial tension.
The evolution of these nonequilibrium quantities with viscos-
ity and heat conduction maybe different from that without
considering the interfacial tension.

The study of RTI problems considering intermolecular
forces using the DBM is just in its infancy. In this work we
started with a relatively simple problem, a two-dimensional
single-mode RTI. The two-dimensional simulation can be
regarded as a special case of the three-dimensional problem
that is uniform and unchanged in the third dimension Z . Of
course, there will be some differences between three- and two-

dimensional calculations. For three-dimensional problems,
the evolution of the interface between light and heavy fluids
will no longer be described by the interface length, but instead
by the interface area. For a simple three-dimensional single-
mode RTI problem, there should also be a turning point in the
change rate of the interface area that can be used as a criterion
for the development of RTI into another stage. Nonequilib-
rium quantities such as the temperature gradient and velocity
gradient of the system, as well as their change rates, will
also show different variation patterns at different stages of
RTI development. These are similar to the two-dimensional
single-mode RTI. However, it is more complicated that even
for the simple three-dimensional single-mode situation, there
is coupling between perturbations in various directions. This
could make the interface’s evolution much more complex and
should be studied further.
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APPENDIX A: DISCRETE-VELOCITY MODEL

Figure 18 shows the discrete-velocity model used, which
contains a zero velocity, as well as four sets of eight velocities
in each direction. Each set of discrete velocities has the same
velocity value v j ; the discrete velocity v ji can be written as

v ji = v j

[
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(
i − 1

4
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, (A1)

where j = 0, 1, 2, 3, 4; i = 1, 2, . . . , 8; and j = 0 is the zero
velocity. The equilibrium distribution function corresponding
to the discrete velocity can be written as
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where Fj is the weighting factor
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F0 = 1 − 8(F1 + F2 + F3 + F4). (A7)
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APPENDIX B: SMALL-SCALE DISSIPATION
AND NUMERICAL RESOLUTION

Figure 19 shows the contour maps of density at t = 6
with two different numerical resolutions. In this case, the
interfacial tension coefficient is set to be K = 6 × 10−6, the
relaxation time is τ = 4 × 10−5, the gravitational acceleration
is g = 0.2, the Prandtl number is Pr = 0.6. Figure 19(a) shows
the density of the flow field with a mesh number 256 × 1024,
which was used in our study. Figure 19(b) shows the density of
the flow field with a refined mesh of 320 × 1280. Figure 19(c)
is the contrast of the two results, in which the black repre-

sents 256 × 1024 meshes and the red represents 320 × 1280
meshes. It can be seen that the flow fields for the two numeri-
cal resolutions are substantially identical, with only very small
structural variations. Although the improvement of numerical
resolution can further improve the accuracy of the small-scale
dissipation calculation, the increase of calculation consump-
tion is huge. This is one of the reasons that 256 × 1024
meshes are adopted in our study. Another important point is
that this work mainly focuses on the statistical characteristics
of the evolution of various patterns during interface evolution;
thus the improvement of the numerical resolution will not
affect the validity of our conclusions.
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