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The advection and mixing of a scalar quantity by fluid flow is an important problem in engineering and
natural sciences. The statistics of the passive scalar exhibit complex behavior even in the presence of a
Gaussian velocity field. This paper is concerned with two Lagrangian turbulence models that are based on the
recent fluid deformation model, but adding a passive scalar field with uniform mean gradient. For a range of
Reynolds numbers, these models can reproduce the statistics of passive scalar turbulence. For these models,
we demonstrate how events of extreme passive scalar gradients can be recovered by computing the instanton,
i.e., the saddle-point configuration of the associated stochastic field theory. It allows us to both reproduce the
heavy-tailed statistics associated with passive scalar turbulence, and recover the most likely mechanism leading
to such extreme events. We further demonstrate that events of large negative strain in these models undergo

spontaneous symmetry breaking.
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I. INTRODUCTION

The 3D incompressible Navier-Stokes equations (NSE),

ou+u-Vu+Vp—vAu=0, V-u=0, (D

describe the evolution of a fluid in time. Here, u(x,t) € R3
is the velocity field, v denotes the kinematic viscosity, and
p(x,t) € Ris the scalar pressure field that enforces the incom-
pressibility constraint. A passive scalar, such as a substance
concentration (e.g., pollutant or temperature field without
buoyancy feedback), is advected by a turbulent flow exhibiting
complex spatial and temporal scales of motions. The passive
scalar equation (PSE) gives its time evolution,

30 +u-Vo—k A0 =0, )

where « denotes the diffusivity coefficient of 6(x,7) € R.
Passive scalar turbulence is often taken as a testbed for un-
derstanding fluid turbulence [1,2], but is also relevant in its
own right to analyze, for example, advection processes in the
atmosphere [3,4] or ocean [5,6].

Understanding the statistical and geometrical properties
of turbulent flow at small scales has been a long-standing
challenge. At these scales of motion, the prolific activity
of strain and vorticity triggers intense fluctuations, resulting
in intermittency, as observed in the probability distribution
functions (PDFs) of velocity gradients [7]. The velocity
gradient not only dominates the smallest scales of motion,
but it also embodies local rotation and deformation rate,
making it an observable object of theoretical [8-10] and
numerical /experimental studies [11-13]. The dynamics of
small inertial particles immersed in a turbulent flow is dic-
tated by the flow velocity gradients [14—16]. The small-scale
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statistics of passive scalar fluctuations have sparked the same
level of curiosity, as the scalar field displays anomalous
scaling even in a completely Gaussian velocity field [17,18].
Other scalar turbulence features have been studied such as
the rise of large-scale anisotropic scalar structures regardless
of Reynolds number [19], the inefficiency of turbulent flow
mixing linked to a high Schmidt number [20], anomalous
scaling [21], and statistical moments [22,23].

Aiming at obtaining the statistics of the small scales pro-
vided by the velocity gradients A;; = du;/dx;, a variety of
low dimensional models has been proposed in the literature
describing the evolution of A;; following a tracer particle
(Lagrangian description). As the effect of pressure and vis-
cosity renders the dynamical equation for A;; unclosed, one
is forced to resort to some closure approximation to obtain
a self-contained model [24]. The restricted Euler (RE) equa-
tion [8], the tetrad model [25], and the recent fluid deformation
(RFD) [26] form a history of such models, where in particular
the last has successfully regularized the finite-time singular-
ity of the nonlinear self-stretching term (—A?) observed in
the RE model, using ideas from linear damping [24,27] and
geometrical considerations of Ref. [25]. At the same time, it
preserves the statistical features of the velocity gradient such
as the left-skewness of its distribution, and the properties of
the joint PDFs in the O-R plane, where Q and R are the second
and third invariants of A, respectively. Nevertheless, the RFD
model is restricted to moderate Reynolds numbers.

Reframing the closure problem in terms of conditional av-
erages, Ref. [28] proposes a model for the velocity gradient by
closing the deviatoric pressure Hessian and viscous Laplacian
conditional means with the help of a Gaussian velocity field.
Evaluation of the Gaussian conditional averages allows for
an analytical estimation of the model parameters. However,
the resulting model suffers from singularities when computed
numerically. This issue has been circumvented with an empir-
ical adjustment of parameters, retaining the functional form
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of the Gaussian approximation, and resulting in the enhanced
Gaussian fields (EGF) closure. More recently, Ref. [29]
merges the two approaches, viz. the RFD and EGF, into a
model called RDGF (recent deformation Gaussian fields),
taking advantage of both closures. In an attempt to extend
RFD closure to any Reynolds numbers, [30] proposes a model
that constrains the dynamics, such that the dissipation fulfils
certain statistical features at the cost of introducing another
free parameter that controls the intermittency.

The Lagrangian evolution of a passive scalar can be added
alongside the velocity gradient with similar arguments as for
the RFD model. The resulting passive scalar RFD model (PS-
RFD) proposed in Ref. [31] retains the statistical properties
of the scalar gradient v := V6, such as the fat-tailed PDFs
of ¢ deviating from Gaussian at small scales, in excellent
agreement with full direct numerical simulations of passive
scalar turbulence [32]. Extreme values of the scalar gradi-
ent dominate the tails, resulting in heavy-tailed distributions.
These outlier large gradients of the passive scalar, prevailing
at the inertial scales (intermittency), can effectively be studied
by means of instanton calculus due to their low probabilities,
which forms the main contribution of this work.

As we will line out below, the instanton formalism [33-35],
and its more rigorous cousin, large deviation theory [36,37],
rely on the fact that in stochastic systems, rare events often oc-
cur in a rather predictable way: While common events usually
have a multitude of possible histories, outlier events must rely
on a very precise interplay of physical mechanisms and forc-
ing realizations, leading to a prototypical system trajectory
for the desired rare event. At its core lies the estimation of a
stochastic (path-)integral by a saddle-point approximation, or
equivalently by a (functional) Laplace method, that computes
the most likely trajectory, called the instanton, as well as its
probability, as the solution of a large optimization problem.
Instanton calculus has been successfully applied to many
stochastic systems, including in fluid dynamics [38—41] and
waves [42,43]. These principles will be applied in this paper
to analyze outlier events in passive scalar turbulence. More
specifically, we will investigate extreme gradients of 6 for the
PS-RFD models via the instanton formalism to find the most
likely realization leading to outlier events, and compare the
probability scaling predicted by the instanton to the observed
heavy-tailed distribution of Monte Carlo (MC) simulations.
This demonstrates how the instanton gives us direct access to
the tail scaling of passive scalar turbulence.

This paper is structured as follows: Sec. II provides a brief
overview of the RFD models of the flow velocity gradient
and the passive scalar gradient. Following that, in Sec. III,
we introduce a reduced version, based on axial and reflection
symmetry considerations that are obeyed statistically by the
system. We will investigate the limitations of these symmetry
assumptions and the symmetry breaking of large strain events
in Sec. III B. Section IV is devoted to the instanton formalism
as applied to the PS-RFD system, including its action/rate
function and a system of instanton equations that solve the
optimization problem. Section V then analyzes heavy-tailed
PDFs of the passive scalar gradient. Such heavy-tailed dis-
tributions, associated with nonconvex rate-functions, pose a
particular difficulty for the application of sample-path large
deviations; thus, we apply in Sec. VB a revised formalism

based on nonlinear convexification of extreme event instan-
tons [44]. Finally, we conclude in Sec. VI.

II. THE RECENT FLUID DEFORMATION MODELS

In this section, we briefly recall the recent fluid deforma-
tion model [26] and its extension to the dynamics of passive
scalar gradients [31].

A. Lagrangian velocity gradient in the recent
fluid deformation model

The Lagrangian time evolution of the velocity gradient
tensor A is obtained by taking the gradient of the NSE (1):

dA;; 92 9%A;;
— = _AinAnj - P :
dt Bx,»axj

where d /dt = 9/0dt 4 uy 0/0x; stands for the material deriva-
tive. Due to the incompressibility of the flow, A must be trace-
less, Tr(A) = 0. As previously stated, Eq. (3) is not closed in
terms of A at position x and time ¢ because the anisotropic part
of the pressure Hessian is highly nonlocal, and the Laplacian
of A in the viscous term is not easily expressed in terms of A.

The RFD closure models these unclosed terms based on
the hypotheses detailed in Ref. [26]. The RFD dynamics
of the deformation that the Lagrangian particle undergoes
along the flow, Eq. (3), is

3

9x,0x,,

(g T L THC)
dA_< A +Tr((c_]) 37 A)dt+/edW,
“4)
where
C = exp(—rAT)exp(—rA), )

approximates the Cauchy-Green tensor with t representing a
short decorrelation time. As shown by Eq. (4), the RFD model
has two timescale parameters. They are the decorrelation time
7, which is assumed to be the Kolmogorov timescale t,
and T identifying with the integral timescale. Therefore, on
dimensional grounds, the role of Reynolds number is played
by the parameter r = (t/T)~2. We remark that while this
parameter scales like a Reynolds number, it is not identical in
value to the Reynolds-number in actual fluid flow. For exam-
ple, Ref. [45] compares the RFD at 7 /T = 0.1 against DNS
at Re; =~ 150, showing for example comparable intermittency
trends. Additionally, increasing » in the RFD above a thresh-
old (around 400) leads to unphysical results and eventually to
a numerical blow up [26,29,45].

To reach a statistical equilibrium, a tensorial stochastic
force W (¢) has been introduced into Eq. (4). Its strength is
determined by a parameter ¢, which we pick as ¢ = 0.25. The
force is correlated as

E[dW;;()dWy(1)] = Giju dt, (6)
where the fourth-order tensor,
Giju = 2881 — $8udjx — $81;8u, @)

is consistent with both the isotropy assumption and incom-
pressibility.

As a small-scale quantity, A is expected to scale with
1/7. Indeed, the phenomenology of turbulence states that
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(Tr(S%)) = 1/(272), suggesting a nondimensionalization of
the RFD equation with 7. In this setting, the modeled Cauchy-
Green tensor would depend weakly on the Reynolds number
since the explicit t-dependence would be absent. When
nondimensionalizing with t, the deterministic part of the
RFD would depend on r only through the viscous term. Con-
versely, the dimensionless noise amplitude gets smaller as the
Reynolds number is increased [28] because it scales with a
positive power of the small timescale like 73. Here, though,
we nondimensionalize with T', according to [26,46,47]. With
this choice, t still appears in the modeled Cauchy-Green
tensor as a small parameter. As a consequence, expansion
and truncation of the Cauchy-Green tensor can be carried out,
which, in turn, simplifies the instanton Eqs. (29) (see also the
Appendix). In addition, this truncation allows for a qualitative
discussion regarding the emergence of extreme passive scalar
gradients in Sec. V. With this in mind, the nondimensionalized
RFD takes the form
- > Tr(A%) _ , Te(C™hH -\ - -
dA_( A +Tr(@7l)<c 3 A)dt+«/§dW,
®)

where the dimensionless variables are defined according to

t‘:i, A=TA, 7=_,
T T
C =exp(—tAT)exp(—TA),
§=T%%, W=+TW. )

Hereafter, we are taking r € {25, 100, 156, 278}. To com-
pare our simulations to real turbulence, we computed the flat-
ness of our MC simulations and found ((A; — (A4;))*)/{((A; —
(A;))?)? = 3.52 for the largest value r = 278 (where A; stands
for the longitudinal velocity gradients). According to data
in Refs. [48,49] a rough estimate of the maximum Taylor-
Reynolds number (Re;,) attained by RFD simulations is Re; =~
20. In addition, Ref. [50] reports that the skewness of value 0.4
is compatible with Re; = 20. This agrees with the RFD re-
sult of skewness ((A; — (A;))?)/((A; — (A;))*)3/? = 0.39 for
r = 278. While this is a fairly low Re; -regime, it nevertheless
leads to fat-tailed distributions for the passive scalar gradients,
as depicted in Fig. 4.

B. Passive scalar turbulence in the recent
fluid deformation model

In a similar manner, taking the gradient of the PSE (2)
yields
ay

Y

8xj8xj

. Yy =VeeR: (10

Following the same rationale of the previous section, the PS-
RFD is derived from closing the diffusive Laplacian with the
help of the short-time Cauchy-Green tensor and a diffusive
integral timescale Ty, yielding [31],

B Tr(C™")

dwz(—ATw w) dt + /¢dF , (11)
3Ty

where F denotes a random force that is white in time with am-
plitude &, whose correlation reads E[dF;(t) dF;j(t)] = §;; dt.

Hereafter, we assume that the noise strength is the same in
both stochastic Egs. (4) and (11). Reference [31] investigates
the statistical characteristics of the kinematics of the RFD
passive gradient, whereas Ref. [32] compares the PDFs from
Eq. (11) and the DNS, revealing the presence of heavy tails.

In terms of dimensionless variables Eq. (9), the PS-RFD
becomes

o
dy = (—ATI} - &_)lﬁ) di + & dF, (12)
3Ty

where =Ty, F = A/TF are introduced as the dimension-
less passive scalar gradient and random forcing, respectively,
Ty = Ty/T is the dimensionless diffusive constant and C is
provided by Eq. (9). It is tempting to identify the dimension-
less timescale with the Schmidt Sc number as it measures the
ratio v/k. However, as pointed out by Ref. [31], Sc = v/k =
(Ty/T)H[(8X)?/(3Xy)*], where 39X and 3X, are the small-
est scales reached by velocity gradient and scalar gradient,
respectively. The assumption made by the model considers
0X = 0Xp, that is, the smallest scales of turbulence are of the
same order of the smallest scales of the diffusive process. It
is known from the phenomenology of turbulence that these
length scales are of the same order only for Sc near unity. As
a result, the PS-RFD is limited to Sc close to unity [31]. A
Lagrangian model for passive scalar gradients similar to the
PS-RFD which accounts for Schmidt number dependence is
lacking yet. The role of 7 and r in the development of extreme
events shall be discussed in Sec. V. Subsequently, we will be
working with the dimensionless RFD and PS-RFD with the
bar suppressed for notational clarity.

Equation (11) was conceived to model isotropic passive
scalar fluctuations. Nevertheless, a more standard setup inves-
tigated both in experiments [51] and numerical simulations
[20,21] is the one in which there is an imposed mean passive
scalar gradient. In the presence of this large-scale mean pro-
file, experiments reveal a persistent skewness in the direction
of mean gradient regardless of Reynolds numbers [51,52].
This observation indicates a violation of the postulate of lo-
cal isotropy, usually assumed in the context of Kolmogorov
theory [7], where anisotropies introduced by the large scale
forcing mechanism vanishes as one approaches the smallest
scales of motion for high Reynolds numbers. This anomaly
is attributed to the formation of ramp-cliff structures. See
Ref. [21] for a recent investigation on the role of these struc-
tures in the contribution to odd-order moments statistics.

In light of that, we will adapt the original PS-RFD to
include a uniform mean derivative scalar in a given direc-
tion. Starting from Eq. (10), supplementing a passive scalar
mean gradient corresponds to replacing ¥ — i + W, with
a constant W € R3. The diffusive term is unaffected by this
change so that no further modeling is required. As a result, the
PS-RFD closure subjected to a uniform mean gradient reads

-1
dy = <_AT(¢/ + W) — %w) dt +/edF . (13)
0

Without loss of generality, we are considering ¥ = (1, 0, 0)
from now on. After simulating Eq. (13), we observed that the
model captures the prevailing skewness along the direction of
the mean gradient, which can be seen from the asymmetry of
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the pdf (Fig. 4). Though many works report a skewness of
order unity [21,49,51], our results point to skewness approx-
imately in the range 3—4.4 with a slight upward trend toward
increasing r. These higher values of skewness may indicate
that the model emulates a Schmidt number lower than unity
since the odd-order moments decrease as Sc increases [21].
For the fifth-order normalized moment, no significant trend
was found.

III. REDUCED RFD AND PASSIVE SCALAR RFD MODELS

Conditioning on large strain values in the RFD model, and
similarly on large passive scalar gradients in the PS-RFD sys-
tem reveals a statistical tendency to respect axial and reflective
symmetries around the axis prescribed by the dominant strain.
This has been observed before for the RFD model [53], and for
PS-RFD [54], leading to a simplification of both RFD and PS-
RFD models. This motivates us here to discuss some details
of this dimensional reduction, in particular, how spontaneous
symmetry breaking at large strain values leads to a failure of
the symmetry-based reduction.

A. Dimensional reduction of the RFD model

The RFD model Eq. (8) describes the evolution of a 3 x 3
matrix A, but in fact has only five independent variables: This
is easily understood following the standard decomposition
of the velocity gradient into symmetric and anti-symmetric
parts, namely, A;; = S;; + 2;;, where S;; = (A;; +Aj;)/2 and
Q;; = (A;; — Aj;)/2 represent the rate of strain and rate of
rotation tensors, respectively. By diagonalizing S;;, only three
of the six variables in §;; remain. The interpretation is that
after diagonalization, the coordinate system is aligned with
the principal axis of strain, from which only two are indepen-
dent due to Tr(A) = Tr(S) = 0. The rotation matrix’s three
variables represent the rate of rotation with respect to each
principal axis. Explicitly,

a 0 0 1 O —Wc wp
A=10 b 0|+=| o 0 —wy, |, (14)
0 0 ¢ 2 —wp W, 0
with a, b and ¢ = —(a + b) are the three rates of strain, and

g, Wp, and . are the projections of the vorticity w; = €;jx 2
along the principal axes.

Consider the case of conditioning on a large value for the
first longitudinal component of the velocity gradient, e.g.,
Aq1(ty) takes a value a. It is clear that

A = [A() A AT (@)1, (15)

where A(w) is the rotation matrix with respect to x; axis,
namely,

1 0 0
A(@)=|0 cosa sino |. (16)
0 —sine cosa

Equation (15) simply means that many different configura-
tions of A lead to the same A;;, namely those obtained by
rotating about the x| axis, which is a manifestation of the axial
symmetry. Indeed, by arguments of isotropy, the probability
obeys P(A) = P[A(a)AAT(@)].

We can, in addition, demand that A itself is axisymmetric.
This corresponds to a situation where we assume that only
the x;-component of the strain is relevant, and we are free to
ignore the others. In this case, the number of degrees of free-
dom can be reduced even more. Let an infinitesimal rotation
about the x| axis given by A;; = &;; + a €1;; + O(a?). After
this transformation, the velocity gradient reads

A;j = A;j + a (e13Akj + €1jiAi). a7

With the hypothesis that A is invariant under rotations with
respect to xj, that is, A;j = A;j, it can be shown that A takes
the form

a 0 0
A=(0 —-a/2 —-w,/2]. (18)
0 w,/2 —a/2

As a result, the number of degrees of freedom was reduced
from 5 to 2. One of them is related to the rate of strain,
a, and the other is related to the vorticity. By invoking the
reflection transformation over the x;-x3 plane (i.e., x; — —x1)
and admitting that A respects this symmetry as well, we have
that w, = —w, = 0, and only one degree of freedom remains.

In summary, diagonalizing the rate of strain tensor reduces
the degrees of freedom from nine to five. Furthermore, assum-
ing invariance of rotation about one of the principal axis of
strain (axial symmetry) implies that the vorticity lines up with
the principal axis, so that a single component of the vorticity
remains, decreasing the number of independent variables by
two. Additionally, the same axial symmetry demands the two
rates of strain to be the same, which implies two degrees of
freedom left. Finally, the assumption that the velocity gra-
dient respects reflection symmetry requires a zero vorticity;
otherwise, the symmetry would be broken. As a result, only
a single degree of freedom is left, corresponding to the axial
rate of strain.

Based on these arguments, we can devise a simplified
stochastic model that accounts for the same statistics of the
longitudinal component of the RFD model Eq. (8), which we
call reduced RFD [53], given by

da_

i v(a) + e, 19)

where a corresponds to Aj; and

v(a) = —ad® + Ea2 - — — c—l(ef% + Ze%). (20)
2 V4 2ev
The noise term 7(¢) is a zero-mean white scalar random vari-
able.

One may ask whether the assumption of invariance under
rotation of A is always valid. The answer is no. As it will be
discussed in Sec. III B, there is a critical r above which the
velocity gradient A fails to share the same symmetry of the
probability, and the system undergoes a symmetry breaking,
closely related to spontaneous symmetry breaking featuring in
other areas of physics [55,56]. Hence, the dimensional reduc-
tion is no longer possible. Crucially, this critical » coincides
with similar limitations of the original RFD model [26].
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FIG. 1. PDFs of the A;; component of the velocity gradient tensor A;; = du;/dx;, for a range of Reynolds numbers. The red dots show
a histogram of a MC for the full RFD model Eq. (8), compared against the analytical prediction of the reduced RFD system Eq. (19) (solid
line). It shows the emergence of another fixed point of the 1D reduced system at A;; = —3.01 for » = 400, which is an artifact of the model

reduction.

B. Numerical results for symmetry breaking of the RFD model

Here we give evidence for the validity of the dimensionally
reduced model Eq. (19) for moderate r, and the eventual
symmetry breaking of the full 8D model Eq. (8). We recall that
for the reduced RFD, an analytical PDF can be easily found
by solving the corresponding Fokker-Planck equation [53].
Shown in Fig. 1 are the PDFs obtained via MC simulations
(red dots), in the range r € [25, 400], against the analytical
PDFs of the reduced model (solid red lines). For the lowest r
values up to r = 156, there is a reasonable agreement between
the full 8D-RFD and the reduced 1D-RFD. For higher r,
a disagreement is seen in the right tail; note, though, that
positive strain values are irrelevant for the development of
large passive scalar gradients, as will be shown later. As r is
increased further to r = 400 (v /T = 0.05), at the very right of
Fig. 1, the disagreement becomes more pronounced, including
on the far left tail. Here, the 1D-RFD predicts a bimodal
PDF with a new local minimum located at A;; = —3.01. By
contrast, this bimodality is not observed in the 8D-RFD. The
emergence of this bimodal profile remains for larger values
of Reynolds number. Roughly r = 400 establishes the upper
limit where the dimensional reduction can sensibly be applied.

The discrepancy between 8D-RFD and 1D-RFD demon-
strates that for » = 400 the hypothesis of symmetries (axial
and reflection) outlined in the previous section do not hold.
Consequently, other components of the velocity gradient start
to play a role in the dynamics and may not be neglected. How-
ever, it remains true that the equation itself, and thus also the
PDF, remains invariant under rotations and reflections for any
value of the parameter r. Only individual sample trajectories
break the symmetry, while the statistics remain symmetric.
Hence, it makes sense to borrow a terminology of condensed
matter/high-energy physics [55,56], observing that the model
undergoes spontaneous symmetry breaking, since the sym-
metry of the model is not realized by the individual states
of the system A, even though the action and consequently
the PDF does observe it. The fact that this indeed happens
can be shown numerically. Figure 2 shows the joint PDFs
p(w2, w3]A1y) of the perpendicular components of the vortic-
ity w; = €;x€2;, conditioned on relatively large negative Ay,
at different r. In other words, this shows the distribution of
the vorticity vector in the presence of extreme strain, in the
plane perpendicular to the strain axis. For moderate » = 100

and 400 the distribution is concentrated around 0, highlighting
that the vorticity vector points along the strain axis (or is
altogether zero). For very large r, though, the perpendicular
vorticity components prefer to occupy a ring away from (0,0),
indicating the breakdown of axisymmetry for the individual
sample. At this r, vorticity is more likely to be at an angle
against the strain axis. Note that while we do not believe
that the RFD model remains a valid description of 3D NSE
turbulence in this regime; we remark that symmetry breaking
has recently been observed for extreme strain events in full
3D Navier-Stokes [57].

It is worth mentioning that in same range of r where the
symmetry breaking happens, the RFD model itself becomes
problematic as well, as numerical instabilities start to appear,
as reported by Ref. [26]. Here, we shall briefly explain that by
considering the high-r limit of Eq. (8). In the limit of infinite
r, the RFD model reduces to

Tr(A2)

dA:(—A2+ H—A)dt+ﬁdW. (21)
Apart from the stochastic forcing, this equation corresponds to
the linear damping closure proposed by Ref. [58]. It has been
shown that the linear damping is not enough to counteract
the strong nonlinearities of the self-stretching and pressure
Hessian terms, being subject to finite-time singularities.

100

r =100, A1y = -1.7 r =400, Ayp = -2 r=10% A = -7

L

0

w2

0 50 100-100 =50

w2

50 100-100 —50

FIG. 2. The joint PDF p(w,, ws]A;;) of the perpendicular com-
ponents of the vorticity, conditioned on relatively large negative
strain values A;;, for different values of r. As r increases, the
originally very small variances around the most likely configuration
(w7, w3) = (0, 0) grows in variance. At high r, a zero perpendicular
vorticity is no longer predominant. Instead, the most likely vorticity
clusters on a ring, indicating a spontaneous symmetry breaking of
the vorticity conditioned on large negative strain.
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C. Dimensional reduction of the passive scalar RFD model

Following the same logic, one may derive a two-
dimensional reduced model for the PS-RFD by considering
the statistics of only a single component of the passive scalar
gradient, namely, ¥y = V0 which points toward the imposed
mean gradient ¥ = (1, 0, 0). More specifically, assuming now
that both A and i are invariant under rotation around the x;
axis, the components ¥, and 13 must vanish. As a result, the
reduced version of the PS-RFD model Eq. (12) is defined as
[54]

d
% = b(y1, a) + e E, (22)
where
b1, a) =~ + Da— (e % +269) 20 @3
3T

and £(¢) is a white scalar noise that is independent of 5(¢) in
Eq. (19). The dynamics of v(¢) depend on the longitudinal
velocity gradient a(z). Thus, Eq. (22) has to be solved together
with Eq. (19).

Being dependent on the RFD, it is clear that the dimen-
sional reductions for PS-RFD will fail in the same range
of » where RFD symmetry breaks down, but is in excellent
agreement for » < 400. Next, the instanton equations and their
simplified version for the PS-RFD system are obtained. Since
there is a significant gain in numerical efficiency in solving
the instanton equations of the reduced system, we will do so
whenever the dimensional reduction is justified.

IV. INSTANTON FORMALISM AND EXTREME EVENTS

In this section, we apply the instanton formalism to the
PS-RFD model described in Sec. II. Intuitively, the instanton
formalism relies on the fact that in some limit (such as the
small noise or extreme event limits) probabilities can be effi-
ciently estimated through a prototypical “placeholder” event
that observes the same scaling as the actual probability. A
probability of an event is always a sum (or integral) over all
possible ways the event can occur, weighted by its respective
probability. In the limit, this integral can be approximated by
a saddlepoint approximation or Laplace method, giving the
leading order exponential contribution. For example, we are
interested in the probability of observing events of extreme
passive scalar gradients at the final time, P[y(t7) > z]. Then,
the instanton formalism postulates that the probability scales
like an exponential,

P(Y(ty) > z) ~ exp[—e ' (2)]. (24)

The exponential scaling, given by the rate function 1(z), can
be obtained by evaluating an action S[A, ] at the instanton

(A%, ™),

I(z) = STA*, ¥*] = inf S[A, ¥], (25)

Yi(tp)>z

where the instanton is the minimizer of the action. We will
derive the action for the PS-RFD model in Sec. IV B. In our
setup, the instanton formalism is equivalent to sample path
large deviation theory [36,37,59].

A. Related works

The action functional for the RFD model has first been de-
termined in Ref. [47]. The instanton equations were linearized
in this reference to derive an approximate analytical solution,
with additional consideration of the fluctuations around the
linearized instanton. As a result, to leading order in the per-
turbative expansion, the fluctuations yield an effective action
with renormalized noise. That is, to first order, the fluctuations
around the instanton can be taken into account by renormal-
izing the noise correlator. This approach was used to evaluate
the PDFs of the velocity gradient and the joint PDF of the R
and Q invariants.

By contrast, Ref. [53] determines the instanton numerically
by solving the corresponding highly nonlinear RFD Hamil-
ton’s equations with the Chernykh-Stepanov (C-S) algorithm
[60]. Further, following the perturbation techniques outlined
in Ref. [47], a detailed analytical treatment of the RFD clo-
sure has been given by Ref. [61], providing a hierarchical
classification of several Feynman diagrams. In addition to the
noise renormalization, Ref. [61] also computes the propagator
renormalization derived from a linear instanton approxima-
tion. The resulting PDFs are compared with the ones from
Ref. [53] with good agreement.

More recently, Ref. [54] applies instanton arguments also
to the PS-RFD model, proposing a parametric form of the
Hamilton’s equation. Aside from that, a perturbation expan-
sion has been carried out along the lines of Refs. [47,61] to
account for instanton path fluctuations.

Putting these results into perspective, all are capable of
obtaining only mild non-Gaussian PDFs, that is, they work
for a restricted range of t, namely, /7 > 0.1 (r < 100).
As r increases, and intermittency starts to play a role, the
probability distributions develop heavy tails. Consequently,
the corresponding rate function ceases to be convex, which
prevents naive instanton approaches based on the Girtner-
Ellis theorem to remain well-posed. To overcome this and to
apply the instanton formalism to more turbulent flows, here
we introduce a nonlinear convexification to treat the heavy-
tailed distribution, as discussed in Sec. V.

B. The action and instanton equations for the PS-RFD dynamics
In accordance with [54], the PS-RFD action reads [62—-64],

ty . l
SIP, AL TL, ] = / dr(Tr{PT[A—V(A)]}—EH,G,»,HPM
1

. 1
+I' [ — My, A)] — EHTH) (26)

where
T —1
My, A) = —AT(y + W) — %w, @7)
0
and
o, TAY) L TCTh
V(A) = —A +—Tr((C—1)(C —5—A @

stand for the drift terms of Eqgs. (12) and (8), respectively, and
T e R? (P € R**) is the conjugated momentum of v (A),
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closely related to the auxiliary variables of the Martin-Siggia-
Rose-Janssen-de Dominicis formalism [62-64].

The minimum of the action functional Eq. (26) is achieved
by the solutions of the following corresponding instanton
equations of the fields A, v:

88 .
5P 0, = Ajj =V (A);; + Giju Pus

P

88 .
SAL 0, = Pj=—PuVa,VAA)y — Ik VoM, A),,

1

55 =0, = Yy =MW, A), +1I
81—1]{ — Y k — ) k ks

88 .
— =0, = Ixi =11, Vy, My, A),, (29)
Y

for t € [t;, tf]. The full formulas for these gradients are de-
rived in the Appendix, where we expand the drifts up to
second order [47].

These four coupled Egs. (29) are solved simultaneously
using the C-S scheme [60,65], which corresponds effectively
to a gradient descent of the constrained optimization problem
[66]. The boundary conditions of Egs. (29) are specified by the
choice of observable. Here, we are looking for events where
one component ; of the passive scalar gradient exceeds a
threshold z, which leads to

A =0, v()=0, Pty) =0, I1;ity) =AVE[Y;(ty)],
(30)

where the initial values of the fields are their stable equi-
librium points, the origin. The final time constraint on the
gradient of passive scalar to attain z = ¥;(¢y) is implemented
in Eq. (30) through a Lagrange multiplier A € R, [67]. The
function F : R — R is a nonlinear reparametrization to en-
sure there is a unique X for every large passive scalar gradients
of interest [44].

C. Instantons for the reduced PS-RFD dynamics

The full instanton Egs. (29) correspond to the system
Egs. (8) and (12). However, when a final time constraint is im-
posed on a component of the passive scalar, such as F/[ (/)]
Eq. (30), it exhibits symmetric behavior (with respect to axial
and reflective symmetries) that reduce this 11-variable system
to one with only two leading variables, v;(¢) and a(z). The
same reduction applies to conditioning on other components
of . As discussed in Sec. III, this reduction is valid for
r < 400.

For the reduced model Egs. (19) and (22), the resulting 2D
instanton equations are

a=v(a)+ p,
- av(a) q ab(yry, a)
. da da a1
Y1 =b(y,a)+q,
_abW.a)
g,

== 11D Monte-Carlo

-~ 11D Instanton

—

S
-
1

XI & 2D Instanton
=
T 10*3 i
r =100
0 2 4 6 8 10

FIG. 3. The complementary cumulative distribution functions of
passive scalar gradients P((t;) > z), (solid line) compared to the
outcomes of both 11D and 2D instantons results (red and blue,
respectively), with » = 100 and 7y = 1. Both the full and the reduced
instantons agree with MC simulations of the full system.

where p(r) = P;;(¢) and g(¢t) = I1,(¢). The drifts v(a) and
b(yr1, a) are derived in the reduced models’ Sec. III, namely,
Egs. (20) and (23).

The difference between Eqgs. (29) and (31) is that the latter
is more computationally efficient than the former due to the
significant reduction of its dimensions, and we will use it
in the following to estimate the tail probabilities of the pas-
sive scalar gradient. Figure 3 demonstrates numerically that
this simplification is indeed justified for the instanton, as the
predicted probabilities P[v(¢;) > z] of exceeding a passive
scalar gradient z at final time ¢/ is in excellent agreement be-
tween MC sampling of the full RFD model, and the instanton
estimates of both the full and the reduced models.

V. EXTREME GRADIENT OF THE PASSIVE SCALAR

In this section we provide both analytical and numerical
results for extreme passive scalar gradients in the PS-RFD.
Starting from the model Egs. (12), which we rewrite here for
convenience,

Tr(C~1)

— AT _
d¢_<A(w+W) 3T,

w)dzJM/EdF;

A AT
C=evev, (32)

recall that the first term on the right-hand side (RHS) of this
stochastic equation accounts for the advection, whereas the
second term describes the effect of diffusion. We shall discuss
the role played by parameters 7y and r. In the limit of high r,
the Cauchy-Green tensor C can be expanded to order O(r~!),

1
Tr(C™H =3+ 2—Tr(A2 + AT +2ATA)
r
2 2
=34+ =Tr(S?), (33)
r

where S is the rate of strain tensor S = (A + AT)/2. Taking
this into consideration, Eq. (32) is rewritten as

v 2—‘”Tr(sl’)) dt + /e dF .

— [ AT _ 2 _
dw—(A<w+w A
(34)
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From Eq. (34), it is clear that the second term on the right
side is linear damping for 1, acting to decrease the size of
fluctuations, with 7 being the (dimensionless) characteristic
time. The behavior of the third term, however, can be under-
stood as follows: Finiteness of dissipation [recall the scaling
we use (8)] reads (Tr(S?)) = r/2. As a result, the third term
is expected to remain bounded, on average, as r increases. By
contrast, the first term is expected to get larger (in absolute
value) since A, on phenomenological grounds, is expected to
scale as A & T /t. Hence, as r increases keeping Ty constant,
the effect of the advection (first term) overcomes the third
term that accounts for modeled turbulent-diffusion effects.

Our claim is that as the parameters Ty or r are increased,
the development of a large passive scalar gradient can be
enhanced. Increasing 7 leads to lower damping effects played
by the second and third terms on the RHS of Eq. (34). Like-
wise, increasing r enables the advection term to surpass the
effect of the third term on the RHS of (34). The advection
term, in turn, will contribute to an increase of ¥ as long
as an eigenvalue of A associated with the direction of ¥ is
negative, which means that the compressional directions of the
velocity gradient lead to extreme values of the passive scalar
gradients. This qualitative analysis meets the known trends in
the alignment of the scalar gradient with strain [68,69].

A. Heavy tails and convexification

We are now equipped to investigate the probability to ob-
serve extreme passive scalar gradients for different » and Tp.
Figure 4 displays the PDFs of the first component of passive
scalar gradients, ¥, at the final time ¢/, for various values of r
in Fig. 4(a), and diffusive timescales 7y in Fig. 4(b). They are
obtained by MC simulations of the full 11D PS-RFD system
Egs. (8) and (12). It illustrates that indeed increasing both
r and Ty invokes heavy tails for the passive scalar gradient
due to strong turbulent mixing and high transport rates. We
also remark that the fattening of the tails is more sensitive to
the diffusive timescale 7 than to the Reynolds number. This
can be understood through Eq. (34), where it is evident that
increasing Ty leads to a decrease of two suppression terms for
Y, compared to only one for r.

B. Extreme configurations of the passive scalar gradient

The probabilities obtained from MC sampling can be
directly compared to predictions from the instanton formal-
ism, obtained by solving the optimization problem Eq. (25).
In practice, we do so by numerically solving the instanton
Egs. (31). This comes of a significant performance benefit
over computing the instanton for the full model Eq. (29),
allowing us to compute the minimizer faster. For example,
the average speed-up factor for r = 100 and z € [2, 10] is
54. The benefit of solving Eqgs. (31) is even more significant
for extreme events since this factor of improvement grows
as r and/or z increase. To overcome the problem of heavy
tails, we convexify the rate function with a reparametriza-
tion of the observable according to the scheme presented in
Ref. [44]. Concretely, we choose F (z) = sign(z) log log |z|, to
be inserted as boundary condition into Eq. (30). We then use
the C-S algorithm [60,65] to obtain the instanton fields A and

(a 04
) 10 /\ —_ r=25
Ty=1 — =100
107 4 ‘ "

— r=156
~ r =278
3 1072 5
< 1073 - % |
QU [

o] v WV /W
1054 1 V\V\\A
T T T T T T T
-75 50 -25 00 25 50 75
P (ty)
(b) 100 .
r =100 &
107! 5
:; 1072
CRUER
U
107 v w
1054 1 V\V\\A

-7.5 -5.0 =25 0.0 2.5 5.0 7.5
U1 (ty)

FIG. 4. PDFs of the first component of passive scalar gradients,
Y, obtained from MC simulations of the PS-RFD system Egs. (8)
and (12) for various Reynolds numbers r and diffusive timescales
T,. Subfigure (a) exhibits heavier tails as r increases, where Ty is set
to unity, indicating significant turbulent mixing. Subfigure (b) shows
that increasing 7 at a moderate value of Reynolds number, » = 100,
results in heavy-tailed gradient distributions, caused by a high trans-
port rate.

Y and their respective conjugate momenta P and I1. These
allow us to (i) obtain the tail scaling of the passive scalar
gradient PDF by computing the action of the instanton, and
(i1) identify the mechanism responsible for the formation of
extreme passive scalar gradient events within the model.
Figure 5 presents the logarithmic probabilities of MC sim-
ulations of the passive scalar v (¢7) (dotted lines) against 2D
instantons results (solid lines) for different values of r, where
Ty is set to unity. It demonstrates an excellent agreement of the
tail scaling between the 11D MC simulation and the instanton
prediction, in particular, when 1r; becomes large. Note that the
instanton computation allows us to go extremely far into the
tails, where MC becomes inefficient. Figure 6 depicts a set
of realizations achieving an extreme passive scalar gradient,
Y1 = 6.91, in the a-y; plane. Here, the shading indicates
the MC density of trajectories that exhibit this large passive
scalar gradient at the final time, with samples number equals
367 (filtered out of 3 x 10° trajectories). While the solid line
shows the instanton prediction for comparison. Visible is the
dominant mechanism for producing large passive scalar gradi-
ents: Fluctuations in the relevant strain component drives the
system into a region of large negative strain, which determin-
istically amplifies the passive scalar gradient to large values.
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1071
1073 A
A
5
ER U
Ej Inst, r=25 — MC, r=25
. T -1 Inst, r =100 — MC, r =100
LU Inst, 7 = 156 — MC, r = 156
Inst, r = 278 MC, r =278
1079 T . T . T T T
0 2 4 6 8 10 12 14

z

FIG. 5. The complementary cumulative distribution functions of
the passive scalar, P(y/(t;) > z). Compared are MC simulations
(dotted lines) against 2D instantons estimates (solid lines) for dif-
ferent values of r (7 is set to unity). There is clear agreement
between 11D MC and the 2D instanton estimate in particular when
Y, becomes large (far tails), in accordance with large deviations
theory.

Note that the dominant reactive channel is nicely predicted by
the instanton.

VI. CONCLUSION

We investigate events of extreme passive scalar gradients
in turbulent flows by using Lagrangian turbulence models
extended to handle passive scalar advection. We demonstrate
how a reduced two-dimensional model (one component of
strain and passive scalar gradient each) captures the important
mechanisms responsible for large passive scalar gradients.
Notably, the symmetries necessary to apply the reduced model

-25 =20 -15 -1.0 -0.5 0.0 0.5

Al'l

FIG. 6. Events of extreme passive scalar gradient for the reduced
model in the a-y; plane. The streamlines depict the deterministic
drift of the reduced PS-RFD model. The line shows the instan-
ton for realizing a final-time event of V(f;) = 6.91, starting from
the fixed point (0,0) (white line). The density of trajectories of
MC-simulations, conditioned on the same outcome, is shown as a
heatmap where the samples number equals 367 (filtered out of 3 x
109 trajectories). Extreme outcomes of v/; are commonly achieved by
first transitioning into a region of negative strain, in which it is much
easier to excite strong gradients. The instanton correctly predicts this
mechanism.

become broken for very extreme events or very large Reynolds
numbers, which we can observe by direct sampling. We re-
mark that the full RFD model also fails to describe fully
developed Navier-Stokes turbulence in this regime, so that
the reduced model remains a helpful simplification for our
purposes.

We employ the instanton formalism to capture the scaling
of very large outlier events in the tails of the PDF of passive
scalar gradients. This most likely trajectory not only yields the
correct tail scaling, even in the fat-tailed regime, but further
allows us to investigate the mechanism responsible for the
buildup of large gradients in the reduced model.
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APPENDIX
1. The detailed derivations of the gradients of the drifts

To compute the gradient of the exponential terms of V (A)
and M (yr, A) with respect tensor A, they need to be extended.
Up to the second order of t, the power series of the matrix
exponential eX = Y 0 X is used for the stationary Cauchy-
Green tensor C~'. Notlce that it still possesses the physical
features of the full drifts of this model [47]. The expansion
process is ordered in the following points:

(1) The power series of the matrix exponential to extend
C~! gives

(C—l — (etA etAT)—l
Z (=AD" || & (—TA)
ey

—I-tA+AT)+ 2 [A2+2ATA+(AT) 1+0(t?).
Then, the trace of C ~! after the truncation to the second order
is

Tr(C~

D=3+ Tr(A?)+T°Tr(ATA),  (AD)

where the linearity property of the trace operator and the fact
that Tr(A) = Tr(AT) = 0 (due to the incompressibility of the
flow) and Tr(A?) = Tr[(AT)?] are used.

(2) Substituting the expanded version of C~
in the drift term Eq. (28) gives

! and its trace

Tr(A2)
3+ 12 Tr(A2) + 1:2 Tr(ATA)

V(A)=—A%+
{]1 —T(A+AT) + — [A2 +2ATA + (AT)Z]}

- ?[3 + 2 Tr(A?) 4+ 2 Tr(ATA)]. (A2)
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The quantity 1/[3 4+ 72 Tr(A?) 4+ > Tr(ATA)] can be rewrit-
ten in terms of Maclaurin series as follows:

1 1 & 1,
S nox = — [ 2 Tr(A?) + T2 Tr(ATA)].
= 3n2=;x x S Tr(A) + 2 Tr(ATA)]
Thus,
1
3+ t2Tr(A%) + 12 Tr(ATA)

- % B é[TZTr(Az) + 2 Tr(ATA)] + O(2).

(3) Inserting the last equality into Eq. (A2) and consid-
ering only the second-order terms of 7 yields the truncation
formula of V (A) Eq. (28) [53]:

4
V(A) =) V,y(A), (A3)
p=1

where V,,(A) contains all the components of O(A”), that is
Vi(A) = —A,

I
Vo(A) = —A% + gTr(AZ),

(1) The first gradient tensor is

2
Va(A) = =< Tr(AT)(A + AT) = S A[Tr(AY) + Tr(ATA)),
2
Vi(A) = —% Tr(A2) T [Tr(A2) + Tr(ATA)]

2
n % TrADA? + 2 AT A + (ATY].

(4) Similarly, the extension version of M (¥, A), resulting
from substituting the truncated trace Eq. (A1) into the drift of
the PS-RFD Eq. (27), is

1
— _AT -
M@, A)=—-A" (¥ + V) 37,

x 3412 Tr(A?) + P Tr(ATAY v, (A4)

Now, obtaining the gradient tensors VAijV(A)kl,
Va,M, A) and  Vy M, A), [required for instanton
Egs. (29)] from the truncated drifts Egs. (A3) and (A4) is
straightforward computations, as shown:

4
[VAV(M)luij = Va, V(A = Z Vi, VoA, (AS)
p=1
where
0A
Va,Vi(A)y = —# = —0kibij,
ij
9 , 1 ) 2
VA,-/VZ(A)/(Z = _Akl + = (Skl Tr(A ) = _akiAjl _Aki alj + = 816[ Aji’
A 3 3
T 0
Vi Vs = =3 E{Tr(AxZ)(Akl + Au) + T A [Tr(A%) + Tr(ATA) [}
ij
2
T T
= =3 [245(Au + Au) + Tr(A?) G 81 + 81 8)] — {81 8y [Tr(A?) + Tr(ATA) [+ 240 (Aji + Aip},
d T’ 2 2 T 7’ 28 (42 2
Va,Va(A)y = 1 3Tr(A )8 [Tr(A%) + Tr(AT A)] + ETr(A ) (A7 + 24 At + AL
ij

2

2
=-3 7280 {Aji 2 Tr(A%) + Tr(ATA)] + Tr(A) A} + % {A it (AR + 24 A + A7) + Tr(A?)

1
X |:5ij1'1 + A 81 + E(akiAjl +Ari 81 + 01 Aji + Ay 5kj)“-

The following relations are used:

9A2, 9 Tr(A)
M S A A Sy,
oA, ki Aji + Aki O oA,

(2) The second gradient tensor is

=Aji+Aj; =24

o Tr(ATA
jis r(—)=2Aij~
0A;;

[VaAM Y, A)lyi; = Va,M (¥, A), = i{ — Ak (Ym + W) — %[3 + 12 Tr(A%) + rZTr(ATAnm}

0A;;
2

2
= 80+ W) — %(A,,- + A Y. (A6)
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(3) The third gradient tensor is

[VyM@, M), = VM@, A), = i{ —Amn Y — Ly T2 Tr(A%) + 72 Tr(ATA)] wk}
" Yy 3Ty
= —Ap, — 3LT[3 + 2 Tr(A%) 4+ 2 Tr(ATA)] 8. (A7)
0
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