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We examine how disordering joint position influences the linear elastic behavior of lattice materials via numer-
ical simulations in two-dimensional beam networks. Three distinct initial crystalline geometries are selected as
representative of mechanically isotropic materials with low connectivity, mechanically isotropic materials with
high connectivity, and mechanically anisotropic materials with intermediate connectivity. Introducing disorder
generates spatial fluctuations in the elasticity tensor at the local (joint) scale. Proper coarse-graining reveals
a well-defined continuum-level scale elasticity tensor. Increasing disorder aids in making initially anisotropic
materials more isotropic. The disorder impact on the material stiffness depends on the lattice connectivity:
Increasing the disorder softens lattices with high connectivity and stiffens those with low connectivity, without
modifying the scaling between elastic modulus and density (linear scaling for high connectivity and cubic scaling
for low connectivity). Introducing disorder in lattices with intermediate fixed connectivity reveals both scaling:
the linear scaling occurs for low density, the cubic one at high density, and the crossover density increases with
disorder. Contrary to classical formulations, this work demonstrates that connectivity is not the sole parameter
governing elastic modulus scaling. It offers a promising route to access novel mechanical properties in lattice
materials via disordering the architectures.
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I. INTRODUCTION

Cellular, reticulated, truss and lattice materials can exhibit
remarkable stiffness-to-weight ratio [1–4]. Nature exemplifies
this phenomenon, e.g., in the cellular structure of wood [5],
trabecular bones [6], plant parenchyma [7], and sponges [8].
Aerogels, metallic foams and bio-inspired lightweight cellular
materials also find a broad range of applications in industry,
with transportation and aerospace driving the field. Still, the
large porosity of these materials inevitably causes substan-
tial reduction in the mechanical properties. The stiffness of
a stochastic foam with a relative density of 1% is about a
millionth of that of its constituent material [9,10].

Recent and formidable progress in additive manufactur-
ing and three-dimensional (3D) printing boosted research
in the field [3,4], giving way to the fabrication of high
precision micro- or nanoarchitectured cellular materials of
complex geometries [4]. In this context, micro- or nanolat-
tice materials consisting of periodically arranged beams or
tubes of micrometer or nanometer dimensions exhibit un-
precedented stiffness-to-weight ratio [11–16]. In general, the
Young’s modulus, E , typically scales as the density cubed
ρ3 in foams, aerogels, and other cellular materials with ran-
domly distributed porosity [17–19]. On the other hand, E
scales as ρ2 in periodic hollow-tube microlattices with octa-
hedral basic cells [11], as ρ1.6 in octet-truss geometry [12], or
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even linearly with ρ for well-chosen hierarchical architectures
[13,15].

The E vs ρ scaling finds its origin in the deformation mode
of the lattice [20–22]. When deformation is dominated by the
bending of the constituent beams, E ∼ (s/�)4[E ∼ (s/�)3 in
2D], where s and � are the typical cross-sectional size and
length of solid beams. When the lattice deformation arises
from beam stretching or compression, E ∼ (s/�)2 (E ∼ s/�
in 2D). Relative density goes as ρ ∼ (s/�)2 (ρ ∼ s/� in 2D).
Hence, E ∼ ρ2 (E ∼ ρ3 in 2D) in bending-dominated lattices,
and E ∼ ρ (likewise in 2D) in stretching-dominated lattices.
To assess whether a lattice material is stretching or bending
dominated, one has to consider the collapse mechanisms in a
pin-jointed structure of the same geometry [20,23]. Periodic
pin-jointed structures of node connectivity Z < 6 (Z < 4 in
2D) do not satisfy Maxwell’s conditions and are nonrigid
[20,24]. Consequently, the deformations in the parent welded-
joint lattice material are governed by the beam rotation at the
nodes, and bending dominates elastic behavior. Pin-jointed
frames with Z � 12 (Z � 6 in 2D) possess no collapse mech-
anism, in the sense that any deformation generates an increase
of the strain energy [20,25]. They are fully rigid, the associ-
ated lattice materials are predicted to be stretching-dominated,
and the Gurtner-Durand bound provides a maximum achiev-
able Young’s modulus in isotropic structures [26]. Note that
this predicts E ∼ ρ in Octet-truss lattices (Z = 12). This is in
apparent contradiction with the experimental observation of
E ∼ ρ1.6 reported in Ref. [12]. This discrepancy is discussed
in Ref. [12] and attributed to the hollowness of the tubes,
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TABLE I. Deformation mode and isotropy in the 2D crys-
talline lattices studied here, in absence of introduced disorder (from
Ref. [1]).

Mesh type Node connectivity Isotropic Deformation mode

� 3 Yes Bending
� 4 No Mixed
� 6 Yes Stretching

affecting the structural integrity of the nodes and yielding an
effective connectivity smaller than 12.

Finally, periodic structures of intermediate connectivity
6 � Z < 12 (4 � Z < 6 in 2D) are referred to as periodically
rigid. The pin-jointed version of these lattices obeys Maxwell
conditions, but there exists at least one periodic mechanism
causing them to collapse. In the Kagome structure [27], this
collapse mechanism does not produce macroscopic strain
[23] and the parent welded-joint lattice exhibits a stretching-
dominated behavior when loaded in any direction. Conversely,
the square lattice is bending dominated when loaded in the
diagonal direction. This is because its pin-jointed version col-
lapses on such loading.

Literature exemplifies a number of works concerning the
mechanics of lattice materials with periodic (crystalline)
geometries. However, only a limited number of studies exam-
ined disordered or nonperiodic architectures [28–34]. Hence,
the present study focuses on lattices with constant node
connectivity, with a large range of beam aspect ratios and
levels of geometrical disorder. Starting from 2D crystalline
lattices, increasing levels of disorder are introduced. Sub-
sequently, studies herein examine how this modifies their
elasticity response via numerical simulations on beam net-
works. Section II presents the method. In this regard, different
initial geometries are selected as representative of mechani-
cally isotropic or anisotropic structures and low, intermediate,
and large connectivity. Section III A analyzes the impact of
disorder on the spatial distribution of stress and strain fields at
the local scale, and subsequently Sec. III B analyzes its impact
on the local compliance tensor. Special emphasize is paid
to determine the correlation length associated with the spa-
tial fluctuations, and subsequently the continuum-level scale
elasticity tensor. Section III C concentrates on how anisotropy
evolves with increasing disorder. Last, Sec. III D looks at how
disorder affects the elastic response over a broad range of
beam aspect ratios. Additionally, it investigates how disorder
affects the Young’s modulus prefactor and Poisson’s ratio in
isotropic lattices. Section IV discusses the results, and Sec. V
provides a brief conclusion.

II. SIMULATION FRAMEWORK

A. Lattice geometry

All lattice specimens studied hereafter are enclosed within
disks of radius R. Starting meshes are summarized in Ta-
ble I. Nodes are connected by elements of length � and
cross-section size s. Clamping conditions are prescribed at
the nodes, and there is an energy cost associated with node
rotation.

FIG. 1. Square lattice disordered by displacing randomly every
node by a prescribe distance u = 0.3�0 along a randomly chosen
direction. Tensile loading (thick horizontal blue arrows) is applied
by imposing a prescribed displacement U(Mb) at every node Mb on
the lattice boundary [cosine dependency, see Eq. (4)].

To gradually move from an ordered (crystalline) to a disor-
dered (amorphous) structure, we proceeded as follow: Nodes
are first placed in a 2D periodic configuration. This sets the
initial crystalline lattice. Then, a tunable disorder is intro-
duced by displacing every node by a prescribed distance u
along a randomly chosen direction. Figure 1 shows a typical
snapshot of a specimen obtained following this procedure.
The disorder intensity is set by u, which lies in the range 0 �
u < 0.5�0, so that struts cannot overlap. Three initial periodic
lattices were selected: triangular lattice that is mechanically
isotropic and fully rigid (connectivity Z = 6), honeycomb
lattice that is isotropic and nonrigid (Z = 3), and square lattice
that is anisotropic and periodically rigid (Z = 4).

Henceforth, the lattice architecture is given by four control
parameters: geometry (triangular, honeycomb, or square), el-
ement length �0 and element aspect ratio s/�0 in the parent
crystalline lattice, and level of disorder u. The specimen size
is set by the specimen radius R. In the following, �0 is chosen
equal to unity and R > 30�0.

B. Mechanical test simulation

In the following, {x̂, ŷ} refers to the global frame. {x̂l , ŷl}
refers to the local frame at the considered element, so that
x̂l and ŷl are respectively parallel and perpendicular to this
element. A beam model was used to determine the lattice
deformation in response to a prescribed loading. Each beam
has a length �, a square section of side length s and are
made of an isotropic bulk material of Young’s modulus Es

and Poisson’s ratio νs. The state of each node is given by three
parameters: the two components of the displacement vector U
and the rotation φ.

Timoshenko-Ehrenfest beam theory [35] is used to relate
the axial force N , shear force V , and torque M applied on
beam elements to the nodal displacements U and rotations φ.
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The local stiffness matrix is

Kl=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

EsS
�

0 0 −EsS
�

0 0

0 12EsI
(1+λ)�3

6EsI
(1+λ)�2 0 −12EsI

(1+λ)�3
6EsI

(1+λ)�2

0 6EsI
(1+λ)�2

(4+λ)EsI
(1+λ)� 0 −6EsI

(1+λ)�2
(2−λ)EsI
(1+λ)�

−EsS
�

0 0 EsS
�

0 0

0 −12EsI
(1+λ)�3

−6EsI
(1+λ)�2 0 12EsI

(1+λ)�3
−6EsI

(1+λ)�2

0 6EsI
(1+λ)�2

(2−λ)EsI
(1+λ)� 0 −6EsI

(1+λ)�2
(4+λ)EsI
(1+λ)�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(1)
where S and I are the cross-section area and moment of
inertia of the beam element; λ is the shear correction factor.
For square beams, S = s2, I = s4/12, and λ = (12/5)(1 +
νs)(s/�)2. The term EsS/� in the stiffness matrix is as-
sociated with the traction or compression of the element,
whereas the terms proportional to EsI/�2 and EsI/�3 are
associated with shearing and torque. Timoshenko-Ehrenfest
beam theory is preferred to Euler-Bernoulli theory since it
takes into account the shear deformation of the cross sec-
tion and, as such, permits the description of thick beams.
The relation between local nodal displacements and rotations
[dl ] = [Uxl (A),Uyl (A), φ(A),Uxl (B),Uyl (B), φ(B)]T and lo-
cal forces and moments [bl ] = [Fxl (A), Fyl (A), M(A), Fxl (B),
Fyl (B), M(B)]T is

[Kl ][dl ] = [bl ]. (2)

In this setting, the subscript l refers to local quantities, the
superscript T represents the transpose of a vector or matrix,
and A and B refer to the edge nodes of the considered element.
To construct the system of equations for the complete lattice,
one needs (1) write each element stiffness matrix in the global
coordinate frame (by multiplying it by the appropriate rotation
matrix) and (2) subsequently add the element matrix in the
global stiffness matrix as classically done in finite element or
beam models [36]. The set of equations describing equilib-
rium at each node is

[K][d] = [b], (3)

Here [b] = [Fx(A1), Fy(A1), M(A1), Fx (A2), Fy(A2),
M(A2), . . . ]T is the load vector, [d] = [Ux(A1),Uy(A1),
φ(A1),Ux(A2),Uy(A2), φ(A2), . . . ]T is the global displace-
ment vector, and [K] is the global stiffness matrix.

Loading is applied by imposing a displacement on the
boundary nodes (Fig. 1). A loading direction θload with respect
to x is prescribed. Imposed displacement is then set to unity
along this direction and decreases as a cosine law as the
considered direction departs from θload:

U(Mb) = Ûtens/shear cos(θb − θload ), (4)

where (rb, θb) are the polar coordinates of the considered node
Mb along the specimen boundary. Ûtens and Ûshear are unit vec-
tors parallel and perpendicular to θload, and are associated with
tension and shear loading, respectively. This cosine variation
allows a minimization of the impact of boundary discreetness
on the stress and strain fields in the bulk lattice.

The loading conditions above are implemented in Eq. (3),
by setting F(Mb) = U(Mb) in {b} at the appropriate places
and replacing the corresponding blocks in the stiffness matrix
[K] by identity matrix blocks. The final set of equations is
solved by inverting the stiffness matrix, using sparse Cholesky

decomposition to speed up the process. This provides the
displacements U(M) and rotation φ(M) of each node M in
the loaded lattice.

C. Local stress and strain computation

The next step determines the continuum stress and strain
fields in the sample. For this, we draw inspiration from
methods developed to study granular flows [37,38]. Voronoi
tessellation associates a continuum elementary volume to each
node M of the lattice. At each location (x, y) within the
Voronoï polyhedron Pvor (M) centered on M, the local stress
tensor σ is

σ = 1

2Svors

∑
p

FMp→M ⊗ [x(M) − x(Mp)], (5)

where Svor is the area of the Voronoï polyhedron, Mp are the
nodes connected to M, x(Mp) and x(M) are the position of M
and Mp, FMp→M is the force applied by the beam connecting
M and Mp to M, and ⊗ is the vector dyadic product.

A best-fit algorithm then determines the local strain ten-
sor on the same Voronoi polyhedron. The components ei j =
∂Ui/∂x j of the displacement gradient tensor are prescribed so
that they minimize:

χi =
∑

p

{ei j (M)[x j (Mp) − x j (M)] − [Ui(Mp) − Ui(M)]}2,

(6)
where indices {i, j} ∈ {x, y}. Einstein summation convention
is used here on repeated indices. The components of the strain
tensor are

εi j (M) = 1
2 [ei j (M) + e ji(M)]. (7)

III. RESULTS

A. Spatial distribution of local stress and strain tensors:
Influence of disorder

Figure 2 shows local stress and strain maps for a peri-
odic square lattice loaded in tension along x axis. Note that
σxy(x, y) = σyx(x, y) everywhere, as expected for a Cauchy
stress tensor. This is always observed, regardless of the lattice
geometry and amount of disorder introduced. Note also that
σxx is two orders of magnitude larger than σxy and σyy. This
is due to the fact that Poisson’s ratio νxy in a square lattice is
equal to zero [1]. Here we use the notation νxy rather than ν to
emphasize that square lattices do exhibit not an isotropic elas-
ticity response but an orthotropic one (see next section). Note,
finally, that σxx(x, y) is proportional to εxx(x, y) everywhere.
The prefactor gives the Young modulus of the lattice measured
along x. It is equal to Ex = Ess/�0 = 1/8, as expected for a
square lattice [1].

Figure 3 presents typical snapshots of the components of
local stress and strain tensors in a disordered square lattice.
Large spatial inhomogeneities are clearly visible. Note in
particular the chainlike structure of the most stressed zones
in the top left panel of Fig. 3. These resemble force chains
observed in granular media [39]. Chainlike structures are less
visible in the strain maps where heterogeneities take the form
of relatively isotropic spots [Fig. 3 (top right panel)]. Sec-
tion III B takes a closer look at fluctuations to infer relevant
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FIG. 2. Maps of local stress and strain in a square lattice in
absence of architecture disorder. The eight panels correspond to the
σxx , σxy, σyx , and σyy (left column) and εxx , εxy, εyx , and εyy (right
column). εi j are expressed in �0/R units and σi j are expressed in
Es�0/R units. Horizontal tensile loading is imposed by prescribing
the displacement at the boundary nodes according to Eq. (4) with
θload = 0. In this simulation, s/�0 = 1/8 and the specimen size is
R = 50�0.

length scales which aid in defining a representative elementary
volume (REV). Averaging such maps over many configura-
tions of same loading, initial crystal geometry and amount
of disorder u (but different realizations) allows smoothening
the high-frequency fluctuations and reveals the large-scale
spatial variations of stress and strain fields (Fig. 4). The
configuration-averaged maps obtained in presence of disor-
der are significantly different from the maps observed in the
pristine crystalline lattice, which show that the introduced
disorder changes the elasticity constants.

B. Spatial distribution of local elasticity constants:
On the RVE scale

The next step is to determine the relevant constants to char-
acterize the elastic response of the lattice at local scale. Using
Voigt notation, stress and strain components under plane stress
assumption are related via:

⎡
⎣ εxx

εyy

2εxy

⎤
⎦ =

⎡
⎣S11 S12 S14

S12 S22 S24

S14 S24 S44

⎤
⎦

⎡
⎣σxx

σyy

σxy

⎤
⎦, (8)

where the symmetric compliance tensor, S, fully characterizes
the material elasticity. For isotropic materials such as triangu-

FIG. 3. Maps of local stress and strain in a disordered square
lattice (disorder intensity: u = 0.3�0, beam aspect ratio s/�0 = 1/8,
specimen size R = 50�0). The eight panels correspond to the σxx , σxy,
σyx , and σyy (left column) and εxx , εxy, εyx , and εyy (right column). εi j

are expressed in �0/R units and σi j are expressed in Es�0/R units.
Horizontal tensile loading is imposed by prescribing the displace-
ment at the boundary nodes according to Eq. (4) with θload = 0.

lar and honeycomb lattices, Siso is given by:

Siso =

⎡
⎢⎣

1
E

−ν
E 0

−ν
E

1
E 0

0 0 2(1+ν)
E

⎤
⎥⎦. (9)

The elasticity response is fully characterized by two con-
stants: the Young’s modulus E and Poisson’s ratio ν. For
orthotropic materials such as square lattices, Sort is given by:

Sort =

⎡
⎢⎣

1
Ex

−νyx

Ey
0

−νxy

Ex

1
Ey

0

0 0 1
G

⎤
⎥⎦, with

−νyx

Ey
= −νxy

Ex
. (10)

The elasticity response is fully characterized by four con-
stants: Young’s moduli Ex and Ey along the x and y axes,
Poisson’s ratio νxy, and the shear modulus G. Note that in
square lattices, Ex = Ey and only three of the sought constants
Skl are required.

In the most general situation of disordered architectures,
the six constants, Skl of the compliance tensor should be
determined. As Eq. (8) only provides three independent equa-
tions, a single test is not sufficient to determine them [40].
Hence, for each specimen studied, six different tests were
performed: three tensile tests and three shearing tests. For
these tests, the imposed external displacements are given by
Eq. (4) and θload = {0, π/4, π/2} (square-based lattices) or
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FIG. 4. Ensemble averaged maps of local stress (left column)
and strain (right column) in a disordered square lattice (disorder
amount u = 0.3�0, beam aspect ratio s/�0 = 1/8, and specimen size
R = 50�0). The average was taken over 100 samples with same
loading and u but different disorder realizations. The eight panels
correspond to the σxx , σxy, σyx , and σyy (left column) and εxx , εxy,
εyx , and εyy (right column). εi j are expressed in �0/R units and σi j

are expressed in Es�0/R units. Horizontal tensile loading is imposed
by prescribing the displacement at the boundary nodes according to
Eq. (4) with θload = 0.

θload = {0, π/3, π/2} (triangular- and honeycomb-based lat-
tices). Each test p provides maps of local stress σ

(p)
i j (x, y) and

strain ε
(p)
i j (x, y). Hence, Eq. (8) provides at each location (x, y)

18 relations between ε
(p)
i j and σ

(p)
i j . These relations involve

the six Skl constants needed. The best-fit procedure provides
them such that the following equation is minimized for each
constant:

χ =
∑

p

[
ε (p)

xx − S11σ
(p)
xx − S12σ

(p)
xx − S14σ

(p)
xy

]2

+
∑

p

[
ε (p)

yy − S12σ
(p)
xx − S22σ

p
xx − S24σ

(p)
xy

]2

+
∑

p

[
2ε (p)

xy − S14σ
(p)
xx − S24σ

(p)
xx − S44σ

(p)
xy

]2
. (11)

Such homogenization methods are classically used, in
FEA, to determine the homogenized elastic constants of com-
plex materials such as composites [41].

Figure 5 displays typical maps Skl (x, y) obtained in a dis-
ordered square lattice (same lattice material as in Fig. 3).
Note the large spatial variations observed on the Skl maps.
Ensemble averaging over 100 samples allows decreasing spa-
tial variability (Fig. 6). Still, the maps continue to present
the same visual aspects: Except for the edges, these maps

FIG. 5. Maps of local compliance tensor S in a disordered square
lattice (disorder amount u = 0.3�0, beam aspect ratio s/�0 = 1/8,
and specimen size R = 50�0). The six panels correspond to the six
components S11, S12, S22, S22, S24, and S44 [Eq. (8)]. They are all
expressed in Es units.

are statistically spatially homogeneous, with localized spots
uniformly distributed. Note the absence of spatial variations
at large wavelength (continuum-level scale), as expected for
material constants and contrary to what is observed on the
ensemble averaged stress and strain maps (Fig. 4)

To characterize the typical size of the random spots ob-
served in the maps of Fig. 5, we compute the radial correlation
function gkl (r):

gkl (r) = 〈S̃kl (r0 + rêθ )S̃kl (r0)〉√〈
S̃2

kl (r0 + rêθ )
〉〈

S̃2
kl (r0)

〉 , (12)

where S̃kl (r0) = Skl (r0) − Skl and 〈〉 denotes averaging over
all positions r0 and subsequently over all direction êθ . S is the
global compliance tensor calculated with averaged stress 〈σ 〉
and strain 〈ε〉. By analogy with S, gkl (r) forms a symmetric
radial correlation matrix g(r). Figure 7 presents the variation
of its Euclidean norm, g(r) = ||g(r)||, as a function of r at
increasing disorder u. Very rapidly, g(r) drops to zero. Fitting
these curves by an exponential function g(r) = exp(−r/lc)
allows defining a correlation length, lc. Its evolution with u
is shown in Fig. 8 in the different geometries studied. It is
measured to be ∼�0 in all cases except the disorder-free square
lattice, where lc 	 3�0.

A priori, the knowledge of lc allows setting a REV size
lREV: Calling N = lREV/lc, one can split the REV into n =
Nd elementary cells (d = 2 in 2D, d = 3 in 3D) where the
quantity of interest is independent and identically distributed.
Calling σ the standard deviation of this quantity over one ele-
mentary cell, the central limit theorem tell us that the standard
deviation of the same quantity over the REV goes as σ/

√
n =

σ/(lREV/lc)d/2. As a result, a given quantity coarse-grained
over the REV will typically exhibit typical fluctuations that
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FIG. 6. Ensemble averaged maps of local compliance tensor S in
a disordered square lattice (disorder amount u = 0.3�0, beam aspect
ratio s/�0 = 1/8, and specimen size R = 50�0). The average was
taken over 100 samples of different disorder realizations. The six
panels correspond to the six components S11, S12, S22, S22, S24, and
S44 [Eq. (8)]. They are all expressed in Es units.

decrease as lc/lREV in 2D (or (lc/lREV)3/2 in 3D). Additional
work (see Appendix A for details) also shows that when REV
size is equal to 	 4�0 then global compliance tensor can be
calculated directly from macroscopic stresses and strains or
alternatively from the averaging of local compliance tensor on
REV cells. As will be discussed in Sec. IV B, this condition
does not imply that the elastic constants are independent of
specimen size. In fact, a much larger REV should be pre-
scribed to ensure that these elastic constants are bulk material
constants (Sec. IV B and Fig. 14)

The next section analyzes the global compliance tensor S
for different levels of disorder and a large range of aspect
ratios.

C. Anisotropy of elasticity response: Influence of disorder

This section takes a look at how disorder affects the
anisotropy of the elasticity response. Initially the global com-
pliance tensor S is calculated. Next the effective compliance
tensor Seff is defined as:

Seff =

⎡
⎢⎣

S11+S22
2 S12 0

S12
S11+S22

2 0
0 0 S11+S22+S44−2S12

2

⎤
⎥⎦. (13)

This tensor meets the requirement that S = Seff in me-
chanically isotropic materials. Last, the Universal Anisotropy
Index (UAI) is defined by analogy to the Zener index which is
limited to the cubic crystals case [42]:

UAI = ||Seff − S||
||Seff ||

. (14)

FIG. 7. Radial correlation function g(r) at 6 increasing disorder u
in honeycomb-based (a), square-based (b), and triangular-based (c). r
and u are expressed in �0 units. Here beam aspect ratio is s/�0 = 1/8
and specimen size is R = 40�0.

It quantitatively defines how close S is to Seff . Indeed,
with this definition, if the elastic material is isotropic, then
UAI = 0; otherwise, UAI > 0. Moreover, as UAI increases,
the anisotropy increases.

FIG. 8. Correlation length lc as a function of disorder u in the
three type of lattice materials. Here beam aspect ratio is s/�0 = 1/8
and specimen size is R = 40�0. Both lc and u are expressed in �0

units.
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FIG. 9. Universal anisotropy index UAI [Eq. (14)] as a function
of disorder level u in the three types of geometries: honeycomb-based
(red �), square-based (green �), and triangular (blue �). Here
beam aspect ratio is s/�0 = 1/8 and specimen size is R = 40�0. u
is expressed in �0 units. In all the curves, UAI has been obtained
from the analysis of a single specimen. Black � in inset shows the
result obtained after having averaged over 100 configurations in a
square-based lattice with u = 0.3. u is expressed in �0 units.

Figure 9 presents the evolution of UAI with disorder inten-
sity for the three studied geometries. In absence of disorder,
UAI = 0 in honeycomb and triangular lattice and these lattice
materials obey isotropic elasticity, as expected. Increasing
disorder has nearly a null effect on the anisotropy index of the
already isotropic materials. The largest value in this context
is UAI = 5.7%, which is observed in the honeycomb lattice
at maximum disorder (u = 0.45�0). Conversely, in absence of
architecture disorder, the square lattice is highly anisotropic,
with UAI = 97%. In this case, increasing architecture disor-
der significantly improves the elasticity isotropy, and UAI is
nearly half the initial value, ∼58%, for the maximum disorder
intensity.

D. Elasticity versus aspect ratio scaling: Effect of disorder
on material stiffness

Now let us shift to understanding how the material lattice
compliance depends on the beam aspect ratio and disor-
der. Figure 10 presents the shear modulus G = Es/S44 as a
function of the aspect ratio s/�0 for increasing disorder levels
in the three investigated geometries (honeycomb, square, and
triangular). In absence of disorder, the elasticity constants can
be determined theoretically (Table II and Ref. [1]), and the
values from the simulations match theoretical predictions.

In honeycomb-based lattices, G ∼ (s/�0)3 (that is G ∼ ρ3)
independent of the disorder level. This is expected, as the node
connectivity (Z = 3) does not satisfies Maxwell’s condition

FIG. 10. Shear modulus G as a function of beam aspect ratio
s/�0 with increasing disorder u in honeycomb-based lattices (a),
square-based lattices (b), and triangular-based lattices (c). In all
panels, axes are logarithmic. In panels (a) and (c), blue (dark gray)
curve correspond to u = 0 (no disorder) and red (light gray) curve
corresponds to u = 0.45 (maximal disorder). In these two panels, the
introduction of disorder does not affect the scaling exponent, which
remains equal to 3 in honeycomb-based (a) and to 1 in triangular-
based lattice (c). Conversely, the introduction of disorder affect the
scaling in square-based lattice (b), and the two scaling exponents are
observed: 1 at small aspect ratios and 3 at large ones. The different
colors correspond to different levels of disorder u [see caption in
panel (b)]. Here specimen size is R = 32�0. G is expressed in Es

units and u is expressed in �0 units.

for rigidity. Hence, bending-dominated deformations domi-
nate and elastic modulus scale as (s/�0)3 [20].

Similarly to honeycomb-based lattices, increasing disorder
does not modify the scaling G ∼ s/�0 in triangular-based lat-
tices. In these cases, Z = 6, which ensures that the pin-jointed
version of the lattice is fully rigid; hence G ∼ s/�0 [20].

The behavior of square-based disordered lattices is surpris-
ing. As disorder is introduced, the coexistence of two distinct
scaling regimes is observed: G ∼ s/�0 at small aspect ratios
and G ∼ (s/�0)3 at large ones. On the contrary, a similar tran-
sition is not observed for Ex = Es/S11 whose scaling exponent
increases from 1 to 1.38 as disorder is introduced. But this
change happens with a unique regime (Fig. 11).

All but the square-based lattices are mechanically
isotropic. Hence, the elasticity behavior is fully characterized
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FIG. 11. Young’s modulus along the x axis Ex as a function of
beam aspect ratio s/�0 for increasing disorder u in the square-based
lattices. The different curves correspond to different values u: u = 0
for the blue (upper) curve and u = 0.45 for red (lower) curve. Here
the specimen size is R = 32�0. Ex is expressed in Es units and u is
expressed in �0 units.

by two constants: Young’s modulus and Poisson’s ratio.
Figure 12(a) [respectively, Figs. 12(b)] presents E/(s/�0)3

[respectively, E/(s/�0)] versus s/�0 for increasing architec-
ture disorder in honeycomb-based lattices (respectively, in
triangular-based lattices). In absence of disorder, the curves
coincide with the theoretically predicted value (Table II) in
the limit of slender beams (i.e., s � �0). The plateau departure
observed at larger s/�0 is also fully consistent with the theo-
retical corrections provided in References [29,43] for thicker
beams. In bending-dominated lattice (honeycomb-based lat-
tice), increasing disorder stiffens the material and increases
E/(s/�0)3 by ∼40% for the maximum disorder (u = 0.45�0),
see Fig. 12(a). This variation is qualitatively consistent but
quantitatively more pronounced than what is reported in the
literature [29,32,44,45]. The root cause of these differences
lies with how disordering occurs, by displacing randomly the
points, the Voronoi tessellation of which provides the initial
periodic honeycomb lattice. In stretching-dominated lattices
(triangular-based lattices), increasing disorder yields soften-
ing effect and decreases E/(s/�0) by respectively ∼8% and
∼12% for maximum disorder [Fig. 12(b)]. This is consistent
with the finite element observations reported in Ref. [31] on
imperfect triangular lattices.

Figure 13 shows the variations of Poisson’s ratio, ν, as
a function of s/�0 for the honeycomb- [Fig. 13(a)] and
triangular-based [Fig. 13(b)] lattices. Like E versus s/�0

curves (and probably for the same reason), plateaus occur
for s/�0 � 0.1, and a departure exists for higher values. In
honeycomb-based lattices, ν starts from the theoretically pre-
dicted value ν = 1 in absence of disorder and decreases to
ν 	 0.78 as disorder increases to u = 0.45. This decrease is
significantly larger than that reported in Refs. [29,44,45]. In

FIG. 12. Prefactor of scaling E ∼ (s/�0)n as a function of beam
aspect ratio s/�0 for increasing disorder u in honeycomb-based
lattices [panel (a), n = 3] and triangular-based lattices [panel (b),
n = 1]. The different colored curves correspond to different values u
according to the legend provided in panel (c). Thick dash gray curve
in panel (a) is the theoretical prediction E/(s/�0)3 = (4

√
3/3)/[1 +

(5.4 + 1.5νs )s2/�2
0] [29]. Thick dash gray curve in panel (b) is the

theoretical prediction E/(s/�0) = (2
√

3) × (1 + s2/�2
0 )/(3 + s2/�2

0 )
[43]. Here specimen size is R = 40�0. E is expressed in Es units and
u is expressed in �0 units.

triangular-based lattices, ν starts at the theoretically predicted
value ν = 1/3 and increases up to ν 	 0.42 as disorder level
increases to u = 0.45.

IV. DISCUSSION AND ANALYTICAL ANALYSIS

This numerical study was designed to shed light on how
the introduction of disorder in the architecture of lattice ma-
terials modifies their elasticity response. In this context, we
derived and validated a novel procedure to determine the
spatial distribution of Hooke’s softness tensor at the local
(joint) scale in 2D beam networks of prescribed architecture.
Introducing disorder yields large spatial variations for local
elasticity constants. Nevertheless, the correlation length asso-
ciated with these spatial variations is small, approximately the
beam length. Averaging them over the specimen provides an
accurate estimation of the continuum-level scale values.

TABLE II. Elasticity constants in 2D crystalline lattices in absence of introduced disorder (from Ref. [1]).

Lattice geometry Honeycomb Square Triangular

Density (ρs) ρ = (2/
√

3)(s/�) ρ = 2s/� ρ = 2
√

3(s/�)
Young’s modulus (Es) E = (4/

√
3)(s/�)3 Ex = Ey = s/� E = (2/

√
3)(s/�)

Poisson’s ratio ν = 1 ν = 0 ν = 1/3
Shear modulus (Es) G = (1/

√
3)(s/�)3 G = (1/2)(s/�)3 G = (

√
3/4)(s/�)
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FIG. 13. Poisson’s ratio ν as a function of beam aspect ratio
s/�0 at increasing disorder u in honeycomb-based lattices (a) and
triangular-based lattices (b). The different colored curves correspond
to different values u according to the legend provided in panel (b).
Thick dash gray curve in panel (a) is the theoretical prediction ν =
[1 + (1.4 + 1.5νs )s2/�2

0]/[1 + (5.4 + 1.5νs )s2/�2
0] [29]. Thick dash

gray curve in panel (b) is the theoretical prediction ν = (1/3) ×
(1 − s2/�2

0)/(1 + s2/3�2
0 ) [43]. Here specimen size is R = 40�0. u

is expressed in �0 units.

A first effect of disordering is to promote elasticity isotropy
when the parent crystalline architecture exhibits anisotropic
elasticity (Fig. 9). This is expected since increasing disorder
attenuates the rotation axis inherent to the pristine crystalline
lattice and makes it more and more statistically invariant on
rotation.

Beyond isotropy, introducing disorder modifies the
continuum-level (global) scale elastic constants in a way that
depends deeply on the parent periodic geometry and connec-
tivity. In summary:

(I) In lattices of high and low connectivity like triangular-
based and honeycomb-based ones respectively, increasing
disorder does not modify the scaling between elastic modulus
and s/�0 (or equivalently ρ): E ∼ s/�0 in highly connected
lattices (Z = 6) and E ∼ (s/�0)3 in weakly connected ones
(Z = 3), no matter how much disorder is introduced.

(II) Increasing disorder softens highly connected (triangu-
lar) lattices; the prefactor, E/(s/�0) decreases with the amount
of disorder, u.

(III) Increasing disorder stiffens weakly connected (hon-
eycomb) lattices, with a prefactor, E/(s/�0)3 decreasing with
u.

(IV) Introducing disorder in lattices of intermediate con-
nectivity like square-based ones (Z = 4) dramatically mod-
ifies the scaling between shear modulus and s/�0. Indeed,
in the absence of any disorder, G ∼ (s/�0)3 over the whole
range, but a novel scaling regime G ∼ s/�0 occurs at small
s/�0 values as soon as disorder is introduced.

FIG. 14. Prefactor of Young’s modulus for hexagonal and tri-
angular lattices as function of the size of the sample. Lattices are
disordered at u = 0.45 and have an aspect ratio of s/�0 = 1/1024.

A. On the effect of disorder on E vs s/� scaling
at low and high connectivity

As already mentioned in Sec. III D, observation I is ex-
plained by the fact that introducing disorder here does not
change lattice connectivity. In disordered triangular-based lat-
tices, the connectivity is always sufficient (Z � 6) to prevent
collapsing mechanisms in the pin-jointed version; hence de-
formations, are always stretching dominated [20]. Similarly,
in honeycomb-based lattices, Z = 3 no matter how much dis-
order is introduced; Maxwell’s criterion for stability is not
fulfilled and as such the structure remains bending-dominated
at any value u.

B. Local vs global elasticity constants in disordered lattices

Observations II and III are more counterintuitive. In
particular, observation II is opposite to what would have
been analytically predicted for local elastic modulus, at the
cell scale, after averaging over disorder configurations (Ap-
pendix B). This highlights that as soon as disordered lattices
are considered and irrespectively of the amount of disor-
der (even for arbitrary small ones), spatial correlation in
stress redistribution should be taken into account and a large-
enough specimen should be defined. Figure 14 shows how
the prefactor E/(s/�0) [respectively, E/(s/�0)3] evolves with
the specimen radius R in disordered triangular-based (re-
spectively, honeycomb-based) lattices. Specimens of radius
R > 30�0 should be prescribed to ensure that the determined
elasticity moduli are truly material constants, independent
of R.

C. On the origin of disorder-induced softening
in stretching-dominated lattices

Because of the nonlocality mentioned in the previous
section, observation II is extremely difficult to rationalize
quantitatively. It has been shown in Ref. [26], that the stiffness
of stretching-dominated lattices decreases when geometrical
disorder yields nonaffine strain fields. Here we propose an al-
ternative explanation and argue that the observed softening is
due to the increase of mean beam length as disorder increases.

To some extent, this can be rationalized by considering a
given beam, OM, and a constant compressive stress σ apply-
ing parallel to it OM (Fig. 15). The force F applying at each
edge of the beam is F = σ�sF (θ ), where � is the beam length,
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O

M

FIG. 15. (a) Sketch of beam deformation in a streching-
dominated lattice loaded under a compressive stress σ . The
stretching force applying onto the considered beam is F = σ�sF (θ ),
where θ is the typical angle between two joint beams and �F (θ )
is the typical distance separated two successive vertically stretched
beams. In response to this stretching force, each edge of the beam
moves over a distance δ. Thick black vertical plain line and dotted
black inclined lines present the considered beam and two jointed ones
before the lattice deformation while gray vertical thick plain line and
gray dotted inclined lines show the same beams after deformation.

θ is the typical angle between two joint beams (considered
to be the same everywhere, e.g., θ = π/6 in disorder-free
triangular lattice), and �F (θ ) is the typical distance separating
two successive beams compressed by σ (Fig. 15). Each node,
O and M, moves by δ = F�/(Ess2) = σ�2F (θ ), due to beam
contraction. This yields a strain ε = δ/� = σ�F (θ )/(Ess).
Finally, Young’s modulus E (str) = σ/ε is given by:

E (str) = Ess

�F (θ )
. (15)

Now disorder is introduced on edge position: x(M) =
x0(M) + uη(M), where η(M) is given by:

η(M) = x̂(cos θM − cos θO) + ŷ(sin θM − θO), (16)

where θM and θO are two angles selected randomly between
−π and π . This yields fluctuations of the beam length,
which, to second-order terms in u, now writes � = �0 +
uηy(M) + u2η2

x (M)/(2�0) + o(u2/�2
0). As a result, the strain

also fluctuates in space. By averaging ε over different con-
figurations {θO, θM}, one gets ε = σ�F (θ )/(Ess), and the

FIG. 16. Young’s modulus prefactors for triangular lattices
computed numerically (black triangles) and estimated through an-
alytical second order’s expansion [Eq. (18)], with E (str)

0 = 2
√

3s/�0

(Table II).

effective Young’s modulus becomes

E
(str) = Ess

�F (θ )
. (17)

To the second order in u, the mean beam length is �(u) =
�0 + 1/2u2/�0 + o(u2/�2

0), and, finally:

E
(str)

(u) = E (str)
0

[
1 − 1

2

u2

�2
0

+ o

(
u2

�2
0

)]
. (18)

As shown in Fig. 16, this analytical estimate is consistent
with numerical observations in triangular-based disordered
lattices, as least as long as u is not too large.

D. On the origin of disorder-induced stiffening
in bending-dominated lattices

A priori, the same argument can be applied to bending-
dominated lattices. As E (bnd) ∼ (s/�)3, this would yield
E

(bnd)
(u) = E (bnd)

0 [1 − 3/2(u2/�)2
0 + o(u2/�2

0)]; hence, the
lattice would have been expected to soften as disorder in-
creases. Observation III is the opposite.

We argue that the disorder-induced stiffening observed
in bending-dominated lattices translates the fact that, in any
bending-dominated lattice, part of applied stress is accommo-
dated by beam stretching. Indeed, as force applied on a given
node, its projection parallel to the considered beam yields
beam dilation or stretching while the part perpendicular to
this beam yields bending. As disorder increases, the relative
importance of the stretching part increases. Assuming that the
lattice deformation due to streching are negligible with respect
to those due to bending, the total lattice deformation is fully
governed by the part of applied stress accommodated by beam
bending, only. Then, as the Young’s modulus E (bnd) is set by
the total force over the total deformation ratio, E (bnd) is set
by the total force over effective bending force ratio, which
increases as disorder increases.

E. On the two elasticity scaling regimes in disordered
square lattices

As in honeycomb-based bending-dominated lattices, the
appearance of two scaling regimes in the G vs s/� curves
[Fig. 10(b)] in disordered square lattice is also attributed to
the fact that an increasing proportion of applied shear stress is
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O

M

O

M

(b)

(a)

FIG. 17. (a) Sketch of beam deformation in a square lattice
loaded under a shear stress τ . Due to the shear, the force applying
onto the considered beam is F = τ�. In response to F , the beam
bends and its two edges moves over a distance δ. Thick black vertical
plain line and dotted black inclined lines present the considered beam
and two jointed one before the lattice deformation while gray vertical
thick plain line and gray dotted inclined lines show the same beams
after deformation. (b) Due to disorder, the considered beam makes
now an angle θ with respect to the perpendicular of shear. Applied
force F then splits into a component T perpendicular to the beam and
a parallel one, N . The former makes the beam bend and its two edges
move over a distance δT and the former makes the beam stretch and
its two edges move over a distance δN .

accommodated via latttice stretching as introduced disorder
increases. In this specific case, this can be rationalized as
follow.

Let us first consider the case of disorder-free square lattice
loaded by a constant shear stress, τ , applied perpendicularly
to a given beam OM (Fig. 17). Force F exerted on node M
is F = τ s�, and it applies perpendicular to the beam. Due to
beam bending, M moves over a distance δ = F�3/(Ess4) =
τ�4/(Ess3). O moves along the opposite direction over the
same distance, and the resulting elementary shear deformation

γ = 2δ/� = τ2�3/(Ess3) is

γ = 2�3

Ess3
τ. (19)

Let us now introduce disorder on edge positions. This
yields fluctuations on the angle θ between OM and the
vertical to applied shear [Fig. 17(b)]. As a result F , is
not perpendicular to OM anymore. The perpendicular com-
ponent T = F cos θ makes the beam bend and M moves
over a distance δT = F cos θ�3/(Ess4) along a direction
perpendicular to OM; the parallel component N = F sin θ

makes the beam stretch and M moves over a distance
δN = F sin θ�/(Ess) in a direction parallel to OM. The
former implies a bending-induced elementary shear defor-
mation γ (bnd) = δT cos θ/� = 1/2τ cos2 θ�3/(Ess3); the latter
implies a shear-induced elementary shear deformation γ (str) =
δN sin θ/� = 1/2τ sin2 θ�/(Ess).

Let us now assume that disorder is introduced by mov-
ing lattice edge over a random displacement as stipulated
in Eq. (16). To the second order in u/�0, cos2 θ = 1 −
1/2η2

x u2/�2
0 + o(u2/�2

0) and sin2 θ = 1/2η2
x u2/�2

0 + o(u2/�2
0).

By averaging over the configurations {θO, θM}, one gets:

γ (bnd)(u) = τ
2

Es

�3
0

s3

[
1 − 1

2

u2

�2
0

+ o

(
u2

�2
0

)]

γ (str)(u) = τ
2

Es

�0

s

[
1

2

u2

�2
0

+ o

(
u2

�2
0

)]
. (20)

Finally, the averaged shear-induced and bending-induced
elementary shear moduli G

(str) = τ/γ (str) and G
(bnd) =

τ/γ (bnd) become

G
(bnd)

(u) = Es

2

s3

�3
0

[
1 + 1

2

u2

�2
0

+ o

(
u2

�2
0

)]

G
(str)

(u) = Es
s

�0

[
u2

�2
0

+ o

(
u2

�2
0

)]
. (21)

The difficulty is to go from these local, configuration-
averaged, shear moduli to the global specimen-scale shear
moduli, G(sq). As discussed in Sec. IV B, this upscaling is
not trivial and cannot be obtained quantitatively via the sim-
ple addition of the two contributions. Still, making G(sq) =
G

(bnd) + G
(str)

allows reproducing at least qualitatively the
observed features: When s/� � u/�, G

(str)
(u) � G

(bnd)
(u)

and G(sq)(u) ≈ G
(str)

(u) ∼ s/�; conversely, when s/� � u/�,
G

(str)
(u) � G

(bnd)
(u) and G(sq)(u) ≈ G

(bnd)
(u) ∼ s3/�3. This

qualitatively explain observation IV and Fig. 10(b), with
a linear scaling regime G ∼ s/� at small aspect ratios, a
cube scaling regime G ∼ s3/�3 at large aspect ratios, and a
crossover aspect ratio increasing as disorder increases. Actu-
ally, as shown on Fig. 18, all the numerical curves obtained in
disordered square lattices are reproduced quantitatively using
a weighted sum:

G
(sq)

(u) = (1 − αu2)G
(bnd)

(u) + αu2G
(str)

(u) (22)

with α 	 0.1.
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FIG. 18. Shear modulus G as a function of beam aspect ratio s/�
at increasing disorder u in square-based disordered lattices. Colored
symbols connected by plain lines are the curves obtained via sim-
ulation. Colored dash lines are the analytical expression given by
Eq. (22) with α = 0.1. G is expressed in Es units and u is expressed
in � units.

V. CONCLUSION

The series of simulations reported here investigated how
the introduction of disorder modifies the elasticity behavior
of 2D lattice materials of various architectures. A procedure
inspired from the modeling of granular systems has been
developed to determine the map of the full elasticity tensor
at the local scale. This procedure has been validated via
comparisons with theoretical results known for pure crys-
talline lattices. Introducing disorder has the disadvantage
of generating important spatial fluctuations on these elastic
constants. Nevertheless, the associated correlation length re-
mains small, on the order of the beam length �. Averaging
over the specimen provides an accurate determination of the
continuum-level scale elasticity constants (compliance ten-
sor).

First, as demonstrated here on 2D square-based lattice
materials, introducing disorder in a crystalline architecture of
initial anisotropic elasticity promotes elasticity isotropy. Note
that, while there are elastically isotropic crystalline architec-
tures in 2D (e.g., the triangular or honeycomb lattice studied
here), this is no longer the case in 3D [42]. Lattice structures
with isotropic elasticity are important for many applications
and, as such, are the subject of several works [26,46–49].
Introducing disorder in a tunable way as proposed here may
offer a promising route to this aspect.

Second, introducing disorder softens highly connected
stretching-dominated lattice materials. This observation is
somehow counterintuitive since a simple argument, based on
the analysis of the elastic energy stored in an elementary
cell of the parent crystalline lattice and the evolution of this
configuration-averaged energy in presence of disorder would
have predicted the opposite (Appendix B). This highlights
the importance of nonlocality (and the induced difficulty to
anticipate the effect of disorder) on the elasticity proper-
ties of lattice materials. This also relates to previous studies
[26] that evidence correlations between network stiffness
and disorder-induced nonaffine strain fields in stretching-
dominated lattices.

Third, introducing disorder helps stiffening low connectiv-
ity bending-dominated lattice materials. The effect is quite
small in honeycomb lattices: Elastic modulus varies as the

cube of density (driven by changing the beam aspect ratio)
regardless of the disorder level, and disorder only plays on the
prefactor, which increases by ∼40%. On the other hand, the
effect is drastic in square-based lattices. In this scenario, stiff
regime (linear scaling between shear modulus and density)
is observed at low density, while the soft regime observed
in absence of disorder (cubic scaling between shear modulus
and density) is only recovered at large density. Additionally,
the crossover density between these two regimes is selected
by the disorder level. We conjecture that similar features will
be observed in any lattices where connectivity is too low to
ensure full structure rigidity (Z < 6 in 2D, Z < 12 in 3D), but
large enough to get rigid local cells (Z > 3 in 2D, Z > 4 in
3D).

Ongoing work aims at assessing this conjecture. If this
were the case, then modulating spatially the disorder intro-
duced in an initially crystalline architecture would provide a
promising way to obtain metacomposites made of soft and
stiff zones, the spatial entanglement of which could be ar-
ranged. This may allow the design of novel architectures
for materials with both large stiffness and energy-absorbers,
which are a priori antagonist.
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APPENDIX A: ON THE EFFECT OF AVERAGING
PROCEDURE ONTO MACROSCALE COMPLIANCE

TENSOR

Compliance tensor can be calculated following two
schemes. First, S is classically obtained using macroscopic
stress and strain. Second, a local SN (x, y) is computed by
first coarse-graining local stress and strain fields over square
metacell of edge size N�0 which gives σN (x, y) and εN (x, y)
and then using the classical best-fit procedure.

A coefficient α is defined as:

α = ‖S − 〈SN 〉‖
‖S‖ , (A1)

where 〈〉 denotes the specimen average and || || the Euclidean
norm. Figure 19 shows the variation of α with N in the
different geometries studied here. Like g(r), α(r) decreases
rapidly to zero. Hence, it is equivalent to average over space
or over configurations for compliance tensor components.

APPENDIX B: ANALYTICAL EXPRESSION OF LOCAL
CONFIGURATION-AVERAGED ELASTIC MODULI IN

DISORDERED TRIANGULAR-BASED LATTICES

The idea is based on the equivalence between the
continuum-level scale elastic strain energy stored in a unit
cell, Ucontinuum and the total energy stored in the beams of this
cell, Ucell [50,51]. Ucontinuum is given by:

Ucontinuum = 1
2εi jCi jklεkl , (B1)

where Ci jkl are the components of stiffness tensor and εi j are
the components of strain tensor. Here and in the following,
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FIG. 19. Ratio α [Eq. (A1)] as a function of coarse-graining scale
N , at increasing levels of disorder u, in honeycomb-based lattices (a),
square-based lattices (b), and triangular-based lattices (c). In each
panel, the three curves correspond to u = 0 for the blue (lower)
curve, u = 0.25 for the green (intermediate) curve, and u = 0.45
for the red (upper) curve. Here beam aspect ratio is s/�0 = 1/8 and
specimen size is R = 32�0. u is expressed in �0 units.

Einstein summation convention is employed on repeated in-
dices. Moreover, εi j are considered to be uniform throughout
the lattice. Ucell is given by:

Ucell = 1

4Svors

Z∑
p

Fi(p)Ui(p), (B2)

where Svor is the area of the Voronoï polyhedron around the
considered node (labeled O), p index runs over all beams start-
ing from this node, F(p) = FMp→O, and U(p) = U(Mp) −
U(O) is the relative displacement of node Mp with respect
to node O. Note the factor 1/4 (and not 1/2) in Eq. (B2)
that comes from the fact that the energy of each beam equally
splits in the two Voronoi cell associated to each edge. as strain
εi j are uniform:

Ui(p) = εi jx j (p), (B3)

where x(p) = x(Mp) − x(O) is the relative position of node
Mp with respect to node O. Due to their high connectivity, de-
formation in triangular-based lattices are dominated by beam
stretching. Hence, F(p) is

Fi(p) = Ess
2 xi(p)x j (p)

�(p)3
Uj (p), (B4)

where �(p) is the length of beam p. Finally, one gets:

Ci jkl = Ess

2Svor

Z∑
p

xi(p)x j (b)xk (p)xl (p)

�(p)3
. (B5)

Let us first consider a disorder-free triangular lattice.
Then, all beams have same length �0, Svor = �2

0

√
3/2,

and the relative positions x0(p) of the six nodes Mp

are {�0, 0}, {�0/2, �0

√
3/2}, {−�0/2, �0

√
3/2}, {−�0, 0},

{−�0/2,−�0

√
3/2)}, and {�0/2,−�0

√
3/2}. As a result, we

get:

C0 = 3

4
√

3

Ess

�0

⎡
⎣3 1 0

1 3 0
0 0 1

⎤
⎦. (B6)

This compliance matrix is that of a linear elastic isotropic
material of Young’s modulus and Poisson’s ratio given by:

E0 = 2√
3

Ess

�0
, ν0 = 1

3
. (B7)

Now disorder is introduced on the positions: x̂(p) =
x̂0(p) + uη(p), where η(p) is given by Eq. (16). These
changes are introduced in Eq. (B5) and the compliance matrix
is deduced:

C11 = Ess

2Svor

Z∑
p

[x0(p) + uηx(p)]4

{[x0(p) + uηx(p)]2 + [y0(p) + uηy(p)]2}3/2

C22 = Ess

2Svor

Z∑
p

[y0(p) + uηy(p)]4

{[x0(p) + uηx(p)]2 + [y0(p) + uηy(p)]2}3/2

C12 = Ess

2Svor

Z∑
p

[x0(p) + uηx(p)]2[y0(p) + uηy(p)]2

{[x0(p) + uηx(p)]2 + [y0(p) + uηy(p)]2}3/2

C13 = Ess

2Svor

Z∑
p

[x0(p) + uηx(p)]3[y0(p) + uηy(p)]

{[x0(p) + uηx(b)]2 + [y0(p) + uηy(p)]2}3/2

C23 = Ess

2Svor

Z∑
p

[x0(p) + uηx(p)][y0(p) + uηy(p)]3

{[x0(p) + uηx(p)]2 + [y0(p) + uηy(p)}2)3/2
,

(B8)

where Voight notation has been used and Svor has been as-
sumed to remain unchanged by the disordering procedure.
After expanding to second order in u/�0 and subsequently av-
eraging over disorder configurations so that ηx = ηy = ηxηy =
0 and η2

x = η2
y = 1, we get:

C(u) = 3

4
√

3

Ess

�0

⎡
⎣3 1 0

1 3 0
0 0 1

⎤
⎦[

1 + u2

�2
0

+ o

(
u2

�2
0

)]
. (B9)
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In the disordered triangular-based lattice, elasticity remains isotropic and local configuration-averaged Poisson’s ratio at the
elementary cell scale remains constant, ν(u) = 1/3. Conversely, local Young’s modulus increases with disorder strength:

E (u) = E0

[
1 + u2

�2
0

+ o

(
u2

�2
0

)]
. (B10)

This increase is opposite to the decrease observed for global (specimen-scale) Young’s modulus (Fig. 16). Note that Eq. (B3)
assume uniform strain at the local scale, which is not true in the presence of geometrical disorder [26].
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