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Stress-free morphing by means of compatible distortions
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We study the morphing of three-dimensional objects within the framework of nonlinear elasticity with large
distortions. A distortion field induces a target metric, and the configuration which is effectively realized by
a material body is the one that minimizes the distance, measured through the elastic energy, between the
target metric and the actual one. Morphing through distortions might have a paramount feature: the resulting
configurations might be stress-free; if this is the case, the distortions field is called compatible. We maintain
that the morphing through compatible distortions is a key strategy exploited by many soft biological materials,
which can exhibit very large shape-change in response to distortions controlled by stimuli such as chemicals
or temperature changes, while keeping their stress state almost null. Thus, the study of compatible distortions,
and of the related shape-changes, is quite important. Here, we show a blueprint for stress-free morphing based
on the notions of metric tensor and of Riemann curvature which can be used to design large morphing of
three-dimensional objects.
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I. INTRODUCTION

Since centuries, the main interest of solid mechanics has
been the prediction of the strain and the stress state of solids
under loadings.

Then, the pioneering works of Refs. [1,2] about the ef-
fects of thermal distortions paved the way for an additional
research field, the evaluation of the strain and the stress state
of unloaded solids under geometrical frustration. The notion
of distortions, also known as anelastic strains, proved to be
extremely fruitful in modeling crystalline plasticity, based on
the idea of the multiplicative composition of the actual strain
with the inelastic one [3–6]; the history of this decomposition
can be retraced in Ref. [7].

More recently, the theory of nonlinear elasticity with large
distortions, also known as anelasticity, from the seminal paper
[8] has been applied to study the morphing of elastic bodies,
and has been enriched by many new ideas; among them, we
cite the introduction of a balance law for the time evolution of
distortions and the study of stress-driven remodeling [9,10],
the notion of target metric [11,12], and of elastic metric [13],
the usage of these modeling tools to the study of biological
growth [14–17].

Shape-morphing of two-dimensional (2D) bodies has been
extensively studied in the recent decade, both from the theo-
retical point of view [18–20] and from the point of view of
morphing design [21–24]. The notion of distortions has also
been widely used to model shape formation of liquid crystal
elastomers in the framework of a fully three-dimensional (3D)
theory [25–27], or with 2D shell models [28–31].

Design of morphing is now at the core of many ap-
plications, and our paper investigates about the possibility
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of designing stress-free morphing for 3D bodies, following
Ref. [32]. The uniqueness of distortion-induced deformations
is due to the existence of a special class of distortion fields
known as compatible, which yield stress-free morphings; on
the other hand, deformations caused by loadings will always
be stressed.

We support that morphing through compatible distortions
is a key strategy exploited by nature, enabling living organ-
isms to perform vital tasks such as changing shape, moving,
and adapting to the environment [33–36]. Mimicking the
dynamics of these structures by using active materials has
been useful in the design of smart systems for engineering
applications, i.e., actuation in robotics, foldable electronics,
deployable structures, and biomedical applications to name a
few [37]; design of shape-morphing has also been addressed
for living composites [38,39].

In this work, we explore the possibility of deforming elas-
tic 3D bodies through distortions with the aim to propose a
blueprint for the characterization of compatible metric tensors
to which there correspond a sought shape transformation, that
is, a 3D morphing towards a target shape, realized at zero
stress.

Actually, there are plenty of papers about the morphing of
shells based on the notion of 2D target metric, and discussing
the possible rise of self stresses. Our paper tackles the same
problem for 3D bodies and yields explicit representations
of many examples of compatible metrics grouped in differ-
ent families. The anticipated families of shapes that could
be created is limitless: our method starts from the explicit
representation of some prototypical deformations and then
generalizes it basing on the notion of Riemann curvature;
moreover, it can be extended to many other more general
morphing problems.

Here we discuss ribbons as they have a simple, yet not
trivial reference geometry; nevertheless, they yield a large
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family of different deformations. Also, ribbons are interesting,
not only because of the wide range of different morphings
they can generate, but also because there are many “physi-
cal” examples or applications as artificial actuators exhibiting
motions from flat configurations to curved ribbons and back.

Our approach has limitations; here we list some of them:
(a) The formations of sharp corners, or discontinuity in the
curvature, cannot be described. (b) Once a compatible metric
has been found, its square root might be difficult or impossible
to compute explicitly. (c) Our method is granted for simply
connected domains; its effectiveness for nonsimply connected
domains should be discussed.

The paper is organized as follows: at first, we recapitulate
the key notions of nonlinear elasticity with large distortions;
we introduce the notions of target and elastic metric, and we
present the stress-strain relations in presence of large dis-
tortions. Then, we address the compatibility problem for a
target metric based on the notion of the Riemann curvature
tensor; we propose a way to design a shape morphing and
to characterize compatible distortions [16,40]; we give the
guidelines to build a compatible distortions starting from a
three-dimensional embedding that describes the deformation.
Finally, we present a collection of simple compatible dis-
tortions which produce stress-free morphing; moreover we
validate them numerically using the finite element method
(FEM).

II. ELASTICITY WITH DISTORTIONS

In this section we briefly review the theory of nonlinear,
3D elasticity with large distortions [13]. Let E be the 3D Eu-
clidean ambient space; we denote by VE its associated vector
space, and with Lin = VE ⊗ VE = Sym ⊕ Skw the space of
double tensors on VE (linear maps of VE into itself). Finally,
Rot ⊂ Lin is the space of the orthogonal transformations of
VE .

To ease notation, in most of our paper we shall use an
Euclidean frame, and thus we do not tell between covariant
and contravariant components of vectors and tensors; see
Appendix A. Our Euclidean frame is {o; e1, e2, e3}, with o
being the origin and ei being three orthonormal vectors of
VE . A point of E is x = (x1, x2, x3), and x1e1 + x2e2 + x3e3

is its position vector. A basis of Lin is given by e j ⊗ ei, with
i, j = 1, 2, 3.

A. Kinematics

Given a 3D body B, we define the placement of the body
a smooth embedding of B onto E , described by the map

f : B → E ,

x �→ y = f (x) = x + u(x), (1)

associating any material point x ∈ B to its position y =
f (x) ∈ E in space. The vector-valued field u = ui(x)ei is
the displacement field, thus, yi = fi(x) = xi + ui(x)ei; finally
f (B) describes the actual configuration of B. Given a point
x and a placement f , the associated key geometrical functions
gradient F, cofactor F∗, and Jacobian determinant J are de-

fined as

F := ∇ f = I + ∇u, F∗ := JF−	, J := det (F), (2)

with ∇ f = ∂ fi/∂x jei ⊗ e j .

1. Distortions

The important notion of distortion has been proposed in the
framework of plasticity to describe the natural state of volume
elements. Distortions are described by the tensor-valued field

Fo : B → Lin(TxB, TxB), (3)

where TxB is the tangent space to B at x, called the body ele-
ment at x. It is worth noting that the deformation gradient F is
a purely kinematical notion; in contrast, the notion of the dis-
tortion Fo has a twofold nature: kinematics and dynamics. In
fact, Fo represents an additional state variable, as it adds nine
more degrees of freedom; moreover, it is aimed at describing
the stress-free state of volume elements; that is, it relies on the
notion of stress and some constitutive information on it [9].

Thus, the use of the synonymous terms natural, stress-free,
or relaxed, does more than foresee the specification of any free
energy: it emphasizes the fact that a distortion has no effect on
the value of the free energy of a body element.

The difference between the actual deformation gradient F
and the distortion Fo is measured through the elastic deforma-
tion Fe,

Fe = FF−1
o . (4)

The idea of a multiplicative decomposition F = FeFo of F
into the product of an elastic part Fe and an inelastic (also
called plastic) part Fo is commonly associated with the names
of Bilby, Kröner, and Lee [3–5].

2. Strain measures

Given the three tensor fields F, Fo, and Fe, it is possible
to define the following metric tensors, having the role of the
right Cauchy-Green strain measures:

C = F	 F, actual metric given by f ,
Co = F	

o Fo, natural metric associated to Fo,

Ce = F	
e Fe, elastic metric evaluated with Fe.

(5)

In general, Co is not Euclidean; that is, flat Riemannian, but
Riemannian in the general sense; this attribute comes from the
fact that Fo is not necessarily compatible; that is, it might not
exist an embedding f such that ∇ f = Fo.

Incompatible distortions would cause body elements to
overlap or tear; to avoid that, body elements must be elasti-
cally deformed to compensate for the lack of compatibility.
The metric tensor measuring this elastic deformation is the
elastic metric Ce, which can be represented as a multiplicative
difference between C and Fo,

Ce = F	
e Fe = F−	

o CF−1
o . (6)

Based on Ce, it is possible to define other classical strain mea-
sures used in solid mechanics, such as the Green Saint-Venant
strain Ee, defined by

Ee = 1
2 (Ce − I). (7)
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FIG. 1. Stress measures and energy densities are placed in a
triangular diagram; pull back and push forward operations are high-
lighted for each transformation.

Let us note that Ee is not a metric tensor, not being positive
definite, and can be rewritten in terms of the differences C −
Co or E − Eo:

Ee = F−	
o

1
2 (C − Co)F−1

o = F−	
o (E − Eo)F−1

o , (8)

with E = 1
2 (C − I) and Eo = 1

2 (Co − I). It is this representa-
tion that prompts the alias target metric for Co: the strain Ee

measures the deviation of the actual metric C from the target
one Co.

B. Elastic energy

We consider a hyperelastic response for B, described by a
free energy density ψo per unit relaxed volume dVo = JodV ,
with dV being the reference volume element on B, and Jo =
det Fo being the determinant of the linear transformation Fo.
Let us note that, by using an orthonormal Euclidean basis, as
done in most of our paper, Jo coincides with the determinant
of its matrix representation: Jo = det(Foi j ).

The free energy is assumed to depend on the elastic de-
formation Fe, that is ψo = ψo(Fe). It follows that the strain
energy density ψ , per unit reference volume dV , is given by

ψ = Joψo(Fe). (9)

Standard procedures of continuum mechanics yields the fol-
lowing stress measures, see also Fig. 1:

Soe = ∂ψo

∂Fe
, energetic stress,

Se = SoeF∗
o, reference stress (Piola-kirchhoff),

Te = Se(F∗)−1, actual stress (Cauchy).
(10)

Here, the subscript “e” is meant to highlight the reference
to the energetic component of the stress. Additional internal
constraints, as incompressibility, would add additional stress
terms. Let us note that, by using a different representation of
the free energy density φo = φo(Ce) = ψo(Fe), we have

Soe = 2Fe
∂φo

∂Ce
= Fe

∂φo

∂Ee
. (11)

The derivative of the energy with respect to Ee is commonly
called second Piola-Kirchhoff stress,

∂φo

∂Ee
= F−1

e Soe. (12)

Finally, the actual stress Te can be represented as

Te = 1

J
SeF	 = 1

J
Fe

∂φo

∂Ee
F∗

oF	 = 1

Je
Fe

∂φo

∂Ee
F	

e . (13)

C. The typical elastic problem

A typical problem of nonlinear elasticity with distortions
can be formulated as follows: given an elastic body B, with
loadings, constraints, and distortions, find its placement f :
B → E . The solution f ∗ to this problem is obtained as a
minimization of the elastic energy, where the distortion field
Fo is an input of the problem

f ∗(., Fo) = min
f

∫
B

ψ (Ce)dV. (14)

Due to the presence of the distortions, the strain Ce can be
different from the identity even in the absence of loadings
and constraints. Our goal is to design a distortion field Fo

such that f ∗ is a sought shape, and f ∗(B, Fo) is a stress-free
configuration.

III. COMPATIBILITY

The existence of stress-free configurations generated by
the prescription of a compatible distortion field is a sub-
ject of tremendous importance within the framework of
shape-morphing. These configurations are particular elastic
solutions which minimize the elastic energy at zero stress.

A. Riemann curvature tensor

Given a metric tensor G, its associated Riemann curvature
R(G) is made of linear combinations of second derivatives
of the components of G; the usual representation of R(G) is
done in terms of the Christoffel symbols.

For all i, j, k, q ∈ {1, 2, 3}, let the functions �i jq and �
p
i j

be the Christoffel symbols of the first and second kind, re-
spectively, defined by

�i jq = 1
2 (∂ jGi j + ∂iG jq + ∂qGi j ), (15)

and

�
p
i j = Gpq�i jq, (16)

where Gpq = G−1
pq . Then, the Riemann curvature tensor asso-

ciated with C is given by

Rqi jk = ∂ j�ikq − ∂k�i jq + �
p
i j�kqp − �

p
ik� jqp. (17)

In a 3D space, the Riemann tensor has 81 components, but
most of them are null or redundant; actually, in 3D, R can
be represented at glance by a 3 × 3 skew-symmetric matrix,
whose entries are 3 × 3 skew-symmetric matrices, see (18).
The skew symmetry implies that only six strict components
remain. As this representation shows, the three matrices on the
diagonal are null; moreover, all the matrices out of diagonal
are skew-symmetric, and have their diagonals null:
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R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎣ 0 0 0

0 0 0
0 0 0

⎤
⎦

⎡
⎣ 0 −R1212 −R1213

0 −R1223

skw 0

⎤
⎦

⎡
⎣ 0 −R1312 −R1313

0 −R1323

skw 0

⎤
⎦

⎡
⎣ 0 R1212 R1213

0 R1223

skw 0

⎤
⎦

⎡
⎣ 0 0 0

0 0 0
0 0 0

⎤
⎦

⎡
⎣ 0 −R2312 −R1323

0 −R2323

skw 0

⎤
⎦

⎡
⎣ 0 R1312 R1313

0 R1323

skw 0

⎤
⎦

⎡
⎣ 0 R2312 R2313

0 R2323

skw 0

⎤
⎦

⎡
⎣ 0 0 0

0 0 0
0 0 0

⎤
⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (18)

Moreover, due to major symmetry, R1312 = R1213, R2312 =
R1223, and R1323 = R2313. Consequently, the equation R(C) =
0 consists of six partial differential equations involving the six
strict components of C; this system of six PDEs might be used
as a tool to characterize compatible fields Fo.

We conclude this section by noting that, due to the two
minor skew-symmetry and the major symmetry, in 3D the
forth-order tensor R can be represented by two different sym-
metric tensors of order two, the incompatibility tensor, and
the Ricci tensor. The first one is defined by means of the
axial vector operator [41]; the second one is defined through a
double contraction of the indices of the Riemann tensor [42].
Here, in order to maintain the meaning, we prefer the notation
with the four indices.

B. Compatible distortions

Given a smooth, positive definite, symmetric tensor field
G on a simple-connected domain B, the necessary and suf-
ficient condition for G to be the metric tensor of a realizable
configuration is that its associated Riemann curvature tensor
R = R(G) be null [40]; we have

R(G) = 0 ⇔ ∃ f : B → E s.t. ∇ f 	∇ f = G. (19)

Moreover, the embedding f is unique up to a global isometry,
and G is called Euclidean metric tensor. The same test can be
done on the natural metric Co to assess the compatibility of
Fo, that is

R(Co) = 0 ⇔ ∃ f : B → E s.t. ∇ f = Fo, (20)

and the natural metric Co is Euclidean; the configuration f (B)
is realizable and unique up to isometries, provided that the
map f satisfies possible boundary conditions.

A discussion about the generalization of (20) for arbitrary
nonsimply connected bodies can be found in Ref. [43]. Let
us now consider the polar decomposition of ∇ f and Fo into
symmetric and orthogonal components

∇ f = QU and Fo = QoUo. (21)

The vanishing of the Riemann curvature associated with Co

implies the existence of a unique placement f in which only
the symmetric components of ∇ f and Fo are equal

R(Co) = 0 ⇔ (∇ f 	∇ f
)1/2 = U = Uo = (

F	
o Fo

)1/2
. (22)

Consequently, the compatibility of Fo has the following im-
plications [13]:

(1) The elastic deformation Fe reduces to a rotation

Fe = ∇ f F−1
o = QUU−1

o Q	
o = QQ	

o ; (23)

thus, the elastic metric is the identity, and the elastic stress is
identically null:

Ce = F	
e Fe = I ⇒ ∂ψo(I)

∂Fe
= 0. (24)

(2) The set of all compatible distortions sharing the same
metric Co constitutes an equivalent class [9,41]. Given a com-
patible distortion Fo, the product QFo, for any Q ∈ Rot, is also
compatible, as both yield the same natural metric.

IV. MORPHING DESIGN

In this section we illustrate our proposal for morphing de-
sign which relies on the construction of compatible distortions
aimed at generating a stress-free target shape. Our approach is
based on the following algorithm: at first, we construct a 3D
embedding by extruding a curve fc to a surface fs, and then to
a volume f ; this procedure can generate a great collection of
different parametric configurations.

Then, we compute the metric C of this embedding and
extract its square root U = √

C, meant to represent a pro-
totypical distortion Uo, compatible by construction. Finally,
we modify the prototypical distortion to Ũo and solve the
Riemann curvature equation R(Ũ2

o ) = 0 to characterize the
modifications which maintain the compatibility. At a glance,
we have

f → ∇ f → C = ∇ f 	∇ f → U =
√

C = Uo, prototype;

Uo → Ũo, modification of prototype;

Ũo → R
(
Ũ2

o

) = 0 → compatibleŨo → integration f̃ . (25)

In the absence of loads and constraints, both f (B) and f̃ (B)
are stress-free configurations.

A. Extruding a three-dimensional solid from a curve

Let y = fc(x1) be a curve parametrized by a one-
dimensional (1D) interval; the Frenet-Serret frame of the
curve is given by the triad of unit vectors {t, n, b}, attached
at y = fc(x1). The tangent t, the normal n, and the binormal b
are defined by

t = f ′
c

λ
, n = t′

|t′| , b = t × n, (26)
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where the prime denotes the derivative d/dx1 and λ = | f ′
c|

is the axial stretch. From (26), it is possible to define the
curvature κ and the torsion τ as follows:

κ = |t′|
λ

= | f ′
c × f ′′

c |
| f ′

c|3
, τ = |b′|

λ
= f ′

c × f ′′
c · f ′′′

c

| f ′
c × f ′′

c |2 . (27)

It is worth noting that the relevant geometric information
about the curve fc is summarized by the three scalars {λ, κ, τ }.
We now extrude the 1D curve fc along the binormal direction
to get a 2D ruled surface fs:

y = fs(x1, x2) = fc(x1) + x2b(x1). (28)

Then, we extrude the 2D surface fs along its normal direction
ns to obtain a 3D solid f :

y = f (x1, x2, x3) = fs(x1, x2) + x3ns(x1, x2), (29)

where ns is the normal to the surface fs and is given by

ns = fs,1 × fs,2

| fs,1 × fs,2| , (30)

with fs,i = ∂ fs/∂xi. The gradient ∇ f of the embedding (29)
takes the following form:

F = ∇ f = ∇ fs + x3∇ns + ns ⊗ e3, (31)

to which we can give a matrix-like representation

[F] = [ ∇ fs ns ] + x3[ ∇ns 0 ]. (32)

The metric tensor C = F	F associated with (31) has the fol-
lowing matrix-like representation

[C] =
[

A ·
· 1

]
+ x3

[
2B ·
· ·

]
+ x2

3

[ ∇n	
s ∇ns ·
· ·

]
,

(33)

from which it is possible to identify the three fundamental
forms (FFs) of the surface fs; these FFs can be represented
in terms of the geometric parameters {λ, κ, τ }. The first FF is
given by

[A] = ∇ f 	
s ∇ fs =

[
λ2 + (x2τ )2 0

0 1

]
. (34)

The second FF is given by

[B] = 1

2

(∇ f 	
s ∇ns + ∇n	

s ∇ fs
) =

⎡
⎣−κλ

τ

2τ

2
0

⎤
⎦. (35)

Finally, the third FF is given by

[∇n	
s ∇ns

] =
[
κ2 + τ 2 0

0 0

]
. (36)

B. Representation of general helicoidal solid

We construct the embedding of a 3D parallelepiped onto
a helicoidal solid, wound around a cylinder. This embedding,
with the due parametrization, can generate a large family of
different morphings. The embedding is made by composing
two maps:

x �→ s = s(x) �→ y = f (s). (37)

(a) (b)

FIG. 2. (left) Helix angle ϕ between the helix tangent t and the
axis of the cylinder; see also panel (a) of Fig. 3. (right) Effect of the
shear s = s(x) described by (38), shown in the plane (x1, x2); we set
λi = 1.

The first map s = s(x) is a change of coordinates defined by

s1 = λ1x1 + λ2x2 tan α,

s2 = x2 sec α,

s3 = λ3x3.

(38)

The parameters λi are stretches along xi; it is important to note
that the first two equations represent a shear of the parameters
domain of angle α in the plane (x1, x2), see Fig. 2, right; this
shear identifies the material fiber that will remain straight in
the ruled surface of the embedding.

The second map y = f (s) is an embedding defined using
an algorithm similar to that described in Sec. IV A: start with
a curve fc, then extrude to a surface fs, and eventually to a
volume f , see Fig. 3. The curve fc is a helix wound around a
cylinder of radius R and axis e2, and with helix angle ϕ, given
by

fc(s1) = R sin φe1 + s1 sin ϕe2 + R(cos φ − 1)e3, (39)

with φ = s1cos(ϕ)/R. Both the radius R and the helix angle ϕ

can be represented in terms of the curvature κ and the torsion
τ of fc as follows:

R = κ

κ2 + τ 2
, ϕ = arctan (κ, τ ), (40)

where arctan(κ, τ ) gives the arc tangent of κ/τ , taking into
account which quadrant the point (κ, τ ) is in. To have more
general morphings, the helix fc is extruded to a surface along
the direction

d(s1) = cos θ [cos ψb(s1) + sin ψt(s1)] + sin θn(s1), (41)

represented in term of the Frenet frame {t, n, b}; here ψ is the
angle of a rotation with axis n, and θ represents the Love’s
torsion [44]. The helicoidal surface fs is thus given by

fs(s1, s2) = fc(s1) + s2d(s1). (42)

It is worth noting that in general, due to the fact that the
binormal b does not belong to the tangent plane at the cylin-
der, the helicoidal surface fs does not lie on it, i.e., it is
not developable. A developable surface is characterized by
the request of having vanishing Gaussian curvature; that is,
assuming det A �= 0, by

det B = 0 ⇔ ψ = ϕ. (43)
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(a) (b) (c) (d)

FIG. 3. From left to right: Helix fc(s1) around a cylinder; helicoidal Surface fs(s1, s2); helicoidal solid f (s1, s2, s3).

Moreover, fs has null shear when A12 = 0 that is, when α =
−ψ . Finally, the solid f is given by

f (x1, x2, x3) = fc(s1) + s2d(s1) + s3ns(s1, s2), (44)

with ns(s1, s2) derived from (42) using (30), and si =
si(x1, x2, x3) given by (38). We note that the Frenet frame and
the surface normal ns are computed by derivatives of fc and
fs with respect to the parameters s1, s2, while the gradient
F = ∇ f has to be computed through derivatives with respect
to the coordinates xi.

Two more parameters are added to fs by considering θ =
θo + s1θ1 in (41); θo yields a uniform rotation of the surface
around the curve fc, while θ1 yields twist along the curve. To
highlight all the parameters involved in (44), we rewrite it as
follows

y = f (x; R, ϕ, λi, α, ψ, θo, θ1). (45)

The above 3D parametric embedding is suitable to repre-
sents both 3D ribbon-like solids [45–47], sheet-like solids,
and beam-like solids [48,49].

V. WORKED EXAMPLES

In the following we shall give some worked examples of
the algorithm proposed in Sec. IV; we always assume as
reference configuration for B a parallelepiped having length
L, width W and height H :

B = [0, L] × [−W/2,W/2] × [−H/2, H/2]. (46)

Our twofold approach is based on: (1) the use of the
parametrized embedding (44) to generate some interesting
shape morphings, and to compute the corresponding distor-
tions Uo; (2) the study of a modification Ũo of a prototypical
distortion Uo, in order to make it compatible by solving the
equation R(Ũ2

o ) = 0. We shall use the notation

f (B; Uo) or f̃
(
B; Ũo

)
(47)

to highlight the fact that the configurations of B are
parametrized by a distortion field. As byproduct, we solve
all our morphings problem using a finite elements analysis
to check numerically the existence of the zero-stress states;
we note that such nonlinear elastic problems are solved quite
easily by the finite elements method.

A. Bending

We start with the simplest example. Bending can be ob-
tained from (44) by setting the stretches λi = 1, and all the
angles to zero: ϕ = ψ = θ = α = 0, see Fig. 4. The curve
(39) becomes

fc(x1) = R sin φe1 + R(cos φ − 1)e3, (48)

with φ = x1/R. The Frenet frame reads

t(x1) = cos φe1 − sin φe3,

n(x1) = − sin φe1 − cos φe3,

b(x1) = e2,

(49)

while curvature and torsion are given by κ = 1/R, τ = 0. A
surface fs is obtained by extruding the curve (48) along the
binormal direction b = e2:

fs(x1, x2) = −R(n(x1) + e3) + x2e2. (50)

Finally, the 3D volume f is obtained by extruding fs along
ns = −n,

f (x1, x2, x3) = −(R + x3)n(x1) − Re3 + x2e2, (51)

with ns = −n. The matrix representation of the gradient F =
∇ f of the embedding is

[F] =

⎡
⎢⎢⎢⎣

(R + x3) cos φ

R
0 sin φ

0 1 0

− (R + x3) sin φ

R
0 cos φ

⎤
⎥⎥⎥⎦. (52)

The corresponding metric C = ∇ f	∇ f is

[C] =

⎡
⎢⎣

(R + x3

R

)2

0 0

0 1 0
0 0 1

⎤
⎥⎦. (53)

Finally, the stretch U = √
C is

[U] =

⎡
⎢⎣ 1 + x3

R
0 0

0 1 0
0 0 1

⎤
⎥⎦. (54)

The metric (53) satisfies the compatibility condition (22) by
construction; it follows that the stretch (54) describes a proto-
typical compatible distortion Uo = U(R), parametrized by R;
in particular, for R → ∞, the distortion Uo → I. Rewriting
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(a) (b) (c)

FIG. 4. From left to right: curve fc(s1) around a cylinder; bent surface fs(s1, s2); bent solid f (s1, s2, s3).

(47) as f (B; R), we have

f (B; ∞) = B, f is the identity map;

f
(
B;

L

2π

)
, f yields a cylinder.

(55)

To avoid self penetration we need H/2 � R. Figure 5 shows
some bent configurations for the parallelepiped B with H =
L/π (top row) and H = 2L/π (bottom row).

B. Special bending cases

Basing on the bending matrix (52), we now look for differ-
ent distortion fields capable of yielding stress-free bending.
These compatible fields are found by solving for Co the equa-
tion R(Co) = 0.

1. Bending induced by nematic distortions

Let us consider a distortion field Fo [26,27,50] representing
a hybrid nematic orientation in the vertical plane; we have

Fo = λ‖n ⊗ n + λ⊥(I − n ⊗ n)

= λ⊥I + λan ⊗ n, (56)

where the director n = cos α(x3)e1 + sin α(x3)e3 describes
the nematic orientation, λ‖ is the stretch parallel to the line
n ⊗ n, λ⊥ is the stretch in the plane orthogonal to that line,

FIG. 5. Bending of a parallelepiped of length L and height H .
(top row) H = L/π : the reference parallelepiped bends by π radians
at R = L/π and becomes a closed cylinder at R = L/(2π ). (bottom
row) H = 2L/π : the reference parallelepiped bends by π/2 radians
at R = 2L/π and becomes a half cylinder at R = L/π , the minimum
radius avoiding self-penetration. All six configurations are stress-
free.

and λa = λ‖ − λ⊥. The corresponding metric Co is given by

Co = λ2
‖n ⊗ n + λ2

⊥(I − n ⊗ n)

= λ2
⊥I + �n ⊗ n, (57)

with � = λ2
‖ − λ2

⊥. We use the compatibility condition (22) to
characterize the nematic orientation α = α(x3) that makes Co

a compatible metric. The Riemann curvature R(Co) has five
out of six null components

R1212 = R1213 = R1223 = R1323 = R2323 = 0. (58)

It remains to solve for α = α(x3) the equation R1313 = 0, with

R1313 = �
(
cos (2α)α′2 + 1

2 sin (2α)α′′). (59)

We assume anchoring conditions for the nematic orientation: a
planar alignment at bottom, α(−H/2) = 0, and a vertical one
at top, α(H/2) = π/2. It follows that the equation R1323 = 0
is solved by

α(x3) = 1

2
arccos

(
−2x3

H

)
. (60)

It is worth noting that the metric (57) with the orientation
α(x3) given by (60) is always compatible, for any value of
λ‖, λ⊥, provided det(Co) remains positive.

Let us denote with F̃o the distortion (56), and C̃o the metric
(57), where α(x3) is given by (60); we have

[
F̃o

] =

⎡
⎢⎢⎢⎢⎣

λ⊥ + λa

(
1

2
− x3

H

)
0

λa

2

√
1 − 4x2

3

H2

λ⊥ 0

Sym λ⊥ + λa

(
1

2
− x3

H

)
⎤
⎥⎥⎥⎥⎦,

(61)

and

[
C̃o

] =

⎡
⎢⎢⎢⎢⎣

λ2
⊥ + �

(
1

2
− x3

H

)
0

�

2

√
1 − 4x2

3

H2

λ2
⊥ 0

Sym λ2
⊥ + �

(
1

2
− x3

H

)
⎤
⎥⎥⎥⎥⎦.

(62)

It is worth noting that the distortion field F̃o has an explicit
integral; that is, we can solve for f̃ the equation ∇ f̃ = F̃o. We
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FIG. 6. We plot in the plane e1 ∧ e3 the cross sections of B and of its bent configurations, using a wire-frame plot to highlight the
deformation. From left to right: reference cross section; classic bending from (54) with R = 4/3 × 1/(2π ); nematic bending from (61) with
β = 3/4 × 2π ; bending due the transverse isotropic distortion (67), with c1 = 1, c2 = 3/4 × 2π . Plots are scaled differently.

find

f̃ (x1, x2, x3) = r(x3)Q(β(x1, x3))e3, (63)

with Q a rotation of angle β = βo(x3) − x1β1,

[Q] =
⎡
⎣cos β 0 − sin β

0 1 0
sin β 0 cos β

⎤
⎦. (64)

The functions r(x3), βo(x3) and the parameter β1, together
with a sketch of their derivation are given in the Appendix B.
Using the same notation as in (47), we have that f̃ (B; λ‖, λ⊥)
represents a bent, stress-free configuration of B, which is a
quite different kind of bending with respect to the one given
by (54), see Fig. 6.

Given the function β(x1, x3), we can evaluate the difference
between the rotations at the two ends of the parallelepiped B;
we have

β = β(L, 0) − β(0, 0) = − L

2H

�

λ‖λ⊥
. (65)

When β = ±2π , the reference parallelepiped bends to a
closed cylinder; as example, with λ⊥ = 1, we have

β = ±2π ⇔ λ‖ = ∓2πH

L
+

√
1 +

(
2πH

L

)2

. (66)

2. Bending induced by transverse-isotropic distortions

Let us consider the distortion field Fo = QoUo defined by
a rotation Qo with axis e2, and a stretch Uo in the plane Ī =
I − e2 ⊗ e2 orthogonal to that axis [13]:

Qo = e2 ⊗ e2 + cos α(x1)Ī + sin α(x1)e1 ∧ e3,

Uo = e2 ⊗ e2 + λ(x3)Ī.

Its matrix-like representation is

[Fo] =
⎡
⎣ λ(x3) cos α(x1) 0 λ(x3) sin α(x1)

0 1 0
−λ(x3) sin α(x1) 0 λ(x3) cos α(x1)

⎤
⎦, (67)

and the corresponding metric is

[Co] =
⎡
⎣λ(x3)2 0 0

0 1 0
0 0 λ(x3)2

⎤
⎦. (68)

Also in this case, the Riemann curvature R(Co) has five out of
six null components

R1212 = R1213 = R1223 = R1323 = R2323 = 0. (69)

It remains to solve for λ(x3) the equation R1313 = 0, with

R1313 = λ′(x3)2 − λ(x3)λ(x3)′′.

The equation R1313 = 0 yields

λ(x3) = c1 exp (c2x3). (70)

It is easy to verify that a placement f̃ which realizes the
distortion field (67) is given by

f̃ = x2e2 + 1

c2
λ(x3)[sin (c2x1)e1 + cos (c2x1)e3]. (71)

Rewriting (47) as f̃ (B; c1, c2), we have

lim
c2→0

f̃ (B; 1, c2) = B, f̃ is the identity map;

f̃ (B; 1, 2π ), f̃ yields a cylinder.
(72)

C. Torsion

Torsion can be obtained from (44) by setting the stretches
λi = 1, the angles ϕ = ψ = α = 0, and the radius R → ∞.
The curve (39), the surface (42) and the volume (44) become

fc(x1) = x1e1,

fs(x1, x2) = x1e1 + x2(cos θe2 + sin θe3),

f (x1, x2, x3) = x1e1 + (x2 cos θ − x3 sin θ )e2

+ (x2 sin θ + x3 cos θ )e3. (73)

Moreover, we assume θ = θo + x1/Lθ1; see Fig. 7. The matrix
representation of the gradient ∇ f is

[F] =
⎡
⎣ 1 0 0

−aθ1 cos θ − sin θ

bθ1 sin θ cos θ

⎤
⎦, (74)

with a = (x2 sin θ + x3 cos θ )/L and b = (x2 cos θ −
x3 sin θ )/L. The corresponding metric is

[C] =

⎡
⎢⎢⎢⎢⎢⎣

1 + θ2
1

(
x2

2 + x2
3

)
L2

−θ1x3

L

θ1x2

L−θ1x3

L
1 0

θ1x2

L
0 1

⎤
⎥⎥⎥⎥⎥⎦. (75)
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(a) (b)

FIG. 7. The torsion given by the map (73)3. (left) Surface fs

with the local Frenet frame shown at y = fs(x1, x2). (right) Solid f
obtained by extruding fs along ns.

The prototypical distortion Uo is defined as the square root of
the metric tensor: Uo = √

C; this square root has an explicit
representation, and the six strict components of Uo are given
in Appendix C.

This prototypical distortion Uo = Uo(θ1) is parametrized
by θ1 and yields a torsion proportional to the length of the
beam; following the notation (47), we have that f (B; θ1)
represents a twisted parallelepiped whose base at x1 = L is
rotated by θ1 with respect to the base at x1 = 0, see Fig. 8.
Note that U(0) = I.

D. Helicoidal ribbons

We now use the general formula (44) to define some dis-
tortions Uo yielding different helicoidal ribbons; in particular,
we focus on flat ribbons, corresponding to ϕ = ψ , having no
shear (α = −ψ) or sheared (α �= ψ), and to saddle-ribbons
for which ϕ �= ψ . Then, we investigate the compatibility of
different Ūo, obtained basing on the previously defined Uo.

1. Flat ribbon without shear: ϕ = ψ, α = −ψ

A particular helicoidal solid can be obtained from (44) by
setting the stretches λi = 1, the angles ϕ = ψ = π/4, and
α = −ψ = −π/4; finally, the twist angle is null, θ = 0. The
curve (39) yields a helix around a cylinder of radius R; the
surface (42) is developable and is given by

fs(x1, x2) =
(

x1 + x2√
2

)
e1 + R(cos φe2 + sin φe3), (76)

with φ = (x1 − x2)/(
√

2R). Then, the volume (44) is

f (x1, x2, x3) =
(

x1 + x2√
2

)
e1 + (R + x3)(cos φe2 + sin φe3).

(77)

FIG. 8. (left to right) Reference parallelepiped; twisted con-
figuration at θ1 = π ; twisted configuration at θ1 = 2π . All three
configurations are stress-free.

The gradient of (77) is given by

[F] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1√
2

1√
2

0

−R + x3√
2R

sin φ
R + x3√

2R
sin φ cos φ

R + x3√
2R

cos φ −R + x3√
2R

cos φ sin φ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (78)

and the corresponding metric is

[C] =

⎡
⎢⎢⎢⎢⎢⎣

1 + x3

R
+ 1

2

(x3

R

)2
−x3

R
− 1

2

(x3

R

)2
0

−x3

R
− 1

2

(x3

R

)2
1 + x3

R
+ 1

2

(x3

R

)2
0

0 0 1

⎤
⎥⎥⎥⎥⎥⎦.

(79)

The prototypical distortion Uo = √
C is defined as the square

root of the metric tensor (79); this square root has an explicit
representation, and the six strict components of Uo are given
by

Uo11 = Uo22 = 1

2

[
1 +

√
1 + 2

(
x3

R
+ x2

3

2R2

)]
,

Uo33 = 1,

Uo12 = 1

2

[
1 −

√
1 + 2

(
x3

R
+ x2

3

2R2

)]
,

Uo13 = Uo23 = 0. (80)

2. Flat ribbon with shear: ϕ = ψ, α = 0

A different helicoidal solid can be obtained from (44) by
setting the stretches λi = 1, the angles ϕ = ψ = π/4, and
α = θ = 0. The surface (42) is again developable, and given
by

fs(x1, x2) =
(

x1√
2

+ x2

)
e1 + R(cos φe2 + sin φe3), (81)

with φ = x1/(
√

2R). Then, the volume (44) is

f (x1, x2, x3) =
(

x1 + x2√
2

)
e1 (82)

+ (R + x3)(cos φe2 + sin φe3).

The gradient of (82) is given by

[F] =

⎡
⎢⎢⎢⎢⎢⎣

1√
2

1 0

−R + x3√
2R

sin φ 0 cos φ

R + x3√
2R

cos φ 0 sin φ

⎤
⎥⎥⎥⎥⎥⎦, (83)
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FIG. 9. Morphing of a thick parallelepiped due to compatible distortions fields; wire-frame and coloring are used to highlight the shape
transformations. (a) Reference parallelepiped B. (b) Flat and unsheared ribbon with ϕ = ψ = π/4 and α = −ψ = −π/4. (c) Flat and sheared
ribbon with ϕ = ψ = π/4 and α = 0. (d) Saddle-ribbon with ϕ = π/4 and ψ = α = 0. (e) Ribbon given by the compatible distortion (94)
with the further request det(Ũo) = 1. All the morphings are stress-free.

and the corresponding metric is

[C] =

⎡
⎢⎢⎢⎣

1 + x3

R
+ 1

2

(x3

R

)2 1√
2

0

1√
2

1 0

0 0 1

⎤
⎥⎥⎥⎦. (84)

The corresponding prototypical distortion Uo = √
C is de-

fined as the square root of the metric tensor (84); this square
root has an explicit representation, and the six strict compo-
nents of Uo are given in Appendix D.

Both the distortions associated with (79) and to (84) are
characterized by the parameter R; following notation (47),
we have that f (B; R) represents a 3D helicoidal ribbon, see
Figs. 9(b) and 9(c). Being ϕ = π/4, it follows that for 2πR =
L cos ϕ the ribbon completes a turn around the cylinder.

3. Saddle-ribbons: ϕ �= ψ

Ribbons with a double curvature can be obtained from (44)
by setting ϕ �= ψ ; here we analyze the case corresponding to
λi = 1, the helix angle ϕ = π/4, and ψ = α = θ = 0. The
surface (42) is not developable; for this case we give directly
the six strict components of the corresponding metric tensor:

C11 = a2 + (x3κ )2 + ax3κ (x3κ + 2
√

a)

a
, (85)

C22 = 1 +
(x3κ

a

)2
, (86)

C33 = 1, (87)

C12 = −x3κ (2a + x3κ
√

a)

a3/2
, (88)

C13 = C23 = 0, (89)

with a = 1 + (κx2)2. Also for this case, the corresponding
prototypical distortion Uo = √

C has an explicit represen-
tation; we do not report the six strict components of Uo,
easily found with an algebraic manipulator such as Wolfram
Mathematica. The effect of this distortion on the reference
parallelepiped B is shown on Fig. 9(d).

4. Ribbon from R(C̃o) = 0 (case A)

Basing on the distortion (80), we now look for different
distortion fields capable of yielding a similar stress-free mor-
phing. We start from the distortion field

[Ũo] =

⎡
⎢⎢⎢⎣

1 + b

2

1 − b

2
0

1 − b

2

1 + b

2
0

0 0 1

⎤
⎥⎥⎥⎦, (90)

with b = √
1 + 2g(x3), whose associated metric is

[
C̃o

] =
⎡
⎣1 + g(x3) −g(x3) 0

−g(x3) 1 + g(x3) 0
0 0 1

⎤
⎦. (91)

We use the compatibility condition R(C̃o) = 0 to characterize
the class of functions g(x3) delivering a compatible met-
ric. The Riemann curvature R(C̃o) has three out of six null
components: R1212 = R1213 = R1223 = 0; the remaining three
components are given by

R1313 = R1223 = R2323 = g(x3)′2

1 + 2g(x3)
− g(x3)′′. (92)

Thus, by solving for g(x3) the equation R(C̃o) = 0, we get

g(x3) = c2 + x3c1

(
1 + x3c1

2 + 4c2

)
. (93)
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The distortion (80) obtained directly from the embedding is
recovered as a special case of (90) by setting c1 = 1/R and
c2 = 0 in (93).

5. Ribbon from R(C̃o) = 0, with det(Ũo) = 1 (case B)

Basing on the distortion (90), we consider

[Ũo] =

⎡
⎢⎢⎢⎢⎢⎣

1 + b

2

1 − b

2
0

1 − b

2

1 + b

2
0

0 0 1 + h(x3)

⎤
⎥⎥⎥⎥⎥⎦, (94)

whose metric is

[C̃o] =
⎡
⎣1 + g(x3) −g(x3) 0

−g(x3) 1 + g(x3) 0
0 0 [1 + h(x3)]2

⎤
⎦. (95)

The Riemann curvature R(C̃o) has three out of six null com-
ponents: R1212 = R1213 = R1223 = 0. The remaining three
components are equal, R1313 = R1323 = R2323, and are given
by

R1313 = 1

2

(
g(x3)′2

1 + 2g(x3)
+ g(x3)′h(x3)′

1 + h(x3)
− g(x3)′′

)
. (96)

Thus, by solving for h(x3) the equation R(C̃o) = 0, we find
that the compatibility request is fulfilled whenever

h(x3) = c3g(x3)′√
1 + 2g(x3)

− 1. (97)

By adding the request of a volume-preserving morphing, we
can characterize the function g(x3); we have

det(Ũo) = 1 ⇒ c3g(x3)′ = 1 ⇒ g(x3) linear. (98)

Here, we assume g(x3) = x3/R; then (98) implies c3 = R,
and Ũo33 = 1/

√
1 + 2x3/R. The corresponding morphing is

shown in Fig. 9(e).

6. Thick tube formation

Some of the distortions of Sec. V D can morph a paral-
lelepiped B into a closed, thick tube, which is stress free. For
the flat ribbons (ϕ = ψ), tube formation is described by two
equations:

Side match: wa = 2πR sin ϕ, (99)

# of turns: β2πR = L cos ϕ, (100)

where wa is the actual width of the ribbon, see Fig. 10. As
example, let L = 2π , W = π and set ϕ = π/4; for α = −ϕ,
we have wa = W and we solve (99) for the curvature radius R
and the number of turns β: we get

Side match: R = wa

2π sin ϕ
= W

2π

√
2 = 1√

2
, (101)

# of turns: β = L cos ϕ

2πR
= 1. (102)

For α = 0, we have wa = W cos ϕ, and we get

Side match: R = W cos ϕ

2π sin ϕ
= 1

2
, (103)

(a)

(b)

FIG. 10. We plot the image of the rectangle L × W given by
the surface embedding (42), for R → ∞ and ϕ = ψ = π/4. (top)
α = 0: the effective width of the sheared rectangle is Wa = W cos ϕ.
(bottom) α = −π/4: the effective width of the un-sheared rectangle
is Wa = W .

# of turns: β = L cos ϕ

2πR
=

√
2. (104)

Figure 11 shows the two configurations described by the pre-
vious equations.

FIG. 11. Stress-free tubes obtained by morphing a flat ribbon
with ϕ = ψ = π/4. (a) Sheared ribbon: for α = 0 and R = 1/2, the
ribbon makes

√
2 turns around the cylinder. (b) Un-sheared ribbon:

for α = −π/4 and R = 1/
√

2, the ribbon makes 1 turn.
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VI. CONCLUSIONS

There are plenty of papers dealing with the morphing of 2D
elastic bodies; here we present a procedure aimed at designing
the morphing of 3D bodies, with very large shape-changes
in response to varying distortion fields, while keeping their
stress state almost null. We focused on a class of distortions
that have an explicit representation; nevertheless the method
proposed here can be generalized to more complex geome-
tries, and the families of morphings that can be generated is
limitless.

This study has been motivated by the following, practical
goal: realize an actuator or in general a shape transformation
towards a target shape, which produces as less stress as possi-
ble, and ideally, no stress at all. In general, in a given material,
the local deformation cannot be exactly equal to the assigned
distortion, and thus distortions yield stress. Here we show
that it is possible to design a compatible distortion field that
induces in the body an immersion very similar to the desired
one.

Actual examples of materials bodies capable of such
controlled morphings are the nematic elastomers, whose
transversally isotropic distortions are sensitive to temperature.
For such materials, the global shape achieved at a given tem-
perature is consequence of the local orientation of the nematic
director.

In particular, living organisms provides many examples
of both 2D and 3D morphings; the 3D study presented here
might give new clues about the growing processes in biology
and help to understand how stress can be controlled during
growth.

Our design algorithm for stress-free morphing is based on
two steps: at first we construct a family of 3D embeddings
that can generate a great collection of different parametric
configurations; from these embeddings it is possible to ob-
tain prototypical distortion fields which are compatible by
construction. The second step consists in modifying these
prototypical distortions and solve the Riemann curvature
equation to make them compatible again; as a result, we obtain
many different distortion field capable of deforming a solid at
zero stress. This procedure has been extensively illustrated by
means of a variety of examples, and tested with finite element
analyses.
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APPENDIX A: REPRESENTATION OF VECTORS
AND TENSORS

Let {o; e1, e2, e3} be an Euclidean frame, with orthonormal
basis: ei · e j = δi j . Then, a basis of Lin is given by e j ⊗ ei,
with i, j = 1, 2, 3. The action of a simple tensor u ⊗ v on a
vector w is given by

(u ⊗ v)w = (v · w)u. (A1)

Vectors and tensors will be represented as linear combinations
of basis elements or as matrices, according to convenience; as
example for vectors:

v = viei ⇔ [v] =
⎡
⎣v1

v2

v3

⎤
⎦, (A2)

and for tensors:

A = Ai jei ⊗ e j ⇔ [A] =
⎡
⎣A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎦. (A3)

APPENDIX B: INTEGRATION OF THE
NEMATIC DISTORTIONS

Given the ansatz (63) for the embedding fo, we start by
computing the associated metric C = ∇ f T

o ∇ fo; its nontrivial
strict components are

C11 = β2
1 r(x3)2,

C33 = [r(x3)β ′
o(x3)]2 + r′(x3)2,

C13 = r(x3)2β1β
′
o(x3). (B1)

The request C = Co yields

r(x3) = ±
√

Co11

β2
1

,

β ′
o(x3) = ±

√
Co22 − r′(x3)2

r(x3)2 = Co13

β1r(x3)2 . (B2)

Substituting (B2)1 into (B2)2, we find β1:

β1 = 1

2H

(
λ2

‖
λ2

⊥
− λ2

⊥
λ2

‖

)
. (B3)

Finally, the integration of (B2)2 yields, up to a constant,

βo(x3) = −λ2
‖ + λ2

⊥
2λ2

‖λ
2
⊥

[
Co13 + λ2

‖ + λ2
⊥

2
arcsin

(
2x3

H

)]

+ λ2
‖ + λ2

⊥
2λ‖λ⊥

arctan (a). (B4)

and

a =
(

�

2
+ (λ2

‖ + λ2
⊥)x3

H

)/⎛
⎝λ‖λ⊥

√
1 − 4x2

3

H2

⎞
⎠. (B5)

APPENDIX C: SQUARE ROOT OF THE TORSION METRIC

The target metric (75) corresponds to a torsion; its square
root Uo = √

Co has the following explicit representation. Di-
agonal terms:

Uo11 = 1

2
√

2L

[
θ1

√
2Ad√
D

+ As

]
,

Uo22 = x2
2

r
+ 2L2 + A+A−

√
2LrAs

x2
3,

Uo33 = x2
3

r
+ 2L2 + A+A−

√
2LrAs

x2
2; (C1)
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off-diagonal terms:

Uo12 = Ad√
2rD

x3,

Uo13 = − Ad√
2rD

x3,

Uo23 = yx3

L

[
L

r
− 2L2 + A+A−

√
2rAs

]
; (C2)

where r = x2
2 + x2

3, and

As = A+ + A−, Ad = A+ − A−,

A+ =
√

2L2 + B + C, A− =
√

2L2 + B − C,

B = rθ2
1 , C =

√
BD,

D = 4L2 + B.

APPENDIX D: SQUARE ROOT OF THE METRIC OF THE
FLAT RIBBON WITH SHEAR

The target metric (84) corresponds to a 3D helicoidal
ribbon; its square root Uo = √

Co has the following explicit

representation:

Uo11 =
√

a1 + a2(a1 + a3) + √
a2 − a1(a1 − a3)

4a1R
,

Uo22 =
√

a2 − a1(a1 + a3) + √
a2 + a1(a1 − a3)

4a1R
,

Uo12 =
√

2R√
a1 + a2 + √

a2 − a1
,

Uo33 = 1, Uo13 = Uo23 = 0, (D1)

with

a1 =
√

8R4 + 4R2x2
3 + 4Rx3

3 + x4
3,

a2 = 4R2 + 2Rx3 + x2
3,

a3 = 2Rx3 + x2
3 . (D2)

[1] G. G. Stoney, The tension of metallic films deposited by elec-
trolysis, Proc. R. Soc. A 82, 172 (1909).

[2] S. Timoshenko, Analysis of bi-metal thermostats, J. Opt. Soc.
Am. 11, 233 (1925).

[3] B. Bilby, R. Bullough, E. Smith, and J. Whittaker, Continuous
distributions of dislocations: a new application of the methods
of non-Riemannian geometry, Proc. R. Soc. London, Ser. A
231, 263 (1955).

[4] E. Kröner, Allgemeinen kontinuumstheorie der versetzungen
und eigenspannungen, Arch. Rat. Mech. Anal. 4, 273 (1959).

[5] E. Lee and D. Liu, Finite-strain elastic-plastic theory with ap-
plication to plane-wave analysis, J. Appl. Phys. 38, 19 (1967).

[6] E. Lee, Elastic-plastic deformation at finite strains, J. Appl.
Mech. 36, 1 (1969).

[7] S. Sadik and A. Yavari, On the origins of the idea of the mul-
tiplicative decomposition of the deformation gradient, Math.
Mech. Solids 22, 771 (2017).

[8] C. Eckart, The thermodynamics of irreversible processes. IV.
The theory of elasticity and anelasticity, Phys. Rev. 73, 373
(1948).

[9] A. DiCarlo and S. Quiligotti, Growth and balance, Mech. Res.
Commun. 29, 449 (2002).

[10] M. Minozzi, P. Nardinocchi, L. Teresi, and V. Varano, Growth-
induced compatible strains, Math. Mech. Solids 22, 62 (2017).

[11] Y. Klein, E. Efrati, and E. Sharon, Shaping of elastic sheets
by prescription of non-euclidean metrics, Science, 3151116
(2007).

[12] E. Sharon, and E. Efrati, The mechanics of non-Euclidean
plates, Soft Matter 6, 5693 (2010).

[13] P. Nardinocchi, L. Teresi, and V. Varano, The elastic metric:
A review of elasticity with large distortions, Int. J. Non-Linear
Mech. 56, 34 (2013).

[14] E. Rodriguez, A. Hoger, A. McCulloch, Stress dependent finite
growth in soft elastic tissues, J. Biomech. 27, 455 (1994).

[15] P. Nardinocchi, L. Teresi, On the active response of soft living
tissues, J. Elasticity 88, 27 (2007).

[16] A. Goriely, The Mathematics and Mechanics of Biological
Growth (Springer, 2017), Vol. 45.

[17] D. Ambrosi, M. Ben Amar, C. J. Cyron, A. DeSimone, A.
Goriely, J. D. Humphrey, and E. Kuhl, Growth and remodelling
of living tissues: Perspectives, challenges and opportunities, J.
R. Soc., Interface 16, 20190233 (2019).

[18] S. Sadik, A. Angoshtari, A. Goriely, and A. Yavari, A geometric
theory of nonlinear morphoelastic shells, J. Nonlinear Sci. 26,
929 (2016).

[19] D. Grossman, E. Sharon, and E. Katzav, Shape and fluctuations
of positively curved ribbons, Phys. Rev. E 98022502 (2018).

[20] E. Siéfert, I. Levin, and E. Sharon, Euclidean Frustrated Rib-
bons, Phys. Rev. X 11, 011062 (2021).

[21] R. M. Erb, J. S. Sander, R. Grisch, and A. R. Studart,
Self-saping composites with programmable bioinspired mi-
crostructures, Nat. Commun. 4, 1712 (2013).

[22] C. Modes and M. Warner, Shape-programmable materials,
Phys. Today 69(1), 32 (2016).

[23] H. Aharoni, Y. Xia, X. Zhang, R. D. Kamien, S. Yang, Universal
inverse design of surfaces with thin nematic elastomer sheets,
Proc. Natl. Acad. Sci. USA 115, 7206 (2018).

[24] T. van Manen, S. Janbaz, and A. A. Zadpoor, Programming
2D/3D shape-shifting with hobbyist 3D printers, Mater. Horiz.
4, 1064 (2017).

[25] A. DeSimone and L. Teresi, Elastic energies for nematic elas-
tomers, Eur. Phys. J. E: Soft Matter Biol. Phys. 29, 191 (2009).

[26] Y. Sawa, K. Urayama, T. Takigawa, A. DeSimone, and
L. Teresi, Thermally driven giant bending of liquid crys-
tal elastomer films with hybrid alignment, Macromolecules
(Washington, DC, US) 43, 4362 (2010).

[27] L. Teresi, V. Varano, Modeling helicoid to spiral-ribbon transi-
tions of twist-nematic elastomers, Soft Matter 9, 3081 (2013).

015003-13

https://doi.org/10.1098/rspa.1909.0021
https://doi.org/10.1364/JOSA.11.000233
https://doi.org/10.1098/rspa.1955.0171
https://doi.org/10.1007/BF00281393
https://doi.org/10.1063/1.1708953
https://doi.org/10.1115/1.3564580
https://doi.org/10.1177/1081286515612280
https://doi.org/10.1103/PhysRev.73.373
https://doi.org/10.1016/S0093-6413(02)00297-5
https://doi.org/10.1177/1081286515570510
https://doi.org/10.1126/science.1135994
https://doi.org/10.1039/c0sm00479k
https://doi.org/10.1016/j.ijnonlinmec.2013.05.002
https://doi.org/10.1016/0021-9290(94)90021-3
https://doi.org/10.1007/s10659-007-9111-7
https://doi.org/10.1098/rsif.2019.0233
https://doi.org/10.1007/s00332-016-9294-9
https://doi.org/10.1103/PhysRevE.98.022502
https://doi.org/10.1103/PhysRevX.11.011062
https://doi.org/10.1038/ncomms2666
https://doi.org/10.1063/PT.3.3051
https://doi.org/10.1073/pnas.1804702115
https://doi.org/10.1039/C7MH00269F
https://doi.org/10.1140/epje/i2009-10467-9
https://doi.org/10.1021/ma1003979
https://doi.org/10.1039/c3sm27491h


COLORADO-CERVANTES, VARANO, AND TERESI PHYSICAL REVIEW E 106, 015003 (2022)

[28] Y. Sawa, F. Ye, K. Urayamaa, T. Takigawa, V. Gimenez-Pinto,
R. L. B. Selinger, and J. V. Selinger, Shape selection of twist-
nematic-elastomer ribbons, Proc. Natl. Acad. Sci. USA 108,
6364 (2011).

[29] C. Mostajeran, M. Warner, T. H. Ware, T. J. and White, Encod-
ing Gaussian curvature in glassy and elastomeric liquid crystal
solids, Proc. R. Soc. London, Ser. A 472, 20160112 (2016).

[30] M. Warner, Topographic mechanics and applications of liquid
crystalline solids, Annu. Rev. Condens. Matter Phys. 11, 125
(2020).

[31] A. S. Kuenstler, Y. Chen, P. Bui, H. Kim, A. DeSimone, L. Jin,
and R. C. Hayward, Blueprinting photothermal shape-morphing
of liquid crystal elastomers, Adv. Mater. 32, 2000609 (2020).

[32] P. Nardinocchi, L. Teresi, and V. Varano, Strain induced shape
formation in fibred cylindrical tubes, J. Mech. Phys. Solids 60,
1420 (2012).

[33] C. Dawson, J. F. Vincent, and A. M. Rocca, How pine cones
open, Nature (London) 390, 668 (1997).

[34] S. Armon, E. Efrati, R. Kupferman, and E. Sharon, Geometry
and mechanics in the opening of chiral seed pods, Science 333,
1726 (2011).

[35] R. Chelakkot and L. Mahadevan, On the growth and form of
shoots, J. R. Soc., Interface 14, 20170001 (2017).

[36] D. Agostinelli, A. Lucantonio, G. Noselli, and A. DeSimone,
Nutations in growing plant shoots: The role of elastic deforma-
tions due to gravity loading, J. Mech. Phys. Solids 136, 103702
(2020).

[37] J. M. McCracken, B. R. Donovan, and T. J. White, Materials as
machines, Adv. Mater. 32, 1906564 (2020).

[38] S. Poppinga, C. Zollfrank, O. Prucker, J. Rühe, A. Menges,
T. Cheng, and T. Speck, Toward a new generation of smart

biomimetic actuators for architecture, Adv. Mater. 30, 1703653
(2018).

[39] L. K. Rivera-Tarazona, V. D. Bhat, H. Kim, Z. T. Campbell,
and T. H. Ware, Shape-morphing living composites, Sci. Adv.
6, eaax8582 (2020).

[40] P. G. Ciarlet, An introduction to differential geometry with
applications to elasticity, J. Elasticity 78-79, 1 (2005).

[41] C. Davini, Some remarks on the continuum theory of defects in
solids, Int. J. Solids Struct. 38, 1169 (2001).

[42] M. do Carmo, Riemannian Geometry (Birkhäuser, 1992).
[43] A. Yavari, Compatibility equations of nonlinear elasticity for

non-simply-connected bodies, Arch. Ration. Mech. Anal. 209,
237 (2013).

[44] A. E. H. LoveA Treatise on the Mathematical Theory of Elastic-
ity (Dover Publications, 1944).

[45] G. Tomassetti and V. Varano, Capturing the helical to spiral
transitions in thin ribbons of nematic elastomers, Meccanica 52,
3431 (2017).

[46] R. Paroni and G. Tomassetti, Macroscopic and microscopic
behavior of narrow elastic ribbons, J. Elasticity 135, 409 (2019).

[47] H. Singh and E. G. Virga, A ribbon model for nematic polymer
networks, J. Elast. (2022).

[48] M. A. Dias and B. Audoly, ‘‘Wunderlich, Meet Kirchhoff”: A
general and unified description of elastic ribbons and thin rods,
J. Elasticity 119, 49 (2015).

[49] S. Gabriele, N. Rizzi, and V. Varano, A 1D higher gradient
model derived from Koiter’s shell theory, Math. Mech. Solids
21, 737 (2016).

[50] M. Warner, C. Mostajeran, Nematic director fields and topogra-
phies of solid shells of revolution, Proc. R. Soc. London, Ser. A
474, 20170566 (2018).

015003-14

https://doi.org/10.1073/pnas.1017658108
https://doi.org/10.1098/rspa.2016.0112
https://doi.org/10.1146/annurev-conmatphys-031119-050738
https://doi.org/10.1002/adma.202000609
https://doi.org/10.1016/j.jmps.2012.04.010
https://doi.org/10.1038/37745
https://doi.org/10.1126/science.1203874
https://doi.org/10.1098/rsif.2017.0001
https://doi.org/10.1016/j.jmps.2019.103702
https://doi.org/10.1002/adma.201906564
https://doi.org/10.1002/adma.201703653
https://doi.org/10.1126/sciadv.aax8582
https://doi.org/10.1007/s10659-005-4738-8
https://doi.org/10.1016/S0020-7683(00)00080-9
https://doi.org/10.1007/s00205-013-0621-0
https://doi.org/10.1007/s11012-017-0631-3
https://doi.org/10.1007/s10659-018-09712-w
https://doi.org/10.1007/s10659-014-9487-0
https://doi.org/10.1177/1081286514536721
https://doi.org/10.1098/rspa.2017.0566

