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Deriving the slip-front propagation velocity with slip-dependent and slip-velocity-dependent
friction laws via the use of the linear marginal stability hypothesis
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We investigate analytically and numerically the determining factors of the slip front propagation (SFP) veloc-
ity. The slip front has two forms characterized by an intruding or extruding front. We assume a one-dimensional
viscoelastic medium on a rigid and fixed substrate, and we employ the friction law depending on the slip and slip
velocity. Despite this dependency potentially being nonlinear, we use the linear marginal stability hypothesis,
which linearizes the governing equation for the slip, to investigate the intruding and extruding front velocities.
The analytically obtained velocities are found to be consistent with the numerical computation where we assume
the friction law depends nonlinearly on both the slip and slip velocity. This implies that the linearized friction
law is sufficient to capture the dominant features of SFP behavior.
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I. INTRODUCTION

Slip front propagation (SFP) is an important phenomenon
in several scientific and technological fields, including fric-
tional sliding on the interface between two media and crack
tip propagation in a medium. From a theoretical viewpoint, re-
searchers have investigated SFP using both discrete [1–4] and
continuum [5,6] models. Furthermore, laboratory experiments
have also been performed to investigate SFP [7]. Geophysical
studies have also contributed to the understanding of the SFP
behavior because fault tip propagation can be modeled as SFP.
The SFP velocity has attracted considerable research inter-
est. For example, ordinary and slow earthquakes are widely
known to exist [8,9], and they have different SFP velocities;
the SFP velocities for the former category are much higher
than those for the latter. The origin of this difference remains
an important open research question.

The friction law plays an important role in the understand-
ing of SFP. For example, a friction stress depends on the
state variable in the rate-and-state dependent friction model
[3,5,10]. Bar-Sinai et al. [10] investigated the SFP velocity
using a semi-infinite continuum model and the rate-and-state
friction law. Furthermore, we note that friction stress can
also depend on quantities such as the slip and slip velocity.
For example, Myers and Langer [11] employed a spring-
block model with a slip-velocity-weakening law to study
the SFP velocity. The rate-and-state-dependent friction law
with the shear stiffness of the contacts can be interpreted as
slip-strengthening behavior [12]. Moreover, the friction law
depending on the slip and slip velocity is realized for elasto-
and viscodampers [13,14]. The slip- and slip-velocity depen-
dences of friction stress are important in geophysical studies
[15,16].
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Additionally, the viscosity of the medium is important
in understanding the SFP behavior [6,11,17]. Our previous
study [6] analyzed an infinitely long viscoelastic block on
a rigid substrate and achieved the systematic understanding
of the SFP velocity in terms of the viscoelasticity and the
friction law depending on the slip velocity in a quadratic
manner. Despite these studies, a thorough investigation of the
SFP velocity with a viscoelastic medium and a friction law
that depends on the slip and slip velocity has not yet been
undertaken.

Spontaneous SFP velocity has been widely understood
by regarding the phenomenon of SFP as the evolution of a
solution of the governing equation from a stable state into
an unstable state and employing the linear marginal stability
hypothesis (LMSH) [6,11,18]. The LMSH has been widely
used to investigate the dynamics of fronts or domain walls
that propagate spontaneously into an unstable state in a model
with a nonlinear governing equation [19,20]. This approach
has been used to obtain the solidification front speed [21], the
chemical reaction front speed [19,20], and the slip front veloc-
ity between blocks and substrates [6,11,18]. This hypothesis
asserts that even if the governing equations are nonlinear, a
linearized model yields sufficiently accurate front behavior,
including the correct front propagating velocity. This hy-
pothesis has been applied to the slip front behavior via the
linearization of the friction law; the friction laws adopted in
such studies have been limited, e.g., the slip-velocity weaken-
ing [18]; the systematic treatment of various types of friction
law has not been performed.

This paper is organized as follows. A brief introduction to
the LMSH is provided in Sec. II A, and the model setup is
defined in Sec. II B. Analytical treatment of the problem is
presented in Sec. III; in this section, several SFP velocities
are obtained based on the LMSH, and a discussion of their
physical implications is presented. The numerical treatment
and implications for slip behavior are discussed in Sec. IV,
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FIG. 1. Schematic illustrations of the intruding and extruding
fronts.

and the treatment of the LMSH is justified there. A summary
and discussion are presented in Sec. V.

II. MODEL WITH VELOCITY-DEPENDENT
LOCAL FRICTION LAW

A. Linear marginal stability hypothesis

The linear marginal stability hypothesis (LMSH) has been
widely used to investigate the dynamics of fronts or domain
walls that propagate spontaneously into an unstable state
where the phenomena are described by nonlinear governing
equations [19,20]. This approach has been used to obtain the
solidification front speed [21], the chemical reaction front
speed [19,20], and the SFP velocity [6,11,18]. We briefly sum-
marize this approach here. The LMSH requires linearizing
the governing equation, the plane-wave approximation of the
solution near the propagating front, and the two conditions
associated with the stability of growth of the disturbance and
that of propagation. This hypothesis states that the characteris-
tic frequency, the wave number, and the propagating velocity
of a front can be derived even after these approximations.

To understand the details of LMSH further, we define u
as a variable characterizing the state of the system (in the
case of motion of a continuum, this variable could be slip);
we consider the dynamics of the spontaneous propagation
of u. Here we assume an infinite and one-dimensional (1D)
system. We consider two cases: (i) u = 0 is unstable and the
stable region with u > 0 intrudes into this unstable region, and
(ii) u = 0 is stable and this region intrudes into the unstable
region with u > 0. The front in the former case is referred
to as an “intruding front,” whereas that in the latter case is
called an “extruding front” (Fig. 1). Notably, if the governing
equation of u is a wave equation, the cases are symmetric and
the propagation velocity is equal in magnitude. However, if
the governing equation includes additional terms, such as a
diffusion term, the symmetry vanishes, and different propaga-
tion velocities are expected for the two fronts.

The front is mathematically defined to be located where
terms of O(|u|) dominate and terms of O(|u|2) become neg-
ligible in the governing equations. For the solution of u,
we assume the plane-wave solution, u ∼ exp (±i(kx − ωt )),
whose frequency ω and wave number k are complex in the
region close to the front. The upper (lower) sign corresponds
to the intruding (extruding) front propagation. To understand
this propagation, we rewrite this plane-wave solution of u as

exp (± i(kx − ωt ))

= exp (± i[(kr + iki )x − (ωr + iωi )t])

= exp (± i(krx − ωrt )) exp ( ∓ (kix − ωit )), (1)

where kr and ki are the real and imaginary parts of k, re-
spectively, and ωr and ωi are the real and imaginary parts
of ω, respectively. Notably, the absolute value of Eq. (1) can
determine the front, i.e., exp (∓ (kix − ωit )) is used to define
the front. The value of exp (± i(krx − ωrt )) describes the os-
cillation within the envelope exp (∓ (kix − ωit )), and it is not
used to determine the position of the front. Equation (1) and
Fig. 1 clearly indicate that the upper (lower) sign corresponds
to the intruding (extruding) front. In the above expression,
kr, ki, ωr , and ωi are four unknown parameters, and the
LMSH determines them via four independent equations: the
real and imaginary parts of the dispersion relation and the
expressions for growth and propagating stabilities. With these
values, the primary goal of this study is obtaining an analytical
form for the intruding and extruding front velocity.

The growth stability condition mentioned above is given
by

∂ωi

∂kr
= 0, (2)

whereas the propagating stability is given by the relationship

∂ωi

∂ki
= ωi

ki
= c, (3)

where c is a positive constant. The remaining equations are
given by

∂ωr

∂ki
= 0 (4)

and

∂ωr

∂kr
= ωr

kr
= c, (5)

which are obtained from the Cauchy-Riemann relationship.
Equation (2) represents the condition that the disturbance

will not grow with increasing time. Equation (3) indicates that
the phase velocity cp ≡ ωi/ki is equal to the group velocity
cg ≡ ∂ωi/∂ki. Given that the disturbance propagates with the
group velocity, this condition dictates that the disturbance and
the front propagate with the same velocity. It is important
to note that for stability, the relationship cp � cg is sufficient
because the disturbance is overtaken by the front with cp � cg.
Nonetheless, Ref. [19] mathematically showed that Eq. (3) is
satisfied for spontaneous front propagation. For more details
regarding these conditions, see Ref. [6].
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B. Model setup

In this work, we consider a semi-infinite viscoelastic
medium that is assumed to be on the rigid and fixed substrate.
We apply a loading stress on the left end of the medium
in the direction tangential to the substrate surface, i.e., an
end-loading stress. We employ the nondimensionalization of
the variables based on Ref. [6]. The end-loading stress is
denoted pe(<0), and this constant stress is applied along the
x axis for a time t � 0. We also consider additional load-
ing conditions. Among the loading conditions, we evaluate
in this work the continuum limit of the Burridge-Knopoff
model, which includes a driving stress from the upper block
connected to the upper plate [11]. We refer to this loading
stress as “upper-loading stress.” The upper-loading stress is
denoted pu(>0), and this constant stress is applied along the x
axis for the time t > −∞. We assume that pu is less than the
macroscopic maximum static friction stress, which is assumed
to be the same for all the blocks considered. We treat the two
models (with the different loading conditions) in the single
framework: the model subject to the end-loading stress is
referred to as the EL model, whereas the model with end-
and upper-loading stresses is called the EUL model. In these
models, the system is considered to be 1D along the x axis,
and the slip distance, u(x, t ), at position x and time t is zero
throughout the whole system for t < 0.

We can consider the nondimensionalized governing equa-
tion:

ü = u′′ + u̇′′ + F (u) − τv(u̇) − τs(u), (6)

where F (u) is a slip-dependent function describing the load-
ing condition, τv(u̇) and τs(u) describe the local friction
stresses that depend on u̇ and u, respectively, and the dot
and prime represent differentiation with respect to t and x,
respectively. The loading conditions can be treated systemat-
ically via the function F (u). We can select F (u) = 0 for the
EL model [6], and F (u) = pu − u for the EUL model [11].
The terms ü, u′′, and u̇′′ have a physical interpretation; they
represent the inertia, elastic, and viscous terms, respectively.
This viscous term is employed in several previous studies
[6,11].

Several forms of τv(u̇) and τs(u) have been considered in
the analysis of SFP (e.g., [6,11,18]), and the SFP velocity has
been analytically investigated previously [6]. The purpose of
the present paper is to derive a more universal expression for
SFP velocity, which is independent of the details of friction
laws; such an analysis enables us to understand the SFP be-
havior in the single framework.

III. ANALYTICAL TREATMENT

We now linearize the terms F (u) − τv(u̇) − τs(u) from
Eq. (6). We take

F (u) − τv(u̇) − τs(u) = C1u̇ − C2u, (7)

where C1 and C2 are constants. To undertake the linearization
(7), we assume that the system is in a critical state before the
end-loading in the EUL model, which leads to

pu = τv(0) + τs(0). (8)

Analyses without the critical state assumption have been per-
formed in previous studies [11,12]. However, those treatments
only provide approximations for the SFP velocities. With the
assumption of the critical state, an analytical treatment is
possible here.

We note that if the slip direction reverses (u turns to be
negative) with increasing time, Eq. (7) cannot be applied. The
reason for this is twofold: first, the friction stress, τv(u̇) +
τs(u), changes its sign if slip reversal occurs, and thus the
linearization of Eq. (7) cannot be employed. Second, if the
slip reversal occurs, the absolute value of the stress acting on
the slip-reversal point will exceed the maximum static friction
stress. This slip criterion is not considered in the linearization
of Eq. (7). We do not consider the slip reversal in the following
analytical treatment, as is done in seismology [22].

Using the linearization of Eq. (7), we rewrite the governing
equation [Eq. (6)],

ü = u′′ + u̇′′ + C1u̇ − C2u. (9)

We note that positive and negative values for C1 and C2 are
permitted.

We assume the plane-wave solution for Eq. (9), i.e., u ∼
exp (± i(kx − ωt )). The upper (lower) sign describes the in-
truding (extruding) front propagation, as noted in Sec. II A.
Based on this assumption and using Eq. (9), the dispersion
relation is found to be

−ω2 = −k2 ± iωk2 ∓ iC1ω − C2. (10)

Considering the real and imaginary parts of the dispersion
relation in Eq. (10), we obtain

(∓ωi − 1)
(
k2

r − k2
i

) ∓ 2ωrkrki +
(
ω2

r − ω2
i

) ± C1ωi − C2 = 0,

(11)

(∓ωi − 1)2krki ± ωr
(
k2

r − k2
i

) + 2ωrωi ∓ C1ωr = 0, (12)

respectively. We first note that the solutions kr �= 0 and ωr �= 0
exist. In the case of C1 and C2 being positive and ki = ωi = 0,
the solution set (kr, ωr, ki, ωi ) = (

√
C1,

√
C1 + C2, 0, 0) ex-

ists. The solutions kr �= 0 and ωr �= 0 describe an oscillating
solution. The slip reversal occurs with these solutions; such
solutions cannot be treated in a framework based on Eq. (9).
Thus, this solution set is excluded from the following dis-
cussion. We therefore assume kr = ωr = 0 in the analytical
treatment. With such an assumption, considering Eq. (11), we
have

k2
i ± ωik

2
i − C2 ± C1ωi − ω2

i = 0. (13)

Combining this equation, the expression for growth stability
[Eq. (2)], and the condition for propagation stability [Eq. (3)],
we obtain a cubic equation for ωi,

ω3
i ∓ 2C1ω

2
i − (C1 − 3C2)ωi ± 2C2 = 0, (14)

and a relationship between ki and ωi:

k2
i = ∓2C2 + C1ωi

ωi
. (15)

We begin by categorizing the solutions of Eq. (14) in terms
of the numbers of positive and negative real solutions. Com-
bining the results with Eq. (15), we are able to investigate the
numbers of SFP velocities that the above equations yield.
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We start by defining fin(ωi ) as being equal to the left-hand
side of Eq. (14) with the upper sign; such a definition permits
us to study the intruding front velocity. It is noted that the
discussion performed in this section is also directly applicable
to the extruding front propagation. To confirm this statement,
we define fex(ωi ) as the left-hand side of Eq. (14) with the
lower sign. We then have the relationship

fin(−ωi ) = −ω3
i − 2C1ω

2
i + (C1 − 3C2)ωi + 2C2

= − fex(ωi ). (16)

Thus, we see that the number of the real solutions for
fex(ωi ) = 0 is exactly the same as the number of real solu-
tions for fin(ωi ) = 0, and the positive (negative) solutions for
the former correspond to the negative (positive) solutions for
the latter. We therefore investigate only the numbers of real
solutions for fin(ωi ) in this work.

To categorize the numbers of the real solutions for
fin(ωi ) = 0 in terms of C1 and C2, we require an expression
for D, fin(0), fin(ωin

± ), and ωin
± , where

D ≡ 4C2
1 + 3(C1 − 3C2), (17)

and ωin
± is defined as the solution of

∂

∂ωi
fin(ωi )

∣∣∣
ωi=ωin±

= 3ωin
±

2 − 4C1ω
in
± − (C1 − 3C2) = 0,

(18)
which leads to the solution

ωin
± =

2C1 ±
√

4C2
1 + 3(C1 − 3C2)

3
(19)

(double signs in the same order). We observe that if D is
positive, ωin

± is real. Additionally, we can obtain

fin(0) = 2C2 (20)

and

fin(ωin
± ) = ωin

±
3 − 2C1ω

in
±

2 − (C1 − 3C2)ωin
± + 2C2. (21)

We define ωin
1 , ωin

2 , and ωin
3 as the solutions for fin(ωi ) = 0;

ωin
1 is defined to always take real values, as described in Ap-

pendix A. We number the various cases based on the diagram
shown in Fig. 2(a). In cases 1, 2, 3, 4, 7, and 8, only ωin

1
is real, and ωin

1 is positive in cases 1, 3, and 4, whereas it
is negative in cases 2, 7, and 8. Though the numbers of the
positive (negative) solutions are the same for cases 1, 3, and 4
(2, 7, and 8), we differentiate the cases because the numbers
of the real positive solutions for ki, which is 1 or 0, may be
different in each case. The solutions ωin

1 , ωin
2 , and ωin

3 are real
in cases 5, 6, 9, and 10. All the solutions are positive in case 5,
two are positive and one is negative in case 9, two are negative
and one is positive in case 6, and all the solutions are negative
in case 10.

We now obtain the analytical forms of the boundaries di-
viding cases 1–10 in C1-C2 phase space. These equations are
obtained based on the diagram Fig. 2(a) as follows:

D = 0, (22)

fin(0) = 0, (23)

(h)(g)(f)

(d)(c)(b)

(3)
(4)

(5)

(6)(7)

(8)
(9)

(10)

(1)

(2)

(i)

(j) (k)

(a)

(e)

FIG. 2. (a) Depicting the various cases examined in this work.
(b)–(k) Various forms of fin (ωi ) for the cases listed in (a).

fin(ωin
+ ) = 0, (24)

fin(ωin
− ) = 0, (25)

ωin
+ = 0, (26)

ωin
− = 0. (27)

First, using Eqs. (17) and (22), we obtain a boundary referred
to as boundary A, which reduces to the parabolic form

C2 = 4
9

(
C1 + 3

8

)2 − 1
16 . (28)

From Fig. 2, boundary A represents a boundary between
a region in which solutions are characterized as cases 1–2
and a region containing solutions that fall into cases 3–10
in the C1-C2 space. Next, from Eqs. (20) and (23), we can
conclude that C2 = 0 represents a boundary, which we will
call boundary B. Boundary B divides regions of solutions that
are represented as case 1 from case 2, and the solutions in
cases 3–6 from cases 7–10. Further, we consider the cubic
equation for C2 from Eqs. (21), (24), and (25):

3C3
2 − (

C2
1 − 3C1 − 3

)
C2

2

−
(

C2
1 + 10

9
C3

1

)
C2 − C3

1

9
− C4

1

9
= 0. (29)
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D+

D+ A

B

C

D

D
C

A

FIG. 3. Phase space for the solutions for fin (ωi ) = 0.

We can factorize this equation to obtain

(C2 + C1 + 1)

(
3C2

2 − C2
1C2 − C3

1

9

)
= 0, (30)

(a)

(b)

D+

E

A

B

C

E

D

D+

A

D

E

A

C

FIG. 4. Phase space with the boundaries A − E. The numbers
and letters refer to the case of the solution. The region enclosed by a
dotted line in (a) is enlarged in (b).

TABLE I. Values of C1 and C2 as examples, and the resulting
intruding and extruding front velocities for the various cases. The
velocities in parentheses describe the optical modes.

Cases C1 C2 Velocity

1 −0.375 −0.031 25 vin
1

2a 1 2 (vex
1 )

2b −1 0.2
4 1 −0.5 vin

1

6a 1 −0.05 vin
1 , vex

2 (vex
32)

6b −2 −0.05 vin
1

7a 1 0.5 (vex
1 )

7b −2 0.5
8a −1 0.05
8b −3 2.75 (vex

1 )
8c −1.7 0.71
9a 1 0.1 vin

1 , vex
2

9b 1 0.3 vin
1 , vex

2 (vin
3 )

10a −2 0.1
10b −3 2.5 (vex

1 )
10c −1.75 0.755
10d −3 2.125 (vex

1 , vex
31)

which we can evaluate to find that

C2 = −C1 − 1,
C2

1

6
± 1

3

√
C4

1

4
+ C3

1

3
(31)

are boundaries. The former will be referred to as boundary C,
and the latter will be referred to as boundary D±, respectively
(double signs in the same order). Boundary C is a boundary
for regions where solutions are of case 3, case 4, and cases
5–6, and D± divides the regions in which solutions in case
7, case 8, and cases 9–10 exist. Additionally, we can confirm
analytically that the boundaries A, C, and D+ all pass through
the point (C1,C2) = (−1.5, 0.5), and that the boundary C is
tangential to the boundaries A and D+ at this point.

Using the boundaries A − D±, we obtain the phase space
that categorizes the behavior of the solutions for fin(ωi ) =
0 (see Fig. 3). Figure 3 shows that cases 6, 7, 8, and 10
are further divided into two disconnected regions. Actually,
from Eqs. (19), (26), and (27), we can obtain the relationship
C2 = C1/3 for C1 > 0 [Eq. (27)] and for C1 < 0 [Eq. (26)].
This forms a boundary between regions in which solutions
for fin(ωi ) = 0 fall into cases 5 and 6, and cases 9 and 10.
However, we can see that the case 5 does not appear in the
phase space (see Fig. 3), and case 9 is not adjacent to case 10.
Therefore, this straight line does not appear as a boundary in
Fig. 3.

The solutions for fin(ωi ) = 0 have been categorized in
C1-C2 space. We now categorize the solutions for ki. Notably,
the solution for ki is obtained from Eq. (15); thus we see that
the solution does not exist when the right-hand side of Eq. (15)
is negative, even if real and positive solutions for ωi exist.
Therefore, we see that the curve ki = 0 is another boundary
in C1-C2 space. We refer to this boundary as boundary E,
and the analytical form of boundary E is obtained here. If we
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FIG. 5. Values for (a) ωin
1 , (b) ωin

3 , (c) ωex
1 , (d) ωex

2 , (e) ωex
3 , (f) kin

1 , (g) kin
3 , (h) kex

1 , (i) kex
2 , and (j) kex

3 .

substitute ki = 0 into Eq. (13) with the upper sign, we obtain

ωi = C1

2
±

√
C2

1

4
− C2, (32)

where the sign of the second term on the right-hand side is
arbitrary. Substituting ki = 0 in Eq. (15) with the upper sign

yields

ωi = 2C2

C1
. (33)

From the two previous expressions, an equation describing
boundary E can be obtained:

C2 = C2
1

4
. (34)
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(a)

(b)

(c)

(d)

(e)

D+

D
E

A

B

C

E

D

D+
A

D+

D
E

A

B

C

E

D

D+
A

D+

D
E

A

B

C

E

D

D+
A

D+

D
E

A

B

C

E

D

D+
A

D+

D
E

A

B

C

E

D

D+
A

FIG. 6. The parameter regions for the front velocities. The
shaded areas indicate the regions in which (a) vin

1 , (b) vin
3 , (c) vex

1 ,
(d) vex

2 , and (e) vex
31 and vex

32 are found to exist.

It can also be confirmed that boundary C is a tangent to
boundary E at the point (C1,C2) = (−2, 1). The phase space
is shown in Fig. 4. This figure shows 17 subdivided regions
of the cases, and they are named as shown in the figure (see
Table I for details).

We show the values of ωin
j , ωex

j , kin
j , and kex

j ( j = 1, 2, 3) in
Fig. 5, where ωex

j , kin
j , and kex

j are defined in Appendix. Note
that ωin

2 and kin
2 do not exist. The values of kin

3 , kex
1 , and kex

3 are
zero on boundary E. Note that since Eq. (34) is a necessary
and not a sufficient condition for kin

j = 0 or kex
j = 0, nonzero

values (kin
1 and kex

2 ) are allowed on boundary E.
Using the values of ωin

j , ωex
j , kin

j , and kin
j corresponding

to solutions of fin(ωi ) = 0, we also investigate the intruding
front velocity, vin, and the extruding front velocity, vex. We
define the jth intruding and extruding front velocity as vin

j

and vin
j , respectively, as in Appendix, and the velocities vin

1 ,
vin

3 vex
1 , vex

2 , and vex
3 exist. The regions where vin

1 , vin
3 , vex

1 ,
vex

2 , and vex
3 exist are shown in Figs. 6(a)–6(e), respectively,

in C1-C2 space. We note that the region where vex
3 exists

is separated into two disconnected regions. We refer to vex
3 ,

which corresponds to values of negative C1, as vex
31, and that

which corresponds to positive values of C1, as vex
32. We have

three velocities in cases 6a and 9b (vin
1 , vex

2 , vex
32 for case 6a and

vin
1 , vin

3 , vex
1 for case 9b). There exist two velocities in cases 9a

and 10d (vin
1 and vex

2 for 9a and vex
1 and vex

31 for 10d). For cases
1, 4, and 6b, we obtain the single velocity vin

1 , whereas in cases
2a, 7a, 8b, and 10b, only a single velocity vex

1 is found to exist.
Finally, we note that no solutions for vin or vex exist in cases
2b, 7b, 8a, 8c, 10a, and 10c.

The values of the front velocities vin
1 , vin

3 , vex
1 , vex

2 , vex
31,

and vex
32 are shown in Fig. 7. It is found that vin

3 , vex
1 , and vex

31
diverge close to boundary E. This divergence is because the
values of kin

3 , kex
1 , and kex

3 are equal to zero, while ωin
3 , ωex

1 ,
and ωex

3 take nonzero values on the boundary. We can there-
fore conclude that these velocities describe optical modes and
represent unphysical propagations. In addition, we confirmed
that the velocities vin

1 and vex
2 take the values

√
1 + C1 + √

C1

and
√

1 + C1 − √
C1, respectively, on the C1 axis for C1 > 0.

These values are consistent with those found in Ref. [6] be-
cause the slip dependence of the friction stress was neglected
in that work, i.e., C2 = 0. The value of vex

32 is not consistent
with

√
1 + C1 − √

C1. We therefore conclude that vin
1 and vex

2
represent the physical SFP velocities for the intruding and
extruding fronts, respectively. We can also suggest that vin

1
and vex

2 are an extension of the intruding and extruding front
velocities obtained in Ref. [6] to the model with the friction
law depending on the slip and slip velocity.

IV. NUMERICAL TREATMENT: IMPLICATIONS
FOR SLIP BEHAVIOR

In this section, we show the spatiotemporal evolutions of
the slip velocity found via numerical computations using the
values shown in Table I. We confirm that the values of vin

1 and
vex

2 obtained using the LMSH are accurate.

A. Intruding front propagation

In this section, we numerically consider the intruding front
velocities. We consider vin

1 because vin
2 does not exist and

vin
3 describes an optical mode, which represents an unphys-

ical propagation. As such, we treat the cases 1, 4, 6a, 6b,
9a, and 9b (see Table I). We consider the EUL model, i.e.,
F (u) = pu − u. In the following, we assume pu = 1.

For the numerical computations, a friction law must be
determined. There are few restrictions on the choice of friction
laws provided they are reduced to the form of Eq. (7) via
linearization. Here, we adopt the following expression for
τv(u̇) + τs(u):

τv(u̇) + τs(u) = 1 − C1

2|C1| [1 − exp(−2|C1|u̇)]

+ C2 − 1

2|C2 − 1| [1 − exp(−2|C2 − 1|u)].

(35)

In this model, the system is in a critical state at the onset
of end-loading, i.e., F (0) − τv(0) − τs(0) = 0, as assumed in
Sec. III. Additionally, it is possible to show that the right-hand
side of Eq. (35) is always positive for any positive values of u
and u̇, which is a required condition for the friction laws. We
define the slip front as the region where u and u̇ are sufficiently
small that only their linear terms exist in Eq. (35), and with
this assumption, we can derive the relation

F (u) − τv(u̇) − τs(u) ∼ C1u̇ − C2u (36)

from Eq. (35), which is seen to be equivalent to Eq. (7).
Though the friction law (35) looks artificial, we emphasize
that this expression is an example that permits numerical
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FIG. 7. The front velocities for various values of C1 and C2. Parts (a) and (f) show the values of vin
1 , (b) and (g) depict the values of vin

3 ,
(c) and (h) show the values of vex

1 , (d) and (i) show the values of vex
2 , and (e) and (j) indicate the true values of vex

31 and vex
32. The 3D plots are

shown in (a)–(e), while the contour maps are illustrated in (f)–(j). The log scale is used for the z axes in (b), (c), and (e), and the color bars in
(g), (h), and (j). Note that the direction of the axes differs between the subfigures (a)–(e), and the range of values associated with the color bar
also differs between the subfigures (f)–(j).

calculations and allows us to confirm the validity of the an-
alytical treatment presented in this work.

To permit numerical calculations, the system must be finite,
whereas an infinite system was assumed in the analytical

treatment. We assume that the end-loading point is located
at the position x = −500 for the finite system employed for
the numerical calculations, and we use the value of p−500 ≡
∂u/∂x|x=−500 = −0.05 as the end-loading stress, instead of
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FIG. 8. The slip-velocity profiles obtained in this work. The color curves are isolines of the slip velocities, and the values with short color
lines describe the values of the slip velocity on the isolines. The parameter values are (a) C1 = −0.375 and C2 = −0.031 25 (case 1), (b) C1 = 1
and C2 = −0.5 (case 4), (c) C1 = 1 and C2 = −0.05 (case 6a), (d) C1 = −2 and C2 = −0.05 (case 6b), (e) C1 = 1 and C2 = 0.1 (case 9a), and
(f) C1 = 1 and C2 = 0.3 (case 9b). The gradients of the dotted lines represent the analytically obtained values of the SFP velocities, which are
described for each subfigure.

pe in the analytical work. In the numerical work, the Runge-
Kutta method with fourth-order accuracy is used.

We can then numerically obtain the spatiotemporal evolu-
tions of the slip velocities, which are shown in Fig. 8. Figure 8
shows that all the cases considered here generate intruding
front velocities which are in agreement with those obtained
analytically. This indicates that the LMSH is effective and
that the linearized form of the governing equation accurately
determines the SFP behavior. We note that the slip velocity
profile is pulselike in Fig. 8, which is clearly shown in Fig. 9.

This result indicates that the slip velocity is always positive,
and that the slip reversal does not occur when the stated
friction law is considered [Eq. (35)].

The supersonic front propagation is observed in Figs. 8(b),
8(c), 8(e), and 8(f); the shear wave velocity is unity in
the present framework. These cases correspond to the slip-
and/or slip-velocity-weakening behaviors with the critical
condition just before the slip. Though the treatment in this
study is not the same as that of the crack-tip propagation,
the front propagation obtained here may be consistent with
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FIG. 9. The 3D plot for the spatiotemporal evolution with the
case 4 [Fig. 8(b)].

the supersonic crack-tip propagations addressed in previous
studies [23–26].

B. Extruding front propagation

Here we consider the extruding front velocities. We con-
sider only vex

2 because vex
1 and vex

31 correspond to the optical
modes, and the value of vex

32 is not consistent with that of
previous study. To simulate the extruding front, we consider
the EL model [6].

In this numerical work, we assume the following friction
laws:

τv(u̇) = Cv u̇(C′
1 − u̇)[H (u̇) − H (u̇ − C′

1)] (37)

and

τs(u) = Csu(C′
2 − u)[H (u) − H (u − C′

2)], (38)

where Cv, Cs, C′
1, and C′

2 are positive constants. The fric-
tion laws given in Eqs. (37) and (38) assume a quadratic
dependence of the friction stress on the slip velocity and slip,
respectively. The quadratic dependence of the slip velocity
was assumed in Ref. [6], and this dependence is now extended
to the slip dependence. In the following discussion, it is shown
that the friction laws in Eqs. (37) and (38) generate the extrud-
ing front.

First, we demonstrate that the friction laws (37) and (38)
do not generate the intruding front propagation. These friction
laws state that the system corresponds to C1 < 0 and C2 > 0
when u 	 1 and u̇ 	 1. As shown in Fig. 6(a), vin

1 does not
exist in the region in which C1 < 0 and C2 > 0. Therefore,
under these conditions, we do not have an intruding front
propagation.

Here we demonstrate how the extruding front velocity is
determined with the friction laws given in Eqs. (37) and (38).
We first introduce the variable

ẇ ≡ C′′
1 − u̇, (39)

where C′′
1 is a positive constant. From the definition in

Eq. (39), we obtain

w = C′′
1 t + W (x) − u, (40)

where W (x) is an arbitrary function of x. We consider the
region near the slip front propagating with a constant velocity.
Therefore, if we assume that C′′

1 is equal to the extruding front
velocity, we can see that C′′

1 t + W (x) is a constant, which
results in

w = C′′
2 − u, (41)

where C′′
2 is a positive constant. We assume that w and ẇ are

sufficiently small to mean that the terms of order w2 and ẇ2

and higher can be neglected. Using Eqs. (6), (37)–(39), and
(41), considering only the linear terms of w and ẇ, we obtain
the governing equation:

ẅ = w′′ + ẇ′′

+Cv (C′
1 − 2C′′

1 )ẇ[H (C′′
1 − C′

1 − ẇ) − H (C′′
1 − ẇ)]

+Cs(C
′
2 − 2C′′

2 )w[H (C′′
2 − C′

2 − w) − H (C′′
2 − w)].

(42)

From these expressions, we conclude that the values C1 and
C2 in Eq. (9) are given by

C1 = Cv (C′
1 − 2C′′

1 ) (43)

and

C2 = −Cs(C
′
2 − 2C′′

2 ). (44)

Here, we demonstrate a method determining the values
of C′′

1 and C′′
2 . First, we write vex

2 as a function of C1 and
C2, i.e., vex

2 (C1,C2). This function is illustrated in Fig. 7(i).
We then define the values of C′′′

1 ≡ −∂τv(u̇)/∂ u̇|u̇=C′′
1

and
C′′′

2 ≡ ∂τs(u)/∂u|u=C′′
2
. Since the quantities −C′′′

1 and C′′′
2 are

the gradients of τv(u̇) and τs(u), respectively, at u̇ = C′′
1 and

u = C′′
2 , we obtain

τv(u̇) = −C′′′
1 (u̇ − C′′

1 ) = C′′′
1 ẇ (45)

and

τs(u) = −C′′′
2 (u − C′′

2 ) = −C′′′
2 w, (46)

around u̇ = C′′
1 and u = C′′

2 . Therefore, the equation

vex
2 (C′′′

1 ,C′′′
2 ) = C′′

1 (47)

yields a relation between C′′
1 and C′′

2 . Since C′′′
1 depends on

C′′
1 , the above expression represents a self-consistent equation.

However, we cannot determine the two unknown quantities,
C′′

1 and C′′
2 , uniquely from this single equation. We obtain a

second expression relating the two parameters via considera-
tion of pe. We assume that the single relation

G(C′′′
1 ,C′′′

2 , pe) = 0 (48)

exists, whereas obtaining the analytic form of G is impossible.
However, we can expect that a larger value of |pe| induces
a larger value of vex

2 . Equations (47) and (48) determine the
extruding front velocity vex

2 (=C′′
1 ) for a given pe. Finally, if

these equations do not have the solution, the steady SFP does
not exist.
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FIG. 10. Spatiotemporal evolution of the slip and slip velocity in the case of Cv = 1, Cs = 0.2, C′
1 = 1, C′

2 = 5, and p−500 = −5. (a) A
contour map showing lines of constant slip velocity. The estimated SFP velocity (the gradient of the dotted straight line) is taken to be 0.604.
(b) 3D plot for the spatiotemporal evolution of the slip velocity. (c) Plot for the point with u̇ = 0.3. (d) 3D plot for the spatiotemporal evolution
of the slip. (e) Plot for the point with u = 2.5.
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Here, we show how the analytical treatment and numerical
calculations are consistent with Eqs. (37) and (38). First, we
set the values of Cv, Cs, C′

1, C′
2, and p−500. We then nu-

merically compute the spatiotemporal evolutions of the slip,
and the slip front is roughly determined from the slip-velocity
profile. We also roughly evaluate the slip and slip velocity at
the front; these values correspond to C′′

2 and C′′
1 , respectively.

With C′′
1 , C′′

2 obtained, using Eqs. (37) and (38) we obtain the
values of C′′′

1 and C′′′
2 ; thus we can obtain vex

2 because it is a
function of C′′′

1 and C′′′
2 . We then estimate the SFP velocity

at the determined front from the numerical computations; the
velocity obtained using this estimate is denoted vest. We finally
confirm that vest is approximately equal to vex

2 (C′′′
1 ,C′′′

2 ).
It remains, however, to confirm another condition: as ob-

served, in the analytical treatment, the inequalities 0 � u̇ �
C′

1 and 0 � u � C′
2 must be satisfied at the slip front. These

conditions are satisfied when 0 � C′′
1 � C′

1 and 0 � C′′
2 � C′

2,
in the numerical treatment. It should be confirmed that these
relations are satisfied in the numerical calculations.

We consider an example with Cv = 1, Cs = 0.2, C′
1 =

1, C′
2 = 5, and p−500 = −5, and we apply the procedure

described above (Fig. 10). In this case, as shown in Fig. 10(b),
the gradient of the slip velocity profile along the x axis is so
large that it is not possible to determine the precise values of
C′′

1 and C′′
2 . Therefore, we can only use an estimate for their

values based on the profiles of the slip and slip velocity; in this
case, we take C′′

1 = 0.3 and C′′
2 = 2.5 [see Figs. 10(b)–10(e)].

The SFP velocity is relatively insensitive to variations around
the values of C′′

1 and C′′
2 adopted here. These C′′

1 and C′′
2 values

together with Eqs. (37) and (38) give the values C′′′
1 = 0.4 and

C′′′
2 = 0, which lead to vex

2 (0.4, 0) = 0.55. The SFP velocity
obtained from the gradient of the dotted line in Fig. 10(a) is
estimated to be vest = 0.604. This almost coincides with the
value of vex

2 (0.4, 0) = 0.55 obtained above. Additionally, the
conditions 0 � C′′

1 � C′
1 and 0 � C′′

2 � C′
2 are satisfied in this

calculation. Thus, we have found good agreement between
the analytic and numerical approaches in the obtained values
of the extruding front velocity. Finally, we note that the slip
profile shown in Fig. 10(b) leads to the conclusion that the
slip reversal does not occur in this case.

V. DISCUSSION AND CONCLUSIONS

In this work, we have considered an infinite 1D viscoelastic
block on a substrate subject to end-loading stress and the end-
and upper-loading stresses together with a friction law that
depends on the slip and slip velocity. The two intruding front
velocities and three extruding front velocities were analyti-
cally obtained based on the LMSH, which requires only the
linearized governing equation. Of these five velocities, three
represent the optical modes, and the unique intruding and
extruding front velocities were found to exist for physically
meaningful SFPs. Via numerical calculations, the intruding
front velocity was obtained for the EUL model, and the ex-
truding front velocity was realized for the EL model; these
results indicated that the details of the dependence of the
friction stress on the slip and the slip velocity do not affect the
front velocity, and that the linearized governing equation is
sufficient to obtain accurate results.

Our framework is found to be quantitatively consistent with
the results of previous studies. For example, the dependences
of vin

1 and vex
2 on C1 for C2 = 0 are consistent with those of

vin and vex in Ref. [6], respectively, as mentioned in Sec. III.
Additionally, the form of vin

1 (C1) for C2 = 1 is consistent with
that obtained in Myers and Langer [11]. Though they obtained
only an approximate solution, the exact analytical solution
has been obtained here. Furthermore, note that their model
corresponds to the case C2 = 1, and they changed parameters
η and α, where η is the viscosity and α corresponds to C1.
Therefore, both their and our models have two parameters.
However, our model is superior because we can treat both
positive and negative C2 in a single framework. Moreover, we
were successful in explaining the variation in SFP velocities
using only friction laws with constant viscosity.

We have also shown the regions in which the SFP velocities
exist in the C1-C2 phase space; we also have presented the
analytical forms of the boundaries of these regions in the
C1-C2 phase space. This phase space may be useful to predict,
e.g., whether ordinary or slow earthquakes are likely in natural
faults, if the friction law is determined.

Since LMSH linearizes the governing equations, it can-
not give an estimation of the macroscopic slip profile. Note
that the pulselike slip was observed in Fig. 9, and the step-
function-like slip emerged in Fig. 10. These are consistent
with previous laboratory experiments [27] or seismological
observations [28,29]. Nonetheless, predicting these slip be-
haviors is difficult with the present framework.

Finally, the critical state was assumed for the EUL model.
Based on this assumption, we can proceed with the analytical
treatment. In reality, the SFP in a noncritical state has been
analyzed [11,12], and the SFP velocities have been obtained.
They are, however, approximations. Though the current treat-
ment cannot be directly applied to the noncritical case, we
anticipate that it will be an important step in analytically
treating SFP velocities with the noncritical state.

ACKNOWLEDGMENTS

T.S. was supported by JSPS KAKENHI Grant No.
JP20K03771, and JSPS KAKENHI Grant No. JP16H06478
in Scientific Research on Innovative Areas “Science of Slow
Earthquakes.” This study was supported by the Ministry of
Education, Culture, Sports, Science and Technology (MEXT)
of Japan under its The Second Earthquake and Volcano Haz-
ards Observation and Research Program (Earthquake and
Volcano Hazard Reduction Research). This study was sup-
ported by ERI JURP 2020-G-08, 2021-G-02 and 2022-G-02
in Earthquake Research Institute, the University of Tokyo.

APPENDIX: EXACT SOLUTIONS OF fin(ωi ) = 0

Here, we present details of the analytical treatment of
fin(ωi ) = 0. This is the cubic equation, and we can solve it
analytically. We first define the variables D1 and D2:

D1 = −
(

16C3
1

27
+ 2C1

3
(C1 − 3C2) − 2C2

)
(A1)

and

D2 = − 1

27

(
− 4C2

1

3
− C1 + 3C2

)3

. (A2)
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Using Eqs. (A1) and (A2), we define

S± =
−D1 ±

√
D2

1 − 4D2

2
(A3)

(double signs in the same order), which can take complex
values. With these values and the cubic root of unity, ω0 =
(−1 + i

√
3)/2, we obtain

ωin
1 = S

1
3+ + S

1
3− + 2C1

3
, (A4)

ωin
2 = ω0S

1
3+ + ω2

0S
1
3− + 2C1

3
, (A5)

ωin
3 = ω2

0S
1
3+ + ω0S

1
3− + 2C1

3
. (A6)

If S± is real and negative, S1/3
± is defined as −|S±|1/3.

Therefore, ωin
1 always gives a real-valued solution. With

Eqs. (A4)−(A6) and (15), we can define kin
j ≡ [(−2C2 +

C1ω
in
j )/ωin

j ]1/2 and vin
j ≡ ωin

j /kin
j ( j = 1, 2, 3). We note that

if (kin
j )2 < 0, we can conclude that vin

j does not exist. We can
use exactly the same method to solve fex(ωi ) = 0 and to define
ωex

j , kex
j , and vex

j .
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