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Volume-shear coupling in a mesoscopic model of amorphous materials
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We present a two-dimensional mesoscopic model of a yield stress material that includes the possibility of local
volume fluctuations coupled to shear in such a way that the shear strength of the material decreases as the local
density decreases. The model reproduces a number of effects well known in the phenomenology of this kind of
material. In particular, we find that the volume of the sample increases as the deformation rate increases; shear
bands are no longer oriented at 45◦ with respect to the principal axis of the applied stress (as in the absence of
volume-shear coupling); and homogeneous deformation becomes unstable at low enough deformation rates if
volume-shear coupling is strong enough. We also discuss the effect of this coupling on some out-of-equilibrium
configurations, which can be relevant to the study of the shear bands observed in metallic glasses.
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I. INTRODUCTION

Dilatancy [1,2] is a property of granular materials char-
acterized by a volume increase that is observed when the
material is forced to shear. Traditionally, dilatancy has been
known to play an important role in the mechanics of soils and
sands [3–6]. However, dilatancy may be considered as a par-
ticular case of the volume-shear coupling phenomena, which
are also relevant, for instance, in the physics of yield stress
fluids (most of which in fact have some kind of “grains” as ele-
mentary constituents) [7–11]. Volume-shear coupling has also
been invoked as one important ingredient of the physics of
materials failing by the nucleation of shear bands, particularly
metallic glasses [12–15]. In fact, in this case there is strong
evidence (both experimental and numerical) that expansion
occurs within the shear bands (see [13] and reference therein).
Yet, as the shear band is a very thin object within the bulk, a
global dilatancy effect is typically not observed in these cases.

We investigate here the dilatancy effect and the volume-
shear coupling in a mesoscopic model of the yielding
transition. Previously [16–18], this model has been applied
to situations in which the local density of the system was not
considered to play an important role, and actually the possible
change of density was not even considered. Here, we study
the coupled evolution of local strain and local density, and
we address the influence of local density fluctuations on the
shearing behavior of the system.

The paper is organized as follows. In the next section, we
consider a prototypical one-variable mean-field model of the
yielding behavior, and we add to it an additional variable
describing density changes. We obtain in this simple model
the basic properties of the dilatancy effect, particularly the
increase in system volume with the increase of strain rate
in the system. Section III presents briefly the spatially ex-
tended model and the simulation technique. Then in Sec. IV
we show that due to volume-shear coupling, the spatial ori-
entation of plastically deformed regions, or shear bands, in

spatially extended models is rotated with respect to the case
in which there is no such volumetric effect. The orientation
we observe departs from the one predicted by the classical
Mohr-Coulomb failure criterion, agreeing instead with the ori-
entation predicted by a recently proposed theory. In Sec. V we
show that volume-shear coupling can produce a flowing state
in the material in which parts of the sample yield and acquire
a lower density, while other parts remain essentially rigid, and
with a higher density. While all previously mentioned results
correspond to steady-state and reversible situations, in Sec. VI
we investigate the important case involving applications of
samples prepared by some sort of annealing, which are then
submitted to a shear deformation until they fail, typically by
nucleating a nonequilibrium shear band, as occurs in metallic
glasses. Finally, in Sec. VII we summarize and conclude.

II. COUPLING VOLUME AND SHEAR
IN A ONE-SITE MODEL

We start by considering a very simple model with two de-
grees of freedom (representing the shear and volume state of
a sample), and we study the appearance of a dilatancy effect.
We take as a starting point the well-known Prandtl-Tomlinson
model of friction for the shear degree of freedom e2 [19]. The
model is written as a dynamical evolution equation of the form

λė2 = −dV (e2)

de2
+ (γ̇ t − e2)k, (1)

which describes the situation depicted in Fig. 1. The driving
γ̇ t pulls from the variable e2 through a spring of stiffness k.
Note that this spring represents a crucial part of the material
under study, and it does not have to be considered as a part
of the measuring device. In addition, e2 is also affected by the
force f2(e2) ≡ −dV/de2. In a friction context, f2 represents
the corrugated potential between two surfaces sliding against
each other. In a context of yielding, f2 represents the inter-
nal stress that a small portion of the system feels due to its
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FIG. 1. Schematic representation of the Prandtl-Tomlinson
model, mathematically described by Eq. (1).

amorphous nature. In any case, the f2(e2) function is expected
to have many minima. We will assume here that f2 is a peri-
odic function. Finally, λ is an effective viscosity coefficient.

In the traditional form of the PT model, the “friction force”
is calculated as the average force that the driving has to apply
in order to maintain a uniform driving velocity of γ̇ . This force
is the one that stretches the spring, so the friction force σ is
calculated as

σ = 〈γ̇ t − e2〉k, (2)

where the angular brackets notate a temporal average. In
the yielding context, an equation like Eq. (1) is taken as
a mean-field description of a spatially extended system. In
the extended case, γ̇ t represents the spatial (instantaneous)
average of the value of e2, namely

γ̇ t = e2, (3)

and the model equation must be written with the explicit
inclusion of the externally applied stress σ in the form

λė2 = f2(e2) + (e2 − e2)k + σ. (4)

Spatially averaging this equation, taking into account Eq. (3),
we obtain in the yielding context

σ = λγ̇ − f2. (5)

In any case, the difference between using Eqs. (1) and (2),
or (4) and (5), is irrelevant as the difference amounts to a
shift in the instantaneous value of e2 by a constant, which
does not alter the main feature of the flow curve (i.e., the γ̇

versus σ dependence) of the model. In fact, from (2) and (1),
an equation similar to (5), namely

σ = λγ̇ − 〈 f2〉, (6)

is also obtained in the friction context.
We will now extend the PT model to include the possibility

of volume fluctuations, described by a variable that is denoted
e1. The value of e1 will tend to evolve to its stationary value,
with a dynamics mainly controlled by the value of the bulk
modulus B of the system. Considering an overdamped dynam-
ics, this evolution must be of the form

ė1 = −Be1, (7)

where the value e1 = 0 was chosen as the equilibrium value.
Of course in this trivial form the evolution of e1 is totally
decoupled from the evolution of e2, and there is no effect of
e1 (that adjusts at e1 = 0 for all values of γ̇ ) on e2.

FIG. 2. The potential energy of Eq. (10), for the parameters B =
1, α = 0.4, and for U2(e2) = 1 − cos(e2). The blue lines highlight
the fact that the corrugation along the e2 axis decreases (increases)
as e1 increases (decreases).

Now we introduce a coupling between e1 and e2 that
describes a possible dilatancy effect in the system. We ex-
pect that when e1 increases, the system yields more easily,
therefore e1 must have an effect on the force f2. So we
do the following. We consider a two-dimensional potential
energy V (e1, e2) from which forces f1,2 are obtained as the
partial derivatives f1,2 = −∂V/∂e1,2. Therefore, the model
equations will be

ė1 = −∂V/∂e1,

ė2 = −∂V/∂e2 + k(γ̇ t − e2). (8)

The form of V (e1, e2) will dictate the form of the effective
coupling between the modes e1 and e2. We will use for V the
generic form

V (e1, e2) = B

2
e2

1 + U1(e1)U2(e2). (9)

Note first of all that we isolated the term Be2
1/2 that corre-

sponds to a sample with bulk modulus B. In the second term,
U2(e2) will be an oscillatory potential with many minima
along the e2 axis. In the case in which the factor U1(e1) is
a constant, this potential will provide the decoupled model
in which e1 and e2 evolve separately. However, if the value
of U1(e1) decreases as e1 increases, a dilatancy effect will be
obtained. We will consider the following form of the potential
energy:

V (e1, e2) = B

2
e2

1 + [1 − tanh(αe1)]U2(e2). (10)

This form (which is plotted in Fig. 2) provides a corrugated
potential on e2 with an amplitude that tends to 0 when e1
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(a)

(b)

FIG. 3. (a) Flow curves of the one-particle model with cou-
pling between shear and volume degrees of freedom. Different
curves correspond to different values of α [Eq. (10)] as indicated.
(b) Corresponding curves of the temporal average of the variable e1

representing the increase in system volume, caused by shear. The
volume is larger for larger values of α, and also increases with the
value of strain rate γ̇ .

is positive and large (i.e., when the system is very dilated),
whereas it saturates to an e1-independent value for large neg-
ative e1. Therefore, α quantifies the coupling between e1 and
e2. Coupling vanishes when α = 0. The choice of a hyperbolic
tangent is made for the sake of concreteness, the quadratic
term in e1 in Eq. (10) will ensure that tanh(αe1) ∼ αe1 if α is
not too large, as will be the case in our results.

In the next section, dealing with an extended system, we
will consider some stochastic form of the function U2. Here,
it suffices to consider a single periodic expression that we
choose to be of the form

U2(e2) = 1 − cos(e2). (11)

Driving along the e2 direction will produce the effect of mod-
ifying the value of e1. We simulated Eq. (8) using expressions
(10) and (11) for the potential and different values of the
coupling α. The flow curve γ̇ as a function of σ and the
temporarily averaged values of e1 are reported in Fig. 3. We
see how the volume e1 increases as γ̇ (or σ ) increases. This
is the dilatancy effect. The effect is stronger as the value of α

increases. Note also how the flow curve for larger values of α

shifts to the left (and in particular the critical stress reduces)
at larger α when e1 is positive.

III. DETAILS ON THE EXTENDED MODEL

The one-site modeling of the previous section is the basis
for a spatially extended model in which each site is character-
ized by its strain and its volume degree of freedom. Full details
can be found in the literature [16–18,20]. We concentrate on a
two-dimensional system, and we consider the linearized strain
tensor εi j defined in terms of the displacement field ui,

εi j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
, (12)

where i, j = 1, 2. From here we define one volumetric

e1 ≡ (ε11 + ε22)/2 (13)

and two deviatoric strains

e2 ≡ (ε11 − ε22)/2, (14)

e3 ≡ ε12. (15)

The deviatoric strains are related by a symmetry rotation of
45◦. Overdamped equations of motion are considered for this
model, which are obtained by equating the time derivatives
of ei to minus the variation of the total free energy F with
respect to ei. In this process, it has to be taken into account
that e1, e2, and e3 are not independent variables, but they are
related through [21]

Q1e1 + Q2e2 + Q3e3 = 0 (16)

with

Q1 ≡ ∂2
x + ∂2

y , (17)

Q2 ≡ ∂2
y − ∂2

x , (18)

Q3 ≡ −2∂x∂y. (19)

This constraint is the ingredient that generates the well-known
long-range elastic Eshelby interaction in the system. There-
fore, the equations of motion are written as

λėi = −∂V

∂ei
+ �Qi, (20)

where

� = −
∑

( fiQi )∑ (
Q2

i

) (21)

is a Lagrange multiplier adjusted to satisfy the constraint
[16–18], and λ is again an effective viscosity coefficient.
Volume-shear coupling is obtained with use of a V (e1, e2, e3)
function qualitatively similar to that in Eq. (10), but also with
some differences due in part to technical reasons. First of
all, taking into account that physically e2 and e3 differ only
by a spatial rotation of 45◦, we should consider (e2

2 + e2
3) as

the variable to couple to e1 through a parameter α similar to
that used in the previous section. However, notice that in our
implementation using finite differences on a square lattice, the
variables e1 and e2 are calculated on the nodes of this lattice,
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whereas e3 is defined at the centers of the plaquettes. This
makes a possible coupling between e1 and e3 a nonlocal one in
the present numerical scheme, producing spurious effects that
require special care to be avoided. This is certainly a point that
will deserve further attention. However, since we will apply
the external driving along the e2 direction, it may be expected
that the main effect we are interested in can be captured
by coupling e1 to e2 only, leaving e3 evolving without any
coupling to e1. Therefore, we will model the local potential
energy as

V (e1, e2, e3) = B

2
e2

1 + [1 − tanh(αe1)]U2(e2) + U3(e3). (22)

The functions U2 and U3 will be taken to be similar to
the one-particle case, but with a stochastic ingredient, this
stochasticity being totally uncorrelated in different spatial po-
sitions. We proceed as follows. We define a value e0 (either
e20 or e30 for e2 or e3) and define the corresponding U to be
given by

U = 1 − cos

(
(e − e0)π




)
(23)

in the interval |e − e0| < 
, where 
 is a random variable
taken from a uniform distribution between 0.5 and 1. We
monitor along the simulation the values of e − e0 and compare
against the value of 
. Each time we detect ±(e − e0) > 
,
a new value 
new is defined, and e0 is redefined to e0 ± (
 +

new). In this form, we implement an independent stochastic
disordered potential for e2 and e3 at each position in the
sample.

Equations (20), (22), and (23) are numerically solved for a
system with periodic boundary conditions, using a first-order
Euler method that takes advantage of the transformation be-
tween real and Fourier space as convenient. A deformation
rate γ̇ is imposed on the e2 variables by forcing the spatial
average of e2 to increase linearly in time as e2 = γ̇ t . The
corresponding stress σ is calculated as the temporal average
of the instantaneous value σ (t ) = λγ̇ − f2. The volumetric
stress is set to zero (except for the data in Fig. 7), namely
f1 = 0, by adjusting dynamically the average volume e1 ac-
cording to

κ ė1 = f1, (24)

where κ > 0 is a “viscosity” parameter on e1 (note that f1 > 0
means an expansive stress). The dilatory effect that we are
mostly interested in will depend on the fact that the temporal
average of e1 will typically be different from zero.

IV. FLOW CURVES AND ORIENTATION OF SHEAR
BANDS IN THE PRESENCE OF DILATANCY

The dilatancy effect in the PT model is the germ of a couple
of interesting features that are found in the spatially extended
model. In a spatially extended system, and in the absence
of volume-shear coupling, correlated slips occur at 45◦ with
respect to the principal axis of the stress tensor, as this is
the orientation in which the maximum shear stress occurs.
However, in the presence of volume-shear coupling, this angle
changes [22,23]. We address this effect now.

(a)

(b)

FIG. 4. (a) Flow-curves (γ̇ vs σ ) at different values of
the volume-shear coupling parameter α, as indicated. (b) The cor-
responding curves for the average volume change. The qualitative
behavior of the model is consistent with the results obtained in the
one-particle case (Fig. 3).

Flow and volume curves for the spatially extended model
are presented in Fig. 4. We observe in this case the same
qualitative features obtained for the one-particle case (Fig. 3),
namely a shift of curves to the left and an increase in system
volume as α is increased. A more detailed inspection of the
spatial distribution of deformation reveals a particular effect
associated with a nonzero value of α. In Fig. 5 we see plots of
accumulated strain e2 in the system, at a relatively large value
of λγ̇ = 0.1, in systems with different values of α. In Fig. 5
the angle of correlation of plastic slips is clearly visible, and
it is observed that this angle deviates from 45◦ when α �= 0.
By calculating a correlation function on spatial configurations
such as those in Fig. 5, the angle of maximum correlation can
be determined with good precision. The result as a function
of α is seen in Fig. 6. The angle is 45◦ in the case α = 0, but
it deviates from this value when α �= 0, the deviation being
linear with α.

The orientation correlation of plastic activity (and ul-
timately the orientations of shear bands) with respect to
principal stress directions is an important feature in many
practical situations, so the reason for this reorientation is
worth exploring in more detail. When α = 0, the failure
planes are determined by the condition of maximum shear
stress, and this always occurs at 45◦ with respect to the
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FIG. 5. Snapshots of accumulated deformation in the system in
a fixed strain window at different values of the volume-shear cou-
pling parameter: α = 0.2 (a), 0 (b), and −0.2 (c). Note the change
in the orientation of the slip lines (highlighted by the diagonal or
off-diagonal straight black lines) as a function of α.

principal axis (in the present simulations they are the x and
y axes, and we take σx > σy). However, if α �= 0 the stress
normal to the failure plane plays a role, as a reduction in
normal stress favors slip by reducing the critical stress. There-
fore, there is a rotation of the slip planes with a normal that
tends to align with the axis in which the compressive stress
is minimum. The standard way to quantitatively calculate this
rotation is the Mohr-Coulomb approach [2], which goes as
follows. Considering potential slip planes appearing at an
angle θ with respect to the x axis, the normal (σn) and shear
(τ ) stresses on these slip planes are given by

σn(θ ) = p − σ cos(2θ ), (25)

τ (θ ) = σ sin(2θ ), (26)

where p ≡ (σx + σy)/2 and σ ≡ (σx − σy)/2. The
Mohr-Coulomb theory relies on the assumption that a
sample is in static mechanical equilibrium as long as the
frictional stability condition

τ (θ ) < σn(θ )μ + c (27)

-0.1

-0.05

 0

 0.05

 0.1

-0.4 -0.2  0  0.2  0.4

θ−π/4

α

FIG. 6. Angle of maximum correlation between slips in the sam-
ple as a function of α. Dots are the measured values. The red line
is the result of the Mohr Coulomb theory contained in Eq. (34). The
blue line is the result of the theory in [22].

is satisfied for all θ , with μ and c being sample parameters
named the internal friction coefficient and cohesion, respec-
tively. Inserting Eqs. (25) and (26), the stability condition can
be written as

[sin(2θ ) + μ cos(2θ )]σ < c + pμ. (28)

The Mohr-Coulomb criterion states that actual slips will
occur at the angle θ for which this condition first becomes an
equality. We emphasize that although this condition naturally
emerges from the consideration of the Amontov-Coulomb
static friction condition (27) between two sliding bodies, there
is not a strong reason to believe that this will be strictly satis-
fied when considering the failure of a homogeneous material
where no slip plane exists from the beginning. It is clear that
failure according to the Mohr-Coulomb criterion occurs at a
value of θ for which [sin(2θ ) + μ cos(2θ )] is a minimum,
predicting a slip angle given by

θ = 1
2 atan(μ−1). (29)

Introducing the internal friction angle of the sample φ such
that μ = tan φ, θ can be written as

θ = ±
(

π

4
− φ

2

)
. (30)

To calculate the value of φ for a given sample, the failure
envelope of the sample must be determined. By replacing
Eq. (29) back into (28), it is obtained that failure (or yielding)
occurs when

σ >
c + pμ√
1 + μ2

= c cos(φ) + p sin(φ). (31)

Therefore, a determination of the stability region in the p, σ
plane allows us to determine the values of φ and c, and
calculate the slip angle θ .

A compressive stress p can be incorporated in our numeri-
cal scheme by modifying Eq. (24) to

κ ė1 = (p + f1), (32)

and the critical value of σ , namely σc, calculated as a function
of p for different values α. The results (shown in Fig. 7) are
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FIG. 7. Variation of the critical force 
σc ≡ [σc(p) − σc(0)] as
a function of the compressive stress p. Dots are the results of the
simulations for different values of α. Lines are plots of the function
1.1αp, which provides a very good fitting of the numerical results.

compatible with a linear dependence of φ on α given by

φ � 1.1α. (33)

This expression can now be used in Eq. (30) to obtain

θ � ±
(

π

4
− 0.55α

)
, (34)

which is the Mohr-Coulomb prediction for the angle of plastic
slips in terms of the volume-shear coupling parameter α. This
linear function is plotted in red on top of the numerical results
in Fig. 6. It reproduces the linear trend of the numerical
results, but it overestimates the numerical values by about a
factor of 2. This kind of behavior goes in the same direc-
tion as experimental results, where it is observed also that
Mohr-Coulomb theory overestimates the angle of shear bands
with respect to π/4 [24].

The Mohr-Coulomb theory can be phenomenologically
modified to try to fix experimental results more accurately,
for instance introducing the dilatancy angle [24]. This could
also be done here. However, we will proceed along a different
line. Recently, Karimi and Barrat [22] have done a critical
analysis of the correlation of plastic activity in yield stress ma-
terials, concluding also that the macroscopic Mohr-Coulomb
criterion does not typically predict accurately the orientation
of plastic correlations, or the macroscopic orientation of shear
bands. They rely on an analysis in terms of the elastic coupling
between plastic distortions and the local internal friction angle
φ0 [25] to conclude that the macroscopic slip line instabilities
are expected to occur at an angle θ given by

cos(2θ ) = 1
2 sin(φ0) (35)

or approximately

θ � ±
(

π

4
− φ0

4

)
(36)

in cases in which φ0 is not too large. The numerical factor of
1/4 in the last term is very suggestive when this expression
is compared to the Mohr-Coulomb one [Eq. (30)], and we re-
member the factor of 2 by which the Mohr-Coulomb criterion
overestimates the numerically obtained values of θ (Fig. 6).
Yet the angle θ0 entering Eq. (36) is the local internal friction

angle [22], which plays the same role as φ but for an elemen-
tary piece of the material, and it does not include the effects of
the elastic interaction that are effectively incorporated in the
macroscopic φ. We should find out whether φ and φ0 differ
appreciably or not. In our samples, the value of φ0 is directly
related to the shear volume coupling parameter α. We have
measured this dependence by numerically finding the failure
envelope now for a single element in the system, i.e., we ran
the one-site model of Sec. II using the stochastic potential of
the full model, and calculating the critical stress as a function
of the normal stress. The slope of this dependence provides
the value of sin(φ0). We have found that φ0 can be adjusted as

φ0 � 1.1α. (37)

Comparing with Eq. (33), we can conclude that in our
model (and at least for the set of parameters that have been
investigated), the local internal friction angle φ0 coincides,
within the numerical precision, with its macroscopic counter-
part φ. Therefore, introducing (37) into expression (36), we
obtain the values of θ as a function of α represented by the
blue line in Fig. 6. They are a factor of 2 smaller than those
provided by the Mohr-Coulomb theory, and they adjust very
well to the orientation of numerical correlations observed for
plastic slips in our simulations.

V. NONUNIFORM YIELDING CAUSED
BY VOLUME-SHEAR COUPLING

An important phenomenon that may occur in the flowing
of amorphous materials is localization of the deformation. In
some cases (such as in metallic glasses; see the next section),
this localization is a nonequilibrium phenomenon typically
associated with the preparation of the sample. In other cases,
this localization occurs in a steady-state evolution, and this is
the situation that is addressed here. In Ref. [26], a stability
analysis was performed for a flowing system that has, apart
from the normal shear variables, additional scalar degrees
of freedom taken to represent the concentration of solute
molecules in the material. The analysis done is rather general,
and it essentially applies also to the case in which the addi-
tional scalar variables can be considered to be the value of the
local density in the system, as pointed out in [27]. Restricted to
a two-dimensional situation appropriate to our case, the result
of the analysis indicates that there are two different kinds of
instabilities. In one of them, instability is purely mechanical,
with the density degree of freedom playing no important role.
The signature of such an instability is a flow curve that has
a reentrance, namely a region in which stress diminishes as
strain rate increases. This kind of instability is analogous to
that producing phase separation in a one-component fluid,
such as in the liquid-gas transition. In physical terms, this
instability occurs in the following way. If a layer of the system
that is shearing in a stationary way suffers a perturbation that
increases its strain rate, then it would require less stress to
maintain the new strain rate. But as the applied stress is kept
fixed, this will produce an additional increase of strain rate,
leading to an instability. This situation is known to occur, for
instance, in cases in which there are aging mechanisms in
the system [16,28–33]. It may thus happen that nonflowing
regions maintain a well-aged state that is more rigid, and
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therefore do not flow, while flowing regions, being unable to
age sufficiently, have a lower critical stress and are maintained
in a flowing state.

In addition to this kind of mechanical instability, it was
found [26] that the coupling to the concentration degree of
freedom can produce a breaking of the uniform flow, even
in the absence of any strong feature of the flow curve. This
instability is qualitatively understood in the following way
[10,34,35]. If on an originally uniform yielding state a fluc-
tuation in some part of the sample produces an increase in
strain rate, then that part of the system will also experience an
expansion, which in turn produces a decrease in the effective
viscosity and a further increase in the strain rate. This process
can eventually lead to an instability, which, however, does not
manifest clearly in the form of the flow curve of the system.

We have observed this kind of instability in the present
model in the case in which α is large enough. The numerical
evidence is contained in Fig. 8. There in the left column we
observe plots of the accumulated deformation in the system
in a rather long time window at a constant value of λγ̇ = 0.1,
and for different values of α. For low α (α � 0.2) the defor-
mation is uniform, whereas for larger α we clearly see that
there are regions in the system that have not yielded at all,
showing the nonuniform yielding in this case. The instan-
taneous values of the volume variable e1 across the system
(right column in Fig. 8) show also a clear correlation with
the deformation in the large α cases, with the sample flowing
in regions in which the local volume is well above the av-
erage value. Stuck regions instead correspond to compressed
sample regions, with values of e1 below the average. Notice
that in spite of the spatial localization observed, the corre-
sponding flow curves (which are precisely those in Fig. 4) are
monotonic.

VI. VOLUME-SHEAR COUPLING IN ANNEALED
SAMPLES. THE CASE OF METALLIC GLASSES

The effects of volume-shear coupling that have been
discussed so far all correspond to situations of dynamical
equilibrium in the system, or in other words, they all describe
stationary situations. There are other situation, however, in
which we are interested in transient (although probably long-
lived) properties of the system. In many cases, this occurs
when an experiment is done on a sample prepared by some
ad-hoc protocol that leaves it in an out-of-equilibrium con-
figuration. To be concrete, we want to refer to the case of
metallic glasses [12–15]. They are usually prepared by anneal-
ing from a melt, and their configuration cannot by any means
be considered as an equilibrium one. When metallic glass is
submitted to an external load, the appearance of a shear band
is a highly nonequilibrium process. Yet the kind of models
we have presented can be used to model this scenario, and in
particular the effect of volume fluctuations on the behavior of
this kind of material.

The key to mimic the behavior of a metallic glass under
shear is to start with an initial configuration that appropriately
incorporates the annealed nature of the experimental initial
state. In our model, we can produce a starting configuration
that is more stable than the stationary one after long defor-
mation by adjusting the local disorder potentials at different

FIG. 8. Accumulated strain deformation (left column, the scale
value 1 corresponds to the nominal average deformation in all cases)
and instantaneous values of e1 (right column) in simulations at
the same value of λγ̇ = 0.1, in systems with different values of
shear-volume coupling parameter α, namely α = 0.1 (a), 0.2 (b), 0.3
(c), and 0.4 (d) (system size is 128×128). The long-term deforma-
tion is uniform in the first two cases, but is inhomogeneous in the
last two.

sites [16]. The local potentials are characterized by the val-
ues of e20 and e30, defining the local equilibrium strain, and
the corresponding values of 
 measuring the extent of the
corresponding basin. In stationary situations such as those
considered so far, the values of e0 have some dynamically gen-
erated dispersion, and 
 is randomly chosen from a uniform
distribution between 0.5 and 1.0. We can construct a more sta-
ble starting sample by appropriately modifying e0 and/or 
.

The possibility that is implemented here is to take a steady-
state configuration obtained after a long run with a constant
γ̇ , and setting the values of e20 or e30 to be equal to the
instantaneous values of e2 or e3. This generates [according
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FIG. 9. Stress-strain curves (using λγ̇ = 0.001) in samples with
different values of α as indicated, after an annealing in the initial
state, as described in the text. All curves display a stress overshoot
above the asymptotic values, but the effect is much stronger in
samples with large α.

to Eq. (23)] a state that is much more relaxed than the initial
steady state. This new configuration is taken as the initial state
onto which a finite strain rate γ̇ is applied, and the dynamics
is followed exactly as before.

The results obtained are shown in Fig. 9 for systems with
different intensities of volume-shear coupling. All curves in
Fig. 9 display a stress overshoot that is the hallmark of an-
nealed samples that are more stable than the asymptotic steady
state. Yet we see that the amplitude of the stress overshoot is
much more pronounced in samples with a larger value of α.
To have a deeper understanding of the effect of α, we must
investigate the local distribution of deformation in the sam-
ples. In Fig. 9 we have indicated three strain windows, labeled
(A), (B), and (C). The local distribution of accumulated strain
in each of these windows is indicated in Fig. 10 for three
different values of α, namely α = 0, 0.2, 0.4.

The case α = 0 serves as a reference, and it is similar to
that studied in Ref. [16]. We emphasize that even in this case,
an overshoot is observed in the stress-strain curve (Fig. 9). In
the strain window (A), when stress is still increasing in the
system, we observe rather isolated plastic events that do not
yet organize across the sample. In strain windows (B) and (C)
instead, when the stress peak has been overpassed, the plastic
strain is localized in a spatial region that can be termed a shear
band. The reason for this behavior is that in the shear band the
system was forced to escape from the initial annealed state,
and its critical stress is now lower than in the still annealed
part, which is nonflowing. This stabilizes the shear band in
the system. This shear band widens as ∼γ 1/2 when strain is
increased [36–38]. Notice that the strain localization at α = 0
is not observable in the distribution of the volume variable e1

[Fig. 11(a)].
The case of a finite shear-volume coupling (α > 0) pro-

duces some quantitative differences and also some qualitative
new phenomena. First of all, in Fig. 9 we clearly see how the
increasing part of the stress-strain curve is not very dependent
on the value of α, and in fact the spatial distribution of the
deformation in strain window (A) shows a rather uniform
deformation distribution independently of α. However, after
the stress peak is overcome, the stress decrease is much larger

FIG. 10. Accumulated spatial distribution of strain in the three
strain windows indicated in Fig. 9, for three different values of α.
Although for all values of α we observe strain localization, the effect
for larger α produces a much narrower shear band.

in samples with large α. The analysis of the spatial distribution
of deformation reveals that the accumulated strain at finite
α shows a stronger tendency to become more localized, and
a much weaker tendency to widen as strain increases. Most
remarkably, for values of α where we had previously observed
an instability of the homogeneous deformation situation (α �
0.2; see Fig. 8), we now observe that only a very thin shear
band is activated in the system, with all the rest remaining
in a rigid configuration. This is very clear in the plots cor-
responding to α = 0.4 in Fig. 10. Notice that as the shear
band does not run exactly along the diagonal (see Sec. III),
and because of the periodic boundary conditions, there are
some “mirror images” of the shear band, giving the impression
of a few different shear bands in the system. The very thin
shear bands observed in the presence of a strong volume-shear
coupling allow us to speculate that volume-shear coupling
is also an important ingredient in the dynamics of metallic
glasses, where failure by the nucleation of thin shear bands is
regularly observed.

We think the most remarkable effect of a finite α manifests
in the spatial distribution of the e1 variable (Fig. 11). While
for α = 0 we did not have any clue of the strain localization
from the distribution of e1, in the finite α case, particularly
when α � 0.2, this is not so. In fact, in Fig. 11(c) we clearly
observe that the localization of the shear band corresponds to
a region where the system is expanded (therefore facilitating
the shearing of the system in this region). We emphasize that
if we stop increasing the strain in the system, or even if strain
is reduced as necessary to reach a state of zero stress, the
spatial distribution of e1 remains essentially at the metastable
configuration shown in Fig. 11. Therefore, the localization of
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FIG. 11. Instantaneous distribution of the volumetric e1 variable,
right after the time window (C), for the three different values of α

presented in Fig. 10. The position of the shear band in the system
can be inferred from the distribution of e1 in the case in which
α is large.

the shear band where the system has yielded can be evaluated
after the full process has taken place by localizing the regions
of the sample that are expanded with respect to the starting
configuration.

VII. SUMMARY AND CONCLUSIONS

In this work, we have introduced a mesoscopic model for
the yielding behavior of amorphous materials incorporating
the possibility of volume-shear coupling. This ingredient is
acknowledged to have important experimental consequences,
but it has only rarely [22] been previously considered in
numerical models of the yielding transition. Volume-shear
coupling produces a number of effects in the phenomenology
of yield stress materials. It generates a change in the direction
of the shear bands in the system. Our numerical simulations
clearly show this angular deviation. We have applied the clas-
sical Mohr-Coulomb approach and the theory in Ref. [22] to
predict the deviation, and we find that the prediction in [22]
nicely fits our numerical results, whereas the Mohr-Coulomb
theory tends to overestimate the reorientation effect. Also, we
have observed that when the volume-shear coupling is strong
enough, there is a tendency of the system to generate a nonuni-
form deformation. In this case, there are regions that become
more expanded and therefore yield more easily, while others
remain in a more compact configuration and do not yield at all.
Finally, we have briefly discussed the effect of volume-shear
coupling in cases in which the sample is initially annealed
to obtain a starting configuration that is more stable than the
asymptotic configuration that appears as a stationary state af-
ter a very long deformation time. This situation is particularly
adapted to the phenomenology of metallic glasses. Now, when
the sample is strained, the stress in the system develops a
peak before smoothly decaying to the asymptotic stress value.
The case of no volume shear-coupling has been studied in
previous works [16,37,39] and it was observed that after the
strain corresponding to the stress maximum is exceeded, the
deformation in the sample localizes in a shear band. This band
progressively widens with further deformation as discussed in
Refs. [36,38]. Now in the case in which there is volume-shear
coupling, particularly when this is large, we observe that the
shear band that appears in the system is very thin, and we
do not detect clearly that it widens as deformation proceeds.
We observed that in the region of this thin band the system
is expanded, and this expansion remains even if deformation
is stopped and stress relaxes back to zero. All these findings
point to the utility of the present kind of model in the study
of shear stress materials for which shear-volume coupling is
important.
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