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Drag on a circular intruder traversing a shape-heterogeneous granular mixture
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The main aim of our work is to explore the effect of particle shape heterogeneity on the dynamics of an intruder
moving through a two-dimensional mixture of dumbbells and disks. In spite of similar physical conditions (the
mass of the dumbbell is the same as that of the disk) and the same area fraction, we noticed a significant difference
in the drag experienced by the intruder as the mixture concentration varies. The propagation of stress from the
intruder to the granular grains manifests in the form of force chains, and interestingly these force chains can
vary significantly depending on the shape of the grains. These differences, however, appear to be suppressed in
the frictionless case where the force chains cannot extend very far from the initial point of contact. Apart from
particle shape, the effect of the area fraction of the system and the size of the intruder have also been explored.
As the area fraction increases, the drag force on the intruder increases owing to the increase in the contact forces.
Finally, we present the velocity and stress fields at different dumbbell fractions and for various intruder diameters
to show the effect of the moving intruder on its surrounding particles.
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I. INTRODUCTION

A large solid particle moving through a system of smaller
particles has been a topic of interest due to its industrial
applications such as mining and related activities. Moreover,
because of the resemblance to the subsurface flows, it is find-
ing applications in the field of sand locomotion of robots as
well. These kinds of flows are still not completely understood
due to the complex nature of the granular materials [1–3]. A
prime focus in this type of flows is comprehending the drag
characteristics on the larger solid particle or intruder due to the
surrounding granular particles. The drag force on an intruder
traversing granular media depends on various parameters such
as the properties of the intruder, the external forces acting on
it, and the geometry of the particles surrounding it.

The intruder properties such as its velocity and direction
of motion significantly affect the drag experienced by it. For
example, in a high-velocity regime, the drag force increases
monotonically with the intruder’s velocity [4], whereas in a
low-velocity regime, it is independent of the intruder’s ve-
locity [5]. The drag force depends on not only the velocity
of the intruder but also its direction of motion within the
granular media: Liu et al. [6] noticed a higher drag when
the intruder moves vertically downward than when it moves
vertically upward in a gravity system. Surprisingly, the drag
force is noticed [7] to depend weakly on the shape of the
intruder (the cross section is the same for all shapes), at
least for the set of intruders studied. A similar observation
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has been reported by Albert et al. [3] for a low-velocity
regime.

In addition to the intruder properties, the drag force also de-
pends on the external forces. For example, the drag is noticed
[8–11] to be higher in a confined system than the one with
a free surface, due to the presence of the confining pressure.
Moreover, Zhou et al. [12] studied the motion of a cylindrical
intruder through a compact bed of ceramic particles under
high pressure to analyze the resistance offered by the particles
on the intruder. In addition, the drag increases with an increase
in the gravitational acceleration [13]. Even in a gravityless
system, the drag was observed to increase with the square
of the intruder’s velocity [14]. As may be expected, the drag
depends on the properties of the granular media surrounding
it. For example, Zhou et al. [9] reported a higher drag on
an intruder traversing a polydispersed granular media than a
monodispersed one owing to their packing effects. The drag
also depends on the shape of the granular particles. To this
end, Zhou et al. [11] noticed that drag is more in a system
of dumbbell-shaped granules than one of elliptical granules.
Further, the authors noticed an increase in the drag with an
increase in the aspect ratio of the ellipse particles. Most of the
previous studies on intruder dynamics involved a system of
spherical particles. However, in recent decades, understanding
the dynamics of nonspherical particles [15–17] has garnered
much interest in industrial and academic works. The reason
is their relevance to practical applications, where the particles
are usually mixtures of variegated shapes and sizes. A spe-
cial case is a mixture [18,19] of spherical and nonspherical
particles. To the best of our knowledge, there is hardly any
work that has studied the characteristics of an intruder moving
through a mixture of granular particles. In this regard, we
probed the drag characteristics of an intruder moving through
a mixture of disks and dumbbells in a two-dimensional
gravityless system. The paper is organized as follows: in
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the next section, the simulation technique is explained, and
in Sec. III the numerical results are reported along with
our interpretations. Finally, Sec. IV summarizes our key
findings.

II. SIMULATION METHODOLOGY

In this work we employed the discrete element method
(DEM) [20] to study the dynamics of a moving intruder and
its surroundings at different intruder sizes and at different
system properties such as its area fraction and the fraction
of dumbbells in it. To generate the initial configuration for a
system at φ = 0.43, first, we place the intruder of the required
size at the origin and then generate particles one by one at
random positions inside our system with enclosing walls at
y = ±3 m. During the generation of the particle positions,
if the newly created particle overlaps with any previously
existing particle or the intruder or the wall, then this new
particle is assigned to another randomly generated position
using a uniform distribution. This procedure is repeated un-
til we achieve the desired area fraction φ = 0.43 (100 000
particles). Additionally, to incorporate polydispersity for both
dumbbell and spherical particles, their sizes were also gener-
ated using a uniform distribution within the bounds of 10%
polydispersity. The system is large enough that the effect
of the seed of the random number generator becomes in-
significant for our quantification. For a higher area fraction
[φ = 0.77 (180 000 particles), 0.82 (188 000 particles)] we
followed a similar procedure as explained before; however,
initially, the system dimension along the y direction is kept
much larger than actually required. Then the y dimension
is reduced by slowly moving the walls towards each other
until the system reaches the required area fraction φ while
the intruder is fixed at the origin. The system is then al-
lowed to equilibrate till the total kinetic energy (KE) of the
particles reaches KE < 10−9 kg m2/s2. For ensuring that the
area fraction is homogeneous throughout the system, the local
area fraction is calculated along a grid of 0.01 m × 0.01 m to
ensure homogeneity within 2%. If the system is not homoge-
neous, a new system is created. The mean diameter of disk
particles is 0.01 m, while the dumbbells are constructed using
two equally sized, nonoverlapping, and fused disk particles
of mean diameter 0.007 m. This guarantees both disk and
dumbbell particles to have equivalent mass on average, while
a polydispersity of 10% avoids crystallization in the system.
At time t = 0, the intruder is moved at a constant velocity
Vi along the positive x direction for a total distance of 3 m.
Note that periodic boundary conditions are applied in the
x direction. Figure 1 shows an initial configuration of one
of our simulation systems with the circular intruder having
a diameter of 0.10 m placed at a distance of h = 3 m from the
top wall.

In the DEM technique, the positions and velocities of each
particle are updated at regular intervals by integrating the
equations of motion using the velocity Verlet algorithm. In the
equations of motion, only contact forces are considered since
ours is a gravityless system. For computing the normal ( f n

i j )
and the tangential ( f t

i j ) components of the contact forces on
particle i due to particle j, we adopt the contact force model

FIG. 1. One of the initial configurations showing the intruder
placed at the center (taken as the origin) of our system. Our granular
system consists of four different types of particles: a large intruder
shown in red of diameter 0.1 m, granular disks represented by a
lighter gray of diameter 0.01 m ± 10%, granular dumbbells repre-
sented by darker gray/black and created by gluing two equal disks
of diameter ∼0.007 m ± 10%, and granular disks of diameter 0.01 m
acting as the wall at y = ±3.0 m, represented by orange and frozen
in place for the entirety of the simulation. Moreover, the mass density
of all particles (mass/area) is set as 20 kg/m2, and the average mass
of disks and dumbells is similar when averaged across the system.
The x direction is kept periodic, and there is no gravity in any of
the simulations. The full initial configuration is shown on the right,
while the left panel shows a zoomed-in version near the vicinity of
the intruder (d = 0.01 m is the average diameter of granular disks).

[21,22] as

f n
i j =

√
did j

2(di + d j )

√
ξi j

(
knξi j n̂i j − meffγnṙn

i j

)
, (1)

f t
i j = −

√
did j

2(di + d j )

√
ξi j

(
kt�si j + meffγt ṙt

i j

)
. (2)

Here di and d j are the diameters and mi and mj are the
masses of particles i and j, respectively. The normal spring
constant kn = 2 × 109 (kg m−1 s−2), the tangential spring
constant kt = 2.456 × 109 (kg m−1 s−2), and normal and tan-
gential damping coefficients are γn = γt = 8 × 106 (m s)−1,
respectively. The values of kn and kt were calculated with
the Young’s modulus of the particles, E = 2 G Pa, Poisson
ratio ν = 0.3, and density ρ = 2000 kg/m3. The upper limit
of f t

i j is restricted to μ f n
i j for slipping between the contacts.

Two coefficients of friction μ (0 and 0.5) were considered in
the present study. n̂i j is the unit vector in the direction of
the line joining the centers of the particles i and j. Two
particles are said to be in contact if the overlap ξi j � 0. �si j

stands for the tangential displacement vector, and the normal
and tangential relative velocities are represented by ṙn

i j and
ṙt

i j , respectively. Moreover, meff = mimj

mi+mj
is the effective mass.

The time step is set to 2 × 10−6 s. The run time for the simula-
tion is calculated and adjusted to the time taken by the intruder
to cover a distance of 3 m in the x direction at a given velocity.
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FIG. 2. (a) The time-averaged drag force FD normalized by the square of intruder’s velocity Vi, (b) the stress decline slope σs, and (c) the
averaged number of particles in contact (Nc) as a function of intruder’s velocity Vi for the fractions of dumbbells (dbf rac) = 0, 0.5, and 1. The
area fraction is φ = 0.82, the coefficient of friction is μ = 0.5, and the diameter of the intruder is Di = 0.05 m.

The position and velocity of a dumbbell is its center of mass
and its center of mass velocity. The total force and torque
on a dumbbell are computed as the sum of the forces and
torques on its constituent particles. All the simulations were
performed using the LAMMPS [23] package, and OVITO
[24] was used for visualization.

III. RESULTS AND DISCUSSION

In this section, we will present the numerical results for an
intruder translating through a mixture of dumbbells and disks.

A. Dumbbell fraction

In this subsection, we studied the characteristics of a
moving intruder and its surroundings at various mixture con-
centrations. To this end, we computed the drag force (FD),
the coordination number (Nc) of the intruder, and the stress
decline slope (σs). In this work FD and Nc correspond to their
time-averaged values, and we note that the average doesn’t
include a few values at the beginning of the simulation to
avoid initial intermittencies. In this subsection, the area frac-
tion of the system is φ = 0.82, the coefficient of friction is
set to μ = 0.5, and the diameter of the intruder is taken as
Di = 5 cm. At all fractions of dumbbells db f rac, the drag force
FD increases quadratically with an increase in the intruder’s
velocity Vi [see Fig. 2(a)]. A similar result has been noticed
for an intruder placed inside a two-dimensional system of
spherical granules [25]. However, at a very low intruder’s
velocity (Vi � 0.01), the drag force doesn’t scale as V 2

i for all
the fractions of dumbbells. This is because, in a quasistatic
regime (Vi � 0.01), the drag force is weakly dependent on
the intruder’s velocity. In this regime, the drag mainly de-
pends on the heterogeneous distribution of stresses in the
granular media [5]. As the intruder traverse granular media,
a dense structure of particles evolves progressively in front

of the intruder and then gets saturated [14]. This structure
comprises particles that are interconnected through a network
of contacts or force chains, and it is accompanied by the cyclic
evolution and the breakage of force chains. The drag force on
the intruder moving through a system of spherical particles is
mainly due to the alternating evolution and buckling of force
chains in the material and the interparticle friction [26]. At
the same coefficient of friction, the drag force increases with
an increase in the fraction of dumbbells db f rac [see inset of
Fig. 2(a)]. This result can be attributed to a decrease in the
frequency of force-chain buckling events with an increase in
db f rac. This is due to an increase in the mutual resistance
to the relative motion of the particles in contact, particularly
the “a” type of contacts as shown in Fig. 3. Two types of
contacts are possible between two particles if at least one of
those is a dumbbell. In the first type, both parts of a dumbbell
are simultaneously in contact with either disk or one part of
another dumbbell [Fig. 3(a)], whereas in the second type, only
one part of a dumbbell is in contact with a disk or one part
of another dumbbell [Fig. 3(b)]. As the fraction of dumbbells
increases, the chances of occurrence of the “a” type of con-
tacts increases, resulting in an increase in the interlocking
type of phenomena. This yields a decrease in the frequency

(a) (b)

FIG. 3. The two possible types of contacts in a dumbbell-
dumbbell or dumbbell-disk interaction. (a) The two parts of a
dumbbell are simultaneously in contact with a disk or one part of
another dumbbell. (b) Only one part of a dumbbell is in contact with
a disk or one part of another dumbbell. Here the green ones represent
dumbbells and the pink ones that of disks.
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FIG. 4. The magnitude of stress σ as a function of distance from the intruder’s front surface (a) for different dumbbell fractions dbf rac and
φ = 0.82, (b) for different intruder velocities Vi with systems having dbf rac = 0.5 and φ = 0.82, (c) for different area fractions φ with systems
having dbf rac = 0.5 and at Vi = 0.10 m/s, and (d) for different intruder diameters (Di) with φ = 0.77. The coefficient of friction is μ = 0.5 in
all the cases, and the intruder diameter Di = 0.05 m is in panels (a), (b), and (c).

of buckling events in the structure in front of the intruder or in
other words an increase in the drag force on the intruder.

After analyzing the drag on the intruder, we studied its
effect on the particles in front of it in terms of the magnitude
of the stress decline slope σs. In a plot of the stress σ vs the
distance from the intruder surface (shown in Fig. 4), σs is the
slope of the line of best fit. The stress tensor σab on the ith
particle due to its Np pairwise interactions is calculated as

σab = 1
2×A�

Np

j=1(ria Fib + r ja Fjb ) where a and b take on x and
y values to produce the components of the stress tensor. Here
r is the position of the particles, F is the force due to the
pairwise interaction, and A is the area of the ith particle. The
stress is calculated as σ = − 1

2 (σxx + σyy). Usually the stress
is maximum in the region close to the intruder. The distance
between the intruder surface and the region at which the
stress is equal to the average stress of the system doesn’t vary
significantly due to a change in the properties of the system
or the intruder. The reason for this is the absence of gravity.
A higher σs indicates a higher stress near the intruder surface
and a rapid decrease in stress as a function of the distance

from the intruder surface. As the intruder velocity increases,
σs increases because the intruder exerts more stress on the
particles close to it [Fig. 2(b)]. Moreover, σs increases with
an increase in the fraction of dumbbells. This behavior can be
attributed to the interlocking type of phenomena that occurs
with the dumbbell particles, which results in a higher stress
close to the intruder. The drag force in the granular media
arises from the particles in contact, and if the average force
exerted by each contacting particle is constant, then the more
the number of contacts, the greater the drag on the intruder.
The increase in the number of contacts Nc with an increase
in the intruder’s velocity Vi as noticed in Fig. 2(c) is consis-
tent with the drag force result. A similar result was observed
previously for a system of disk particles [27]. As the fraction
of dumbbells increases, the number of contacts Nc increases.
This is due to a decrease in the frequency of buckling events in
the region in front of the intruder because of the interlocking
type of phenomena experienced by the dumbbells. We have
also shown the similar analysis for systems with φ = 0.43 and
0.77 in Figs. S1 and S2 in the Supplemental Material [28].
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FIG. 5. The probability distribution function 	 of the stress σ experienced by the intruder for four different velocities of the intruder Vi:
(a) 0.005 m/s (b) 0.02 m/s (c) 0.1 m/s, and (d) 0.25 m/s. Here dbf rac = 0 and 1 are the fraction of dumbbells in the system.

The probability distribution function (PDF) of stress ex-
perienced by the intruder at different fractions of dumbbells
is studied to understand the effect of interlocking potential
of dumbbells on the intruder (Fig. 5). Irrespective of the in-
truder’s velocity, the stress is noticed to be higher in the case
of dumbbells as compared to that of disks. This further justi-
fies our claim regarding the interlocking type of phenomena
noticed in a system involving dumbbell particles. The drag
force on the intruder is due to the particle contacts around its
entire periphery. Hence, we analyzed the number of contacts
and their relative stress contributions at different angular po-
sitions on the intruder surface. Note that the stress mentioned
above corresponds to the average normal stress, which is com-
puted as σ = −1/2(σxx + σyy). In this regard, we displayed
the stress distributions around it in Fig. 6 for φ = 0.82 and
μ = 0.5. Note that the angular positions θ correspond to the
region around the intruder, and they are computed concerning
the center of the intruder. In both distributions, the angular
positions ranging from 0 ◦ to 180 ◦ correspond to the region
around the top half of the intruder, whereas the ones from 0 ◦
to −180 ◦ correspond to the lower half of the intruder where

0 ◦ is in front of the intruder and ±180 ◦ is at the rear end as
shown in the inset of Fig. 6(f). As the intruder moves through
the granular media, a wake is formed behind it for all the
fractions of dumbbells, which can be noticed in Ncθ

= 0 at
90 ◦ < θ < 180 ◦ and −180 ◦ < θ < −90 ◦ in Figs. 6(a)–(c).
Potiguar and Ding [4] reported the formation of the wake
behind the intruder at high intruder velocities. However, in our
work, we noticed the formation of wake even at velocities of
the intruder as low as Vi = 0.005 m/s and for all fractions of
dumbbells because of our system being a gravityless one. The
particles colliding with the intruder are mainly confined to the
front part of the intruder in the sense: −90 ◦ < θ < 0 ◦ and
0 ◦ < θ < 90 ◦. The number of contacts at different angular
positions increases with an increase in either the intruder’s
velocity or the fraction of dumbbells. This result is coherent
with that of the average number of contacts as a function of the
intruder’s velocity as shown in Fig. 2(c). The averaged stress
(Pθ ) in the region around the intruder is confined to the angular
positions between 0 ◦ and ±90 ◦ because particles lying only
in this region collide with the intruder as noticed in the Ncθ

.
At different θ , the averaged stress at each angular position

014901-5



TRIPURA, KUMAR, ANYAM, AND REDDY PHYSICAL REVIEW E 106, 014901 (2022)

0

100

200

300

−180 −90 0 90 180

(d)

dbfrac = 0

Vi(m/s)

0

100

200

300

−180 −90 0 90 180

(e)

dbfrac = 0.5

0

100

200

300

−180 −90 0 90 180

(f)

dbfrac = 1

P
θ
(N

/m
2
)

θ

0.005
0.01
0.05
0.10
0.15

θθ

0

0.4

0.8

1.2

1.6

2

−180 −90 0 90 180

(a)

0

0.4

0.8

1.2

1.6

2

−180 −90 0 90 180

(b)

0

0.4

0.8

1.2

1.6

2

−180 −90 0 90 180

(c)

N
c,

θ

FIG. 6. The average number of particles in contact Ncθ
as a function of angular position (θ ) for the fraction of dumbbells dbf rac = (a) 0.0,

(b) 0.5, and (c) 1.0. The average pressure Pθ as a function of angular position at different intruder velocities Vi for the fraction of dumbbells
dbf rac = (d) 0.0, (e) 0.5, and (f) 1.0. The coefficient of friction is μ = 0.5, the area fraction is φ = 0.82, and the inset in (e) displays how the
angular positions are calculated around the intruder surface.

increases with an increase in the fraction of dumbbells. This
result further justifies our claim that with an increase in the
fraction of dumbbells there is an increase in drag in a frictional
system. Apart from the interparticle friction, the geometry
of the particles in front of the intruder also contribute to an
increase in the stress or the drag force [11], whereas for the
frictionless system, i.e., μ = 0.0 (shown in Fig. S3 of the
Supplemental Material [28]), the magnitude of drag force ex-
perience around the intruder surface does not vary much even
with an increase in the fraction of dumbbells. To understand
the sole effect of the geometry of the particles on the drag
force experienced by the intruder, we study the same for the
frictionless systems [11] at different fractions of dumbbells in
the next subsection.

B. Absence of frictional forces

In this subsection, the coefficient of friction is set to
μ = 0.0. The area fraction of the system is φ = 0.82, and the
diameter of the intruder is taken as Di = 0.05 m. The drag

force increases with an increase in the fraction of dumbbells
in a frictional system, as seen in the inset of Fig. 2(a). Sur-
prisingly, in a frictionless system, we noticed an anomalous
behavior in the intruder’s drag [Fig. 7(a)], and in a sense,
the drag is almost independent of the fraction of dumbbells.
The tangential forces between the particles are primarily re-
sponsible for the interlocking type of phenomena exhibited by
the dumbbells. In a frictionless system, the tangential forces
are absent, and hence the ability of the dumbbells to show
interlocking type of phenomena is negligible. Therefore, in
such systems, the drag experienced by the intruder is not
significantly affected by the fraction of dumbbells. This result
reveals that the effect of the particle geometry on the drag
dynamics of the intruder can be witnessed only in a frictional
system. To this end, we point out that it is difficult to isolate
the sole effect of the geometry of the particles on the intruder’s
drag as the geometry and the frictional forces between the
particles seem to be interrelated [11]. In addition, the drag
force experienced by the intruder in a frictional system is 3
(db f rac = 0.0) to 9 (db f rac = 1.0) times higher than that of
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FIG. 7. (a) The time-averaged drag force FD, (b) the stress decline slope σs, and (c) the averaged number of particles in contact (Nc) as a
function of intruder’s velocity Vi for the fractions of dumbbells (dbf rac) = 0, 0.5, and 1. The coefficient of friction is μ = 0.0, the area fraction
is φ = 0.82, and the diameter of the intruder is Di = 0.05 m.

the frictionless system. This can be attributed to the size of
the cluster of particles in front of the intruder. In the sense, the
cluster size is smaller for a frictionless system as compared to
that of the frictional system. The tangential forces which are
mainly responsible for the evolution of clusters in front of the
intruder are absent in a frictionless system leading to smaller
cluster size. It was previously noticed that the friction between
the contacting particles increases the inherent stability and
formation of strong force chains [29], thus supporting our
claim regarding the cluster size. The stress decline slope varies
insignificantly with the fraction of dumbbells [Fig. 7(b)] at
all intruder velocities. This is due to the minimal effect of an
interlocking type of phenomena among dumbbells in a fric-
tionless system, as explained above. Due to the same reason,
the average number of contacts of the intruder remains almost
the same for the entire fraction of dumbbells [Fig. 7(c)], unlike
a significant difference that has been noticed in the case of
a frictional system [Fig. 2(c)]. The results obtained from the
frictional and the frictionless system reveal that the frictional
interactions between the particles play a major role in the
drag dynamics of an intruder. One of the major factors which
determine the number of frictional interactions is the area
fraction of the system. In the next subsection, we will address
the effect of the area fraction of the system on the intruder’s
drag.

C. Area fraction

In this subsection, we analyze how the dynamics of an
intruder and its surroundings is affected by the area fraction of
the system comprising dumbbells and disks. The area fraction
(φ) of the system is computed as

φ = Ag

As − Ai
. (3)

Here Ag is the total area occupied by granular particles, As

is the area of our system, and Ai is the area of the intruder.
The area fraction of the system φ = 0.43, 0.77, and 0.82 is

achieved by using 100 000, 180 000, and 188 000 granular
particles, respectively, while fixing the system dimensions the
same for all the cases. Note that in this subsection, the fraction
of dumbbells is db f rac = 0.5, the coefficient of friction is
set to μ = 0.5, and the diameter of the intruder is taken as
Di = 0.05 m. The frictional forces come into play when two
particles interact with each other in a granular medium. As
may be expected, a system with a higher area fraction will
have a larger number of frictional interactions among the
particles. Apart from an increase in the frictional interactions,
a denser granular system results in the evolution of stronger
force chain networks that offer greater resistance to the move-
ment of an object through the granular medium [30–32].
These could be the reasons for an increase in the drag force
with an increase in the area fraction for all the fractions of
dumbbells [Fig. 8(a)]. The drag force on the intruder for φ =
0.82 is ten times more than what it experiences in a system
with φ = 0.43. So one can infer that, in a denser system, the
intruder exerts greater stress on the particles in front of it. Con-
sequently, the stress decline slope increases with an increase
in the area fraction [Fig. 8(b)]. Interestingly, the drag force on
the intruder is noticed to scale as the square of its velocity Vi

irrespective of the area fraction of the system. Moreover, the
number of contacts of the intruder increases with an increase
in the area fraction [Fig. 8(c)], which results in higher stress
or, in other words, a higher drag force experienced by the
intruder.

D. Diameter of the intruder

The effect of various parameters of the system on the drag
dynamics of the intruder has been discussed in the previous
subsections. In this subsection, we are going to elucidate the
drag dependence on the intruder’s geometry. To this end, we
analyzed the system for five different diameters of the in-
truder, starting from the size of the disk (d) and ranging up to
10d . For all cases, the fraction of dumbbells is db f rac = 0.5,
the area fraction of the system is set to φ = 0.77, and the
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FIG. 8. (a) The time-averaged drag force FD, (b) the stress decline slope σs, and (c) the number of contacts (Nc) as a function of the
intruder’s velocity Vi for systems with an area fraction of (φ) = 0.43, 0.77, and 0.82. The fraction of dumbbells (dbf rac) is 0.5, the diameter of
the intruder (Di) is 0.05 m, and the coefficient of friction (μ) is 0.5.

coefficient of friction is μ = 0.5. The drag force increases
as the diameter of the intruder (Di) increases, as shown in
Fig. 9(a). This is due to an increase in the size of the structure
of particles in front of the intruder with an increase in Di. The
reason for this is as Di increases, the surface of the intruder
available for the particles in front of it to form a structure
increases, which increases the size of the structure. Similar
behavior of an increase in the drag force experienced by
the intruder with an increase in the intruder’s diameter was
noticed in both the confined [10] as well as the nonconfined
[5,33] granular media. The drag force is noticed to scale as the
square of the intruder’s velocity V 2

i [see Fig. 9(a)]. Moreover,
the magnitude of drag force experienced by an intruder having
a diameter of Di = 0.1 m is on average six times more than
that of the one having Di = 0.01 m. Interestingly, when we
plot the drag force normalized by the intruder’s diameter as
a function of velocity Vi [Fig. 9(b)], all the data collapse
onto a single curve. This indicates that the drag force scales
as the diameter of the intruder. Figure 9(c) shows that the
stress decline slope increases as the intruder diameter in-
creases. This result suggests that the stress experienced by
the particles close to the intruder surface increases with an
increase in intruder diameter (Di) due to an increase in the
drag force. However, the distance from the intruder at which
the stress is equal to the average stress of the system doesn’t
vary significantly with Di. Therefore, the stress decline slope
increases with an increase in Di. An increase in the intruder’s
diameter increases the surface available for the surrounding
particles to get in contact with it. This yields an increase in the
number of contacts with an increase in the intruder’s diameter
[Fig. 9(d)].

E. Mean flow fields

We have generated time-averaged flow fields by using
discrete microscopic data such as velocities, positions, and
stress of each of the particles in a designated region around
the intruder. The Gaussian coarse-graining function, as imple-
mented by Glasser and Goldhirsch [34], is used to calculate

the parameters such as the area fraction φ(t ), velocity v(t ),
stress tensor σi j(t ), and pressure P(t ) at a spatial location p
with a position vector rp and at an arbitrary time t as

φ(t ) =
[

n∑
i=1

πd2
i

4
W (rp − ri(t ))

]
, (4)

v(t ) =
[

n∑
i=1

πd2
i

4
viW (rp − ri(t ))

]
/φ, (5)

σ i j (t ) =
n∑

i=1

n∑
j=i+1

(Fi jri j )
∫ 1

s=0
W (rp − ri(t ) + sri j ) ds, (6)

P(t ) = −tr[σi j (t )]

2
, (7)

W (r) = 1

πw2
e−r2/w2

. (8)

Here W (r) is the coarse-graining function, and di and ri(t )
are the diameter and the position vector of the particle i, re-
spectively. The i and j correspond to disks or each constituent
part of a dumbbell, and n is the total number of disks and
constituent parts of a dumbbell. Fi j is the force on the particle
i due to particle j, and ri j is a vector in the direction of
line joining the centers of two particles i and j. Moreover,
w = 1.0 and W (rp − ri) = 0 if |rp − ri| > 3w, and φ, v, and
P are the time-averaged area fraction, velocity, and pressure,
respectively. The presented flow fields correspond to a circular
region of radius 0.15 m (∼15 × d ), whose center is at the
center of the intruder, and are time-averaged over 10 000
frames. Here d denotes the average diameter of the disk.
The system size, however, is much bigger than the above-
mentioned region. Typically the effect of the motion of the
intruder on the granular particles occurs locally within this
distance, and these results are shown to highlight the effect of
the intruder’s motion on the dynamics of surrounding granular
particles. In the present study, we considered a large enough
simulation system such that the drag force on the intruder is
independent of the system size, and we made sure that the
walls and periodic boundary are not significantly influencing
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FIG. 9. (a) The time-averaged drag force FD, (b) the drag force normalized by the intruder’s diameter (FD/Di), (c) the stress decline slope
σs, and (d) the number of particle contacts (Nc) as a function of the intruder’s velocity Vi for different diameters of the intruder (Di). The
fraction of dumbbells (dbf rac) is 0.5, the area fraction of the system (φ) is 0.77, and the coefficient of friction (μ) is 0.5.

the dynamics of the intruder (the intruder is kept far away from
the wall).

Figures 10(a), 10(b), and 10(c) illustrate the time-averaged
pressure fields for the fraction of dumbbells db f rac = 0.0,
0.5, and 1.0, respectively. At all fractions of dumbbells, the
pressure is maximum near the front surface of the intruder.
Moreover, a high-stress zone (the regions in red are noticed
in front of the intruder due to the formation of a cluster of
particles as we have explained earlier. The pressure decreases
as the distance from the intruder’s front surface increases.
The reason for this behavior is that the intruder can transmit
stress to only the particles lying closer to it because ours is a
gravityless system. Figures 10(d), 10(e), and 10(f) show the
velocity V fields for db f rac = 0.0, 0.5, and 1.0, respectively.
The zones in red in front of the intruder are noticed in velocity
fields as well, which further confirms the presence of the
cluster. Moreover, the velocities of particles in front of the
intruder increase with an increase in the fraction of dumb-
bells. This can be attributed to an increase in the interlocking
type of phenomena where a certain type of particle contacts

(Fig. 3) involving dumbbells resist their relative motion. Fig-
ures 10(g)–(i) display the mean flow fields of shear stress |σxy|
for different fractions of dumbbells. Here |σxy| is the magni-
tude of shear stress. The particles whose y position is almost
equal to that of the intruder’s y position does not detour around
it; instead, they move ahead along with it. This results in the
absence of shear stress at y = 0.0. Due to the movement of the
intruder, the particles near the front surface of it, other than
the ones mentioned above, are impelled to detour around it.
This creates a relative motion between the contacting particles
around the surface of the intruder. Consequently, high shear
stress is experienced by these particles, which correspond to
the regions in deep red. However, this phenomenon is not
significant at positions far away from the intruder as there is
hardly any relative motion between the particles. Shear stress
is almost zero in the regions above and below the intruder as
the particles in those regions are unaffected by its movement
because our system is a gravityless one.

Figures 11(a), 11(b), and 11(c) show the mean pres-
sure fields at the diameters of the intruder Di = 0.01 m,
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FIG. 10. The time-averaged flow fields for depicting pressure
P (N/m2), velocity V (m/s), and shear stress |σxy| (N/m2) in front
of the intruder for different fractions of dumbbells (dbf rac): (a), (d),
(g) 0.0, (b), (e), (h) 0.5, and (c), (f), (i) 1.0. The modulus of σxy

indicates the magnitude of shear stress. The diameter of the intruder
is Di = 0.05 m, Vi = 0.05 m/s, the coefficient of friction μ = 0.5,
and the area fraction (φ) of the system is 0.82.

0.05 m, and 0.10 m, respectively, for db f rac = 0.5. As the
intruder diameter increases, the high-stress zone expands in
front of it. This is because the larger the intruder surface
available, the larger the size of the cluster it can hold in
front of it, particularly in the y direction. The regions in
red in the velocity fields increases with an increase in Di

[Figs. 11(d)–11(f)]. This result supports our claim that the size
of the cluster increases with an increase in the intruder’s diam-
eter. The velocities of the particles on the front surface of the
intruder experience the same velocity as that of the intruder.
The velocity reduces gradually as the distance from the in-
truder increases due to a decrease in the stress transmission as

FIG. 11. The time-averaged flow fields for depicting pressure
P (N/m2), velocity V (m/s), and shear stress |σxy| (N/m2) in front
of the intruder for different intruder diameters (Di): (a), (d), (g)
0.01 m, (b), (e), (h) 0.05 m, and (c), (f), (i) 0.10 m. The velocity of
the intruder is Vi = 0.05 m/s, μ = 0.5, φ = 0.77, and the fraction of
dumbbell (dbf rac) in the system is 0.5.

noticed in Fig. 11(a). As the diameter of the moving intruder
increases, more layers of particles in front of it are forced to
detour around a larger distance and then get detached from it.
This yields a relative motion among the particles at different
radial distances from the intruder’s center. Consequently, the
shear stress increases with an increase in the diameter of the
intruder [see Figs. 11(g)–11(i)]. In the Supplemental Material
[28] we have also shown the flow fields of φ = 0.82 with
μ = 0.0 for different dumbbell fraction (shown in Fig. S4),
Fig. S5 shows the flow fields for φ = 0.77, μ = 0.5, and
Fig. S6 for db f rac = 0.5, μ = 0.5 at different area fraction.

IV. CONCLUSION

In this work we studied the dynamics of a moving in-
truder and its effect on a mixture of dumbbells and disks in
the absence of gravity. To this end, we studied the effect of
parameters such as the fraction of dumbbells, area fraction,
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and the intruder’s diameter and its velocity. The drag force
on the intruder moving through granular media increases with
an increase in the fraction of dumbbells at constant area frac-
tion. This is due to an additional resistance offered by the
dumbbells apart from the interparticle friction. Surprisingly,
the so-called additional resistance seems to be insignificant in
the absence of interparticle friction. In a sense, the drag force
is independent of the fraction of dumbbells in a frictionless
system. Another interesting result is the drag force on an
intruder scales as the square of its velocity irrespective of
the fraction of dumbbells (Vi is in the range of 0.001 m/s to

0.25 m/s), the area fraction of the system, or the intruder’s
diameter. Furthermore, we presented the mean flow fields to
show the response of the granular media to a moving intruder.
They revealed that the stress experienced by the particles in
front of the intruder increases with an increase in the intruder’s
diameter. This is due to an increase in the size of the cluster
of particles formed in front of it resulting from an increase
in the intruder’s surface. Moreover, as the diameter of the
intruder increases, it forces the larger number of particles in
front of it to detour around it. This results in greater shear
stress experienced by the particles in front of the intruder.
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