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Anisotropic viscous effects of local flow by a rotating microparticle in nematic liquid crystal
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The presented study opens a perspective to investigate the effects of local flow on nematic liquid crystals. A
particle rotated in nematic fluids typically generates a rotationally symmetric local flow, which causes a change
in the director orientation. The director above the threshold velocity has a particular angle determined by the ratio
of Leslie coefficients, α2/α3. In 5CB liquid crystals, this director angle with respect to the flow is approximately
13◦. The angle is calculated through Ericksen-Leslie theory. The angle is not dependent on rotation frequency or
particle size but temperature. The area of the influenced region increases with the rotation frequency and particle
size. The changes in radius of the influenced region are calculated theoretically using Ericksen number. Further,
an interference pattern appears at the edge of the influenced region by the refractive indexes mismatch between
the influenced region and the rest. We experimentally obtain the thickness of the influenced region analyzing
intervals of the pattern.
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I. INTRODUCTION

Nematic liquid crystals (NLCs) have not only fluidity but
also long-range orientational ordering between molecules,
which distinguishes them from isotropic fluids. The most
remarkable features of NLCs are an appropriate degree of
elasticity and various anisotropies on the macroscopic scale
[1,2]. Liquid crystal (LC) molecules tend to align in an orien-
tation similar to that of adjacent molecules, where the average
orientation is called the director. The director can be con-
trolled by external fields, the properties of the substrates in
which the LCs are constrained, and so on [3]. Furthermore,
flow is also one of the most important factors that influence
the director; in particular, the direction and gradient of the
flow play a critical role. We can observe not only changes
in the alignment of the director but also various instabilities
of the system by generating a flow in a uniformly aligned LC
cell [4–9]. Rich responses of the LC director can result from
different types of shear flow and shapes of the cell confining
the LCs [10–15].

In nematic fluid research, the anisotropy of viscosity in
addition to flow is also important. Anisotropy of viscosity
can be expressed through Miesowicz viscosity and Leslie
coefficients, and the hydrodynamics of nematic fluids can
be analyzed through the theories from Ericksen and Leslie
[16–20]. From anisotropic viscosity, we can observe many
interesting phenomena that do not appear in isotropic fluids
[21–26]. For example, a Poiseuille flow in a uniformly and
obliquely aligned LC to the flow creates transverse pressure
[27]. Additionally, because the sign and magnitude of the
coefficients play an important role in determining the size
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or orientation of the phenomena, many studies on various
physical quantities of LCs have been conducted [28–32].

To date, most research on the behavior of LCs has focused
on large-scale flow, while the effects of local flow on LCs
have received relatively less attention. Among the studies
on the effects of local flow, Rovner et al. observed various
phenomena resulting from dispersed ferromagnetic discs ro-
tated by a magnetic field in uniformly aligned LCs [33]. They
pointed out that the alignment of the director around each disc
changes when the angular velocity of the disc exceeds a cer-
tain threshold, and also that the relaxation of the phenomena
is affected by the ratio between elasticity and viscosity when
rotation is stopped [33]. However, they did not investigate
the alignment change of the director further or the cause of
the change in detail. In the present work, we experimentally
generate a local flow on the single-particle scale using micro-
sized ferromagnetic spheres in NLCs and a rotating magnetic
field. We apply Ericksen-Leslie theory on this scale and reveal
not only the details of the director alignment in the region
where the flow exceeds the threshold velocity and its cause
but also the shape of the region where the alignment change
happens. The related phenomena are calculated through the
viscous torque exerted on the director and the proposed model
that considers the distance from the substrate in the Ericksen
number.

II. EXPERIMENTS

We used a mixture of NLCs and spherical ferromagnetic
particles in a rotating magnetic field to generate a local flow.
The mixture was prepared through the following process.
Ferromagnetic spheres approximately 8–30 μm in diameter
were dispersed into deionized water at a concentration of 1%.
The ferromagnetic spherical particles (CFM-80-5 and CFM-
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FIG. 1. (a) Schematic diagram of the sample structure. (b) Schematic diagram of the stage in which an in-plane rotating magnetic field can
be applied to samples. TEC represents a thermoelectric cooler. (c) Plot of the direction of the magnetic field as a function of time.

300-5, Spherotech) comprise a polystyrene core and a CrO2

thin outer layer; the mass ratio of CrO2 is about 3–5%. The
polystyrene and CrO2 were approximately 1.05 g/cm3 and
4.89 g/cm3 in density, respectively, so that the particles were
slightly denser than the NLCs at 1.01 g/cm3. Next, we put
the deionized water and particle mixture into vials and dried
in a fume hood for 1 to 2 days. We then added 4-Cyano-
4′-pentylbiphenyl (5CB) or N-(4-Methoxybenzylidene)-4-
butylaniline (MBBA) into the vials. The 5CB and particle
mixture was used in all the experiments except for when
observing the temperature dependency of the results.

We conducted experiments with cells in which the director
was vertically aligned to the substrates. The cells were made
by sandwiching two sheets of glass coated with lecithin with a
cell gap of 60 μm using double-sided tape. Before coating the
glass with lecithin, it was cleaned with detergent, acetone, and
ethanol using a sonicator for 15 min, after which it was dried
at about 70 ◦C for 15 min. The mixtures were then injected
into the prepared cells [Fig. 1(a)].

The samples were placed on a stage in which an in-plane
rotating magnetic field was applied using four electromagnets
[Fig. 1(b) and 1(c)]. Each electromagnet was arranged at 90◦
with respect to the adjacent magnets and had a phase differ-
ence of π/2. The magnetic field was approximately 50 gauss
in amplitude and 0.1–2 Hz in frequency. We limited the range
of frequency to 2 Hz in this experiment as the textures around
the rotating particles drastically changed over roughly 2 Hz,
differing by particle. We controlled the temperature using a
thermoelectric cooler. We observed the behavior of the parti-
cles in response to varying magnetic field rotation frequency
and temperature through a polarizing optical microscope.

III. RESULTS AND DISCUSSION

We observed the phenomena appearing around rotating
particles with a rotation axis parallel to the director in a
homeotropic cell. We interpreted the phenomena through the
viscous anisotropy and the Ericksen number that compares the
flow and the elastic properties.

A. Director alignment around a rotating particle

The rotating particles created a surrounding distinct re-
gion under crossed polarizers, implying that a change in the
director alignment appeared around the particles. We also

observed a dark cross around the particles [Figs. 2(a) and
2(b)]. This dark cross was oppositely oblique against the ro-
tating direction of the particles. When we rotated a polarizer
and an analyzer counterclockwise at the same time, the dark
cross also rotated at the same degree [Fig. 2(d)]. This means
that the alignment of the director around the rotating particles
has rotational symmetry and also that the orientation of the
director in the dark cross coincides with the orientation of the
polarizer or the analyzer. We also obtained images by rotating
only the polarizer with no analyzer [Fig. 2(e)]. In this case,
only light with a polarization parallel to the polarizer reaches
the sample. Because scattering by thermal fluctuation of the
director is stronger when the polarization is parallel to the
director than when it is not, such a region looks darker [34].
Considering the overall information from Fig. 2, we determine
that the director is aligned with an orientation close to the
tangent of the particles. We can obtain theoretical values of
the orientation of the director from the calculation described in
the following paragraphs. The director around a counterclock-
wise rotating particle is aligned parallel with the polarizer at
ψ = 77◦ or with an analyzer at ψ = −13◦ [Fig. 2(c)], where
ψ is defined in Fig. 2(a).

A rotating particle produces a flow that has the same ve-
locity as that of the particle surface. The flow spreads to
the bulk and tends to change the director alignment. On the
other hand, the elasticity of the NLCs resists this alteration.
The relation between flow and elasticity is expressed by the
Ericksen number. When the velocity of the flow exceeds the
threshold value, a transition of the director alignment occurs.
The director above the threshold velocity of the flow is aligned
at a particular angle with respect to the shear flow, which is
called the Leslie angle. We theoretically calculated the angle
through Ericksen-Leslie theory [16–20] as below, and com-
pared the calculated director alignment to the experimental
data.

Consider the coordinate system in Fig. 3. To express the
alignment of the director, a torque exerted on the director is
necessary. Viscous torque under certain flow can be written as

� = −n × (γ1N + γ2An), (1)

where N = Dn/Dt − � × n is the relative angular velocity
of the director, with D/Dt the material derivative [35] and
� the vorticity or rate of rotation which can be written as
(∇ × v)/2 where v is the velocity vector of the flow in a
nematic fluid and vi is the ith component of the velocity. In
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FIG. 2. Images from (a) counterclockwise or (b) clockwise rotating particle under crossed polarizers. An oblique dark cross dependent on
the rotation direction appears. (c) Image with a schematic diagram of the director (blue lines) overlaid around the rotating particle. (d) Images
from rotating crossed polarizers from 0 to 90◦. The director is aligned parallel with the polarizer or analyzer in the dark cross in each image.
(e) Images obtained by rotating the polarizer with no analyzer from 0 to 180◦. Because scattering is strong at the position where the orientation
of the director coincides with the polarization direction of light, the director is aligned parallel with the polarizer in the dark cross. The particle
in (d) and (e) rotates counterclockwise.

Eq. (1), Ai j = (∂vi/∂x j + ∂v j/∂xi )/2 is the rate of strain, n
is the director, γ1 = α3 − α2 is the rotational viscosity and
γ2 = α3 + α2 is the viscosity that the irrotational flow ex-
periences, and αi are the Leslie coefficients, which are six
coefficients characterizing the anisotropic viscosity connected
via Onsager-Parodi relationship. α2 determines the degree of
torque exerted on the director aligned perpendicular to the

FIG. 3. (a) Schematic diagram of the velocity distribution around
a counterclockwise rotating particle. The red arrows indicate velocity
vectors. The flow has a tangential velocity that decreases further from
the particle. (b) Schematic diagram of the orientation of the director.

velocity direction and parallel to the gradient direction, which
always has a negative value. α3 determines the degree of
torque on the director aligned parallel to the velocity, which
generally has a relatively small value. n can be expressed as
(sin θ cos φ, sin θ sin φ, cos θ ), treating θ as the polar angle
and φ as the azimuthal angle with the axis perpendicular to
the substrate (z axis) [Fig. 3(b)].

We have to know the velocity distribution around a rotating
particle to calculate the viscous torque (�). Because a flow
has the same velocity as that of the particle surface with a
rigid boundary condition and the system has complete rota-
tional symmetry about the rotation axis, velocity occurs in a
tangential direction (ψ̂) and becomes smaller as it is further
away from the particle. ψ̂ is a unit vector of the azimuthal
angle defined as ψ in Fig. 2(a). Considering that the velocity at
the surface is large at the equator and becomes smaller closer
to the poles, velocity depends on all (x, y, and z) directions
[Fig. 3(a)].

We used two simplifications to explain the observed results
in a straightforward manner. First, we focused on calculations
on the x axis only. Because the system has complete rotational
symmetry, once we calculate the alignment of the director on
the x axis, we can easily induce the alignment at different
orientations using rotational transformation. For example, if
a stable azimuthal angle of the director on the x axis is φ0,
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at any angle ψ , the stable azimuthal angle of the director is
φ0 + ψ . Second, we simplified the velocity dependence. We
can well explain the phenomena only considering the plane
that includes the equator and the vicinity of the plane because
their effect on the behavior is dominant. From the spherical
geometry of the particles, the velocity at the surface of the
particles becomes smaller closer to the poles, so that we can
consider that the function of velocity has a form of a sine
function about the polar angle. The change in velocity is quite
small around π/2 corresponding to the equator, so that we can
neglect velocity dependence in the z direction. Additionally,
because vx is small on the x axis, we can consider velocity in
the y direction only. And as vy is continuous and has even
symmetry about the x axis, we can treat v as vy(x). From
these simplifications, only Axy, Ayx, and 	z are valid, and
they have the same value of (1/2)(∂vy/∂x). Then, replacing
(1/2)(∂vy/∂x) with β, we can obtain the following equations:

N = −� × n = (β sin θ sin φ,−β sin θ cos φ, 0), (2)

An = (β sin θ sin φ, β sin θ cos φ, 0). (3)

From Eqs. (2) and (3), Eq. (1) becomes

� = 2α2β sin θ cos φ cos θ x̂ − 2α3β sin θ sin φ cos θ ŷ

+ (2α3β sin2 θsin2φ − 2α2β sin2 θcos2φ)ẑ (4)

Because the polar angle (θ ) is zero at first and all terms in-
clude sin θ , when considering a completely static homeotropic
condition, no torque is applied. However, in actuality, there
are small nx, ny due to thermal fluctuation, so that torque
on the x and y directions occurs. The torque on the x and y
direction contributes to an increase of ny and nx, respectively,
resulting in an amplification of the magnitude of nx and ny.
As a result, θ reaches π/2, and the x and y components of the
torque including cos θ disappear, leaving

�z = 2β[α3sin2φ − α2cos2φ]. (5)

The torque exerted on the director becomes equilibrium at
φ making Eq. (5) equal zero. Then, we obtain φ corresponding
to the equilibrium as below,

φc = ± arctan

(√
α2

α3

)
. (6)

We apply the above equation to the 5CB NLCs, where α2

and α3 are approximately −75 mPa s and −4 mPa s, respec-
tively [30]. With these values, φc is ±77◦. The two angles
correspond to unstable and stable equilibrium states. To find
out which angle agrees with the stable equilibrium state, we
have to advance the analysis of Eq. (5). Considering φ =
0, − π/2, the viscous torque can be obtained as follows:

�z (at φ = 0) = −2βα2, (7)

�z

(
at φ = −π

2

)
= 2βα3. (8)

From Fig. 3(a), β in a counterclockwise rotating particle
is always negative. Moreover, because both α2 and α3 have a
negative value, Eq. (7) and Eq. (8) have negative and positive
values, respectively. In other words, as the orientation of the

FIG. 4. (a) Images with changing rotation frequencies of a parti-
cle with a 30-μm diameter. (b) Images from rotating particles with
diameters of 10, 20, and 30 μm. The degree of obliqueness of the
dark cross is not dependent on the frequency or diameter of the
particle.

director (φ) approaches 0 or −π/2, torque in the counter-
clockwise or clockwise direction is applied to the director,
respectively. Hence, when φc is −77◦, the system is stable
for the counterclockwise rotating particle. On the other hand,
for the clockwise rotating particle, β has a positive value, so
that the system is stable at φc = 77◦.

Due to the complete rotational symmetry of the system, the
orientation of the director at azimuthal angle ψ is −77◦ + ψ

or 77◦ + ψ about a counterclockwise or clockwise rotating
particle, respectively. Therefore, the director around a coun-
terclockwise rotating particle is parallel to the analyzer at
ψ = −13◦ or the polarizer at ψ = 77◦, so that such regions
become dark. This calculation agrees with the experimental
data [Fig. 2(a)], which indicates that changes in the director
alignment under large-scale flow also appear under local flow
and that the same means of explanation can be applied in
both cases. We note that, for a more detailed explanation,
the existence and effects of defects around the particle should
be considered. In the present work, because we deal with the
region in which the effect of flow overcomes that of elasticity,
we excluded the effects of defects around the particle. Nev-
ertheless, the calculation shows a fairly good agreement with
the experimental results.

It could be thought that the stable angle, φc, is dependent on
the magnitude of the flow or the size of the particle. However,
from Eq. (6), φc is dependent only on the ratio between α2 and
α3 and not on other factors. To experimentally prove this, we
measured the obliqueness of the dark cross that indicates the
stable angle around the rotating particle with varying rotation
frequency and particle size. In both cases, the degree of the
obliqueness does not change (Fig. 4). This is matched well to
the theoretical result.

In fact, the value of the obliqueness of the dark cross in
Fig. 2(b) does not exactly agree with the theoretical values. As
calculated values can vary depending on the results of partic-
ular studies, differences between experimental and theoretical
values have been reported [29,30,36]. For example, α2 and α3
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FIG. 5. Images from a counterclockwise rotating particle (a) at
room temperature and (b) near the transition temperature. We modi-
fied the brightness and contrast to increase clarity.

were found to be, respectively, −75 mPa s and −4 mPa s at
26 ◦C from Skarp et al. with a φc of about ±77◦ [37]. Whereas
Herba et al. reported results of −78 mPa s and −7 mPa s for
α2 and α3, respectively, with a φc of approximately ±73.3◦
[38]. Nonetheless, because many studies support that both
values are negative, the stable equilibrium φc does not change
between the two possible φc angles.

Most physical quantities that determine the properties of
LCs are rather sensitive to temperature, and likewise the
Leslie coefficients are sensitive as well. Because the range in
which 5CB is in the nematic phase is narrow and changes of
the Leslie coefficients by temperature are relatively small, it
is hard to observe overall behavior changes in images. Hence,
we used a mixture of MBBA and particles for observing
temperature-dependent variation. From Kneppe et al., α2 and
α3 are −110 mPa s and -1.1 mPa s at room temperature, and
−21 mPa s and -1.8 mPa s at 44 ◦C [39]. Therefore, φc in
MBBA shows distinguishable differences between room tem-
perature and near the phase transition temperatures; namely,
84◦ and 74◦, respectively. We measured the oblique angles
of the dark cross for many particles while controlling tem-
perature (Fig. 5). Defining ψh as the angle of the horizontal
direction of the dark cross and ψv as that of the vertical di-
rection as expressed in Fig. 5(b), we obtained ψh = −3.4◦ ±
4.3◦ and ψv = 81.2◦ ± 3.2◦ at room temperature and ψh =
−8.4◦ ± 2.7◦ and ψv = 77.7◦ ± 2.8◦ near the transition tem-
perature. These shifts correspond to the tendency of the Leslie
coefficients by temperature. However, the averaged shifts in
the experiment are smaller than those in the theoretical calcu-
lation, and the tendency of the shifts is less consistent for each
particle, such as much larger or smaller than the theoretical
values. Despite this, our result provides the possibility to
verify the ratio of the Leslie coefficients, α2 and α3, as well
as changes by temperature with relatively fewer constraints
because φc is found to be not dependent on rotation frequency
or particle size.

B. Analysis of the region affected by flow

We observed textures around the rotating particle with con-
trolling rotation frequency and particle size [Fig. 6(a)]. The
region in which the director changes its alignment tends to
widen with increasing rotation frequency and particle size.
We compared the measured data to theoretical calculations
that were performed by investigating the shifting tendency in

FIG. 6. (a) Textures around a counterclockwise rotating particle
with increasing frequency. The region where the alignment changes
grows with frequency. (b), (c) Plots of the radius of the region where
the alignment changes as a function of frequency and particle radius.
We normalized all the length scale with the radius of particle to
clarify the characterization of the relative length change. The coat
radii in (b) and (c), and particle radius in (c) are normalized by the
general particle size we used, 15 μm. The coat radii in (b) and (c)
are observed, respectively, with fixed particle size 15 μm and at fixed
frequency 2 Hz. The black squares and red line are the experimental
and calculated results, respectively.

Ericksen number by distance from the particle. While fixed
characteristic quantities such as cell gap and particle size by
system are used to describe the Ericksen number in general,
we used an actual shear rate as characteristic quantities to
consider properties of nonlinear changes in flow pattern (see
Appendix A). The Ericksen number by position is

Er = η(∇v)

K/L2
, (9)

where η, ν, K, and L are dynamics viscosity, velocity, elastic
constant, and characteristic length, respectively. And we used
69 mPa s and 5 pN as η and K , respectively, and half the
cell gap 30 μm as the characteristic length L [30]. We can
consider that the director starts to deform by a viscous flow
above the threshold value, called the critical Ericksen number
(Erc). Herein, Erc is generally near 1 [35]. We can calculate
the radius of the region in which the particle influences the
director alignment by figuring out the critical distance cor-
responding to Erc. An equation about a flow generated by a
rotating particle not affected by external boundaries is well
known; however, particles in our system are constrained in a
cell with a gap comparable to particle size and affected by the
proximity of the substrates. Because the system has low Re
and the Navier-Stokes equation in that case becomes a form
of the Laplace equation, we can find out the solution through
the method of mirror images. The solution is as follows (see
Appendix B):

v = R3ωρ

{
C

(ρ2 + z2)
3
2

+
∞∑

k=−∞

[
1

(ρ2 + (z + 2kd )2)
3
2

− 1

(ρ2 + (z + 2kd + 2h)2)
3
2

]}
ψ̂, (10)
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FIG. 7. (a) Images obtained through horizontally polarized light.
An interference pattern is observed around the edge of the region
affected by the flow. The particle rotates counterclockwise. In the
right enlarged image, the interference pattern in the blue dashed
circle is blurred because of a refractive index match. (b) Images
obtained under crossed polarizers. The interference pattern in the
images is easier to analyze than in (a) due to the clear contrast. (c)
Graph of the thickness of the region where the director changes as a
function of distance analyzed through the interference pattern.

where R, ω, ρ, z, and d are particle radius, rotation
frequency, distance along the direction parallel to and perpen-
dicular to the substrates from the center of the particle, and
cell gap, respectively. ψ̂ is the unit vector along azimuthal
direction. Furthermore, C is a coefficient of the correction
term, which is empirically determined as 0.0259 to properly
compensate the velocity at the surface. We put Eq. (10) into
Eq. (9) and numerically calculated distances rc that makes Er
equal to Erc with ω and R [Figs. 6(b) and 6(c)]. For an Erc of
2.8, the calculation agrees with the experimental data.

C. Analysis of the interference pattern

We observed an interference pattern in the region affected
by the flow [Figs. 7(a) and 7(b)]. This interference pattern
appears under both configurations of one polarizer [Fig. 7(a)]
and crossed polarizers [Fig. 7(b)], meaning that the phe-
nomenon derives not by birefringence but by refractive index
mismatch. In detail, a rotating particle forces the vertically
aligned director to be parallel. Light experiences neff (ψ ) in
the region affected by the flow and no elsewhere, so that

the light partially reflects on the boundaries between those
two regions. The region affected by the flow is sandwiched
between the regions not affected, so that light encounters
two boundaries traveling along the z direction. This struc-
ture constructs the interferometer with varying thickness. The
varying thickness produces an interference pattern. In general,
in nematic colloidal systems, the director alignment around
colloidal particles shows gradual changes over relatively long
distances, so that the effective refractive index also changes
gradually. In this case, a clear optical boundary does not
appear, and thus it is difficult to observe a clear interference
pattern. On the other hand, in our system, the director inside
rc at ψ has the same angle, while the director outside rc

is vertically aligned to the substrate. We can consider that
the director abruptly changes over a relatively short distance
in the vicinity of rc. As a result, a clear optical boundary
occurs with a distinct reflection. Furthermore, because the
azimuthal angle of the director around a counterclockwise
rotating particle at ψ = −13◦ is π/2, light with a horizontal
linear polarization experiences no. Hence, the refractive index
mismatch decreases near ψ = −13◦, and the optical boundary
becomes ambiguous. The blue circle in Fig. 7(a) corresponds
to the region near ψ = −13◦, where it can be seen that the
interference pattern is blurred. This supports the explanation
that the interference pattern is generated by a refractive index
mismatch.

As previously mentioned, the velocity of the surface of
a rotating particle is the largest at the equator and becomes
smaller closer to the poles. Therefore, the distance between
the particle and the edge of the region affected by the flow
(i.e., the point where the director alignment is no longer in-
fluenced by the flow) in the xy plane becomes shorter closer
to the poles. Therefore, the thickness of the region affected
by the flow in the z direction decreases further away from
the particle in the xy plane. We can estimate the thickness
by considering that it varies following multiplication between
the refractive index and integer multiples of the wavelength
of visible light for repeated instances of the same color in
the interference pattern [Fig. 7(c)]. We used the average re-
fractive index of 5CB as 1.53 and the wavelength as 500 nm
[40]. Although we conducted various trials to interpret this
result theoretically, there were difficulties to obtain satisfying
results. We leave this for future works with expectations that
it is helpful to consider a role of height of particles and to
calculate detailed viscous torque exerted on the director. In
spite of the lack of theoretic approaches, we anticipate this
approach helps to investigate visually a surrounding local flow
of a rotating particle.

IV. CONCLUSIONS

We generated a local flow using microsized ferromagnetic
spheres and a rotating magnetic field and then analyzed the
NLC dynamics from the local flow. When Er is above a critical
value, the director alignment changes. From the complete
rotational symmetry of homeotropic alignment and rotation,
the changed director alignment around a single particle also
shows the same symmetry, and the stable angle in the re-
gion affected by the flow was determined only from the ratio
between α2 and α3 regardless of any other variables except
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temperature. The area of the region widened by increasing
the rotation frequency, and we calculated this numerically
through the Ericksen number and velocity profile. Further-
more, because the change of the director alignment generated
by the local flow creates clear optical boundaries, an inter-
ference pattern was generated that is rarely observed. By
analyzing the interference pattern, we estimated the thickness
of the region in which the change of director alignment occurs.
This indicates that we can visually analyze the motion of a
flow around a particle in nematic fluids.
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APPENDIX A: ERICKSEN NUMBER

The Ericksen number is a dimensionless quantity to de-
pict hydrodynamics properties in simple manner [1,35,41,42].
This represents which effect between viscous flow and elas-
ticity of a medium is dominant. The magnitude of the viscous
flow is determined by viscosity and shear rate, and that of
elasticity by elastic constants and the director change rate.
Here, the former is expressed as η∇v and the latter as K∇2n,
where η, v, K, and n are dynamic viscosity, velocity, elastic
constant, and the director, respectively. Simplifying the above
two terms with representing the variables by characteristic
quantities, we obtain

Er = ηV/L

K/L2
= μV L

K
. (A1)

This is a general form of Ericksen number, in which V
and L are characteristic velocity and length. This could be
proper if a shear rate is a constant or rarely changes like a flow
between two parallel plates, one of which moves in tangential
way to the other. On the other hand, we have to analyze a flow
pattern with nonlinear shear rate in our system. Hence, fixed
characteristic quantities like radius of the particle might not
reflect actual properties of a flow around the particle. In this
case, we consider that it is proper to use an actual shear rate
of the flow around a rotating particle instead of characteristic
shear rate V/L. From this, we obtain

Er = η|∇v|
K/L2

. (A2)

We use half the cell gap as characteristic length L. We can
consider that the director around the particle starts to deform
by viscous flow at higher Er than Erc [25]. The critical Erick-
sen number is mainly near 1 and we empirically determined
this in this paper.

APPENDIX B: A FLOW AROUND A ROTATING SPHERE
SUSPENDED BETWEEN PARALLEL PLATES

Consider the Navier-Stokes equation for an incompressible
flow,

ρ
∂v

∂t
+ ρ(v · ∇ )v − η∇2v = −∇p + (�ρ)g, (B1)

where ρ is density of the flow, v velocity, η the dynamic
viscosity, p pressure, and g gravitational acceleration. Because
there is no flow in the background by pressure difference, we
do not consider the effect of a density difference in our system
and we consider that �p and �ρ are zero:

ρ
∂v

∂t
+ ρ(v · ∇ )v − η∇2v = 0. (B2)

Substituting xi/D, u/U, and tU/D by x
′
i, u′, and t ′,

Eq. (B2) becomes

ρU 2

D

∂v′

∂t ′ + ρU 2

D
(v′ · ∇ )v′ − ηU

D2
∇2v′ = 0, (B3)

where D and U are characteristic length and velocity.
Quantities that represent the system can be candidates of
characteristic quantities: particle size, cell gap, and so on for
characteristic length, and velocity of particle surface, relative
velocity between two parallel plates, and so on for character-
istic velocity.

Then, dividing Eq. (B3) with ηU/D2, we obtain

ρUD

η

∂v′

∂t ′ + ρUD

η
(v′ · ∇ )v′ − ∇2v′ = 0, (B4)

where ρUD/η can be expressed as Reynolds number Re that
is also a dimensionless quantity to help predict patterns of a
flow by the ratio of inertial forces to viscous forces. Hence, we
can neglect the first two terms of Eq. (B4) with the low Re that
the effects of viscosity overwhelm those of inertia. Because
NLCs have relatively high viscosity and the magnitude of flow
around a particle is small, our system has low Re, and then
Eq. (B4) becomes a form of the Laplace equation [43],

∇2v = 0. (B5)

If the system follows the no-slip condition, the magnitude
of flow has to be the same as the linear velocity of a rotating
particle, the general solution satisfying the boundary condi-
tion of rotating particle sufficiently far from substrates is [44]

v = R3ω

r2
sin ηψ̂. (B6)

In the above equation, R, ω, r, and η are radius of the parti-
cle, rotation frequency, distance from the center of the particle,
and the polar angle, respectively. ψ̂ means a unit vector of
the direction of the azimuthal angle. Only the ψ̂ direction of
the velocity occurs due to the complete rotational symmetry.
Here, we have to consider additional boundary conditions by
two parallel substrates with the gap comparable to radius of
the particle. We can satisfy the additional boundaries using
the method of images [45].

Imagine that a rotating particle located at height h from
the bottom substrate in the cell with gap d, which means the
particle is d–h apart from the top substrate. Then, oppositely
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rotating image particles to the real particle located at –h and
2d–h, respectively, make the magnitudes of flow at the bottom
and top substrates zero; however, they hinder us from satisfy-
ing the boundary conditions at the opposite substrates. Hence,
we need other image particles rotating with the same direction
as the real particle and located at –2d + h and 2d + h. Never-
theless, the magnitudes of flow at both boundaries are slightly
different from zero. This issue can be solved by locating
infinite image particles at proper positions: particles of the
same rotation direction as the real particle at 2kd + h and
particles of the opposite direction at 2kd–h, where k is an
integer. Shifting the height of the coordinate system in –h to
adjust the center of the real particle as the origin, the particles
with rotation direction of the same direction as and opposite
direction to the real particle are located 2kd and 2kd–2h,
respectively; herein, a particle at k = 0 is the real particle.
Hence, we obtain

v = R3ωρ

∞∑
k=−∞

[
1

(ρ2 + (z + 2kd )2)
3
2

− 1

(ρ2 + (z + 2kd + 2h)2)
3
2

]
ψ̂, (B7)

where z and ρ are distance along the direction perpendicular
to and parallel to the substrates from the center of the particle

and rotation direction of the real particle is assumed to be
counterclockwise. The above image particles properly satisfy
the boundary conditions at both substrates, whereas they break
the boundary condition at the surface of the particle. We have
to assume a new group of image particles regarding the real
particle as a center to correct the boundary condition at the
surface of the real particle, however, we just added a term
enhancing effects of the real particle to simplify the equation:

v = R3ωρ

{
C

(ρ2 + z2)
3
2

+
∞∑

k=−∞

[
1

(ρ2 + (z + 2kd )2)
3
2

− 1

(ρ2 + (z + 2kd + 2h)2)
3
2

]}
ψ̂, (B8)

where C is a quite small as 0.0259 and was empirically deter-
mined to well correct the boundary condition. With the small
correction term, the Eq. (B8) explains finely flow patterns by
h around a rotating particle except when the particle is highly
close to either substrate. As an absolute value of k increases,
the value of each term in Eq. (B8) drastically decreases, so
that v saturates at a small |k|. We numerically analyzed our
experimental results using the Eq. (B8), and we set a range of
k from –10 to 10.
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