
PHYSICAL REVIEW E 106, 014701 (2022)

Determining the Kerr constant in optically isotropic liquid crystals
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A new scheme is investigated for evaluating the temperature dependence and dispersion relation of the Kerr
constant (K) of an optically isotropic medium in isotropic and blue phases (BPs) liquid crystals. The scheme
employs the measurement of the component of the transmitted light intensity of double modulated frequency
using the modified in-plane-switching cell geometry (based on metallic film electrodes). It overcomes to a large
extent the problem of a nonuniform electric field, employs relatively small driving voltages, and allows K to
be measured directly. It is shown that the dispersion relation based on the single-band birefringence model
describes well both blue and isotropic liquid crystal phases. It is found that the experimental data indicate that
the temperature-dependent coefficients in this relation have a simple linear form in the isotropic phase, which
allows a general model for the temperature and wavelength dependence of the Kerr constant in the isotropic
liquid crystal phase to be formulated. In the BPs the temperature dependence of the experimental data deviate
from the simple linear trend, but follow well an inverse exponential form.
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I. INTRODUCTION

The Kerr effect is a well-known quadratic electro-optical
phenomenon (QEO) in which a change in the refractive index
of a material is induced in response to an applied electric field.
This effect is present in any dielectric material but usually
is obscured by a stronger first-order effect. However, in an
isotropic medium such as liquids, isotropic liquid crystal (LC)
composites, BPs, and crystals with centrosymmetric point
groups, the first-order effects are canceled by symmetry and
the dominant effect becomes the QEO effect. Thus, an op-
tically isotropic medium under the influence of an electric
field becomes optically anisotropic or birefringent with the
optical axis parallel to the electric field direction. The in-
duced birefringence is directly proportional to the square of
the electric field and the difference in index of refraction is
given by

�nind = λKE2, (1)

where λ is the wavelength of the incident light, K is the
Kerr constant, and E is the intensity of the electric field. The
Kerr phenomenon is the basic physical mechanism of electro-
optical properties of liquid crystal blue phases, which means
the Kerr constant constitutes one of the central quantities in
the liquid crystal field.

Blue phases are unique liquid crystals which form frus-
trated structures with crystal (cubic) symmetry. In these
structures chiral nematic molecules are self-assembled in dou-
ble twist helixes or cylinders which are separated by defect
regions (disclinations). Defects are ordered in a 3D periodic
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structure with a typical lattice spacing of the order of several
hundred nanometers [1,2]. Three types of BPs are known:
amorphous BPIII and two phases organized in a cubic fash-
ion, which are simple cubic BPII and body-centered cubic
BPI. They are formed typically between the isotropic and
cholesteric phases in a narrow temperature range, although
structural modifications have been made which have extended
their temperature stability ranges considerably [3]. This re-
vived interest in blue phase research, is in part because of
possible applications in next-generation displays in which
the operation mechanism is based on a Kerr effect-induced
isotropic-to-anisotropic transition. This is qualitatively differ-
ent from nematic liquid crystal displays (LCD) which exploit
the LC director reorientation [4]. Potential applications of BP
liquid crystals are based on their optical isotropy and the fact
that the Kerr effect is fast, and submillisecond response times
could be achieved. Also, liquid crystalline blue phases exhibit
a relatively large Kerr constant [4–6] which can be exploited
directly to reduce the driving voltage.

Strictly speaking the Kerr constant of a medium is not a
constant but can be affected by various factors, in particular
temperature (T ) and light wavelength (λ). Also, the measure-
ment of this important physical quantity still remains far from
being routine, particularly in the case of BPs. Further progress
in the development of BP-based devices largely rely on a
better understanding of how different factors influence K and
on the development of efficient and accurate methods for its
determination.

Historically, the basic means to determine Kerr constants
has been a Kerr cell [5,7]. In the Kerr cell the relation in
Eq. (1) is utilized and a uniform electric field is produced
which is a great advantage of this approach. However, to
measure K large driving voltages have to be employed and a
relatively large sample is required to perform the experiment.
Thus, this method is usually employed to study the Kerr
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effect in isotropic liquids and liquid crystals above the clearing
point [5,8].

Because, in experiments and display applications, the LC
layer is typically sandwiched between two planes, the in-
plane-switching (IPS) cell configuration is often the chosen
approach to determine Kerr constants of LC materials. For
measurements of the electro-optical Kerr effect in IPS, comb-
type interdigitated electrodes are often used. In this way the
electric field is mainly in the lateral direction which is con-
sistent with the requirement that the induced birefringence
should be parallel to the cell substrates to determine K . How-
ever, the electric field produced is spatially nonuniform (apart
from a tiny strip between electrodes) which is the main dis-
advantage of such IPS measurements. To reduce the problem
of field nonuniformity, different IPS configurations have been
proposed (e.g., etched or protruded electrode IPS [4,9–11])
but none of these can be considered to be fully satisfactory.
Some of these ideas are at the modeling stage and may be
difficult to apply in practice. Also, in these IPS modifications
the focus was mainly on improving the performance of the
LCD structure and not on the measurement of K itself. Fur-
thermore, in the IPS geometry, for practical reasons, the most
uniform part of field has been taken into account, e.g., via a
scaling factor or by considering effective values [12,13].

To overcome the drawbacks of both the IPS and Kerr
cell methods, vertical field switching (VFS) devices were
proposed [14,15], in which the electric field is along the
longitudinal direction and is uniform on application of com-
paratively small driving voltages. Another advantage of the
VFS mode is that it is possible to reduce hysteresis effects.
However, the measurement method exploits the matrix fitting
stage and the device construction in the VFS mode is much
more sophisticated than in an IPS cell, which can affect its
performance. For example, the dependence of the Kerr con-
stant on the cell gap is know to occur in the VFS cell [16].

Another approach to determine K is the extended Kerr
effect which was proposed to describe the saturation phe-
nomenon in the refractive index change as the electric field
increases. This phenomenon has been formulated in terms of a
two-parameter exponential formula which reduces to the Kerr
effect in Eq. (1) in the low electric field region [17,18]. This
phenomenological approach requires large driving voltages
and has proved useful in the analysis of electro-optical prop-
erties of polymer stabilized optically isotropic LC [4]. The
extended Kerr formulation is also exploited in this work.

The aim of this work is to obtain a more comprehensive
description of the effects of T and λ on the constant K in
optically isotropic liquid crystals. To achieve it we propose
a new approach in which the main problem of the nonuni-
formity of the electric field in the IPS configuration can be
reduced and the K-value be determined directly without any
additional approximations or scaling factors. The proposed
approach combines the measurement of the modulated AC
component of the transmittance intensity with a simple IPS
cell design comprising two metallic films acting as electrodes.

The idea to use cells with metallic films was exploited
previously in Refs. [19,20] to study order-disorder transitions
in LC and recently in Ref. [21] to generate second harmonics
in nematic liquid crystals. In these measurements large driving
voltages were needed and relatively thick samples were used.

FIG. 1. The scheme of the measuring system of determination
the electro-optical Kerr effect.

In the proposed approach described here lower field and thin-
ner layers are used which is a significant factor in the accurate
determination of the Kerr constant of liquid crystals BPs.

The work is organized as follows. In Sec. II the method for
determinig the Kerr constant is described. The experimental
details and materials used are given in Sec. III. In Sec. IV
the results are presented and discussed. The temperature and
dispersion relations of the Kerr constants are analyzed. The
main conclusions are summarized in Sec. V.

II. METHOD

The proposed method for determining the Kerr constant is
described below and the corresponding measurement setup is
shown schematically in Fig. 1.

When a uniaxial medium is placed between a polarizer and
analyzer the light intensity transmitted by the system is [22]

I = I0

[
cos2 γ − sin (2α) sin (2β ) sin2 δ

2

]
, (2)

where α and β are the angles between the optical axis of
the sample and the polarization directions of polarizer and
analyzer, respectively. The angle, γ is the difference, α − β.
When the polarizer and analyzer are crossed γ = π/2. The
incident light intensity is I0, and δ denotes the phase lag
(retardation) between the ordinary and extraordinary rays after
passing through the sample. If we deal with the optically
isotropic sample under an applied electric field, and addition-
ally a quarter-wave plate is placed between the sample and the
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analyzer (as in Fig. 1), then the retardation is

δ = 2πd�nind

λ
+ π

2
, (3)

where �nind is the induced birefringence and d denotes the
sample thickness. Providing, an external alternating electric
field, E = EAC cos ωt , is applied, the polarizer and analyzer
are crossed, and the quarter waveplate forms the angle π/4
with the analyzer, then from Eqs. (2) and (3),

I

I0
= sin2

(
π

4
+ πd�nind

λ

)

= sin2
(π

4
+ πdKE2

AC cos2 ωt
)

= 1

2

(
sin

(
2πdKE2

AC cos2 ωt
) + 1

)
, (4)

where Eq. (1) was used in the second equality. The last expres-
sion follows from the trigonometric relation, sin2(π/4 + x) =
[sin(2x) + 1]/2. It is important to note that the argument of
the sin function in this expression is very small (mainly due
to the small value of K), so as sin(x << 1) ∼= x the following
relation holds to a good approximation,

I

I0

∼= 1

2
+ πdKE2

AC cos2 ωt . (5)

Then, using the trigonometric identity cos2(x) = 1
2 [1 +

cos(2x)] the above expression can be transformed to the form

I

I0

∼= 1

2
+ 1

2
πdKE2

AC + 1

2
πdKE2

AC cos 2ωt . (6)

Equation (6) indicates that the ratio I/I0 is the sum of two
terms in which IDC/I0 = 1

2 + 1
2πdKE2

AC
∼= 1

2 is the constant
component of the light intensity and I2ω/I0 = 1

2πdKE2
AC is the

component of double modulation frequency of light intensity.
There is no component of the light intensity with the basic
modulation frequency ω (i.e., I1ω

I0
≡ 0) and it is the quarter-

wave plate which introduces the Kerr effect in the form of the
light modulation at the second harmonic of the electric field.

These two components of the light intensity, provide suffi-
cient information for the determination of K . Notably, taking
into account the fact that the intensity of the transmitted light
is measured by a photodetector, where the resulting voltage is
proportional to the light intensity (the linear range is consid-
ered only [23]), we obtain the following relation:

I2ω

IDC
= U2ω

UDC
= πdKE2

AC, (7)

where U2ω and UDC are the voltages corresponding to mea-
surements at double the detection frequency and the constant
component of the electric field, respectively. From the above
expression the formula for the Kerr constant is

K = U2ω

πdUDCE2
AC

. (8)

Let EAC = UAC/l , where UAC is the voltage applied to the
sample and l denotes the distance between the electrodes.
The voltages from the instruments in rms values are, U2ω =
U2ωrms · √

2 and UAC = UACrms · √
2. The final formula which

is used in the measuring system in Fig. 1 is

K = U2ωrmsl2
√

2

2πdUDCU 2
ACrms

. (9)

The linear relationship between U2ωrms and U 2
ACrms, i.e.,

U2ωrms = AU 2
ACrms where A = √

2πdKUDC/l2 is a slope con-
stant, provides a simple and useful test for the correctness of
the measuring procedure. Using the slope A, the Kerr constant
can be obtained from the following expression:

K = A
l2

√
2πdUDC

. (10)

The measurement setup shown schematically in Fig. 1 for the
electro-optical Kerr effect, which enables a direct determina-
tion of K with Eq. (9) [or Eq. (10)], makes use of the IPS cell
geometry and requires only a few commonly available devices
(hot-stage, electric field generator to provide UACrms-voltage,
photodetector, multimeter to measure UDC-voltage and lock-
in amplifier to register U2ωrms-voltage). An essential part of
the proposed scheme is the IPS cell, which we refer to here
specifically as the IPSm cell, consists of two metallic films.
The films are placed between glass plates and act both as
parallel electrodes and spacers. The sample material is placed
in the gap between the electrodes. In such a cell geometry
the electric field is to a large extent uniform. In this way, the
transformation from Eq. (8) to Eq. (9) is obeyed. When the
electric field is turned on the induced optical axis it forms
an angle ±45◦ with the plane of the polarizer and analyzer,
respectively.

Also, as mentioned above, an important element of the
scheme is a quarter-wave plate because the transmission com-
ponent I2ω then becomes relevant and can be exploited. As
this component is proportional to the phase shift between the
extraordinary and ordinary ray (retardation) induced by the
electric field, a low-value retardation can be determined. Thus,
it can be expected that relatively small driving voltages are
sufficient to determine K from the proposed scheme. Also, in
addition to providing uniform electric fields with the IPSm
cell, the scheme allows the simultaneous observation of the
sample texture. This is a great advantage which allows phase
control and the accurate exploration of transition regions.

III. MATERIALS AND EXPERIMENTAL DETAILS

To validate the proposed approach a well-known ne-
matic liquid crystal, 5CB (4-cyano-4′-pentylbiphenyl) and
a mixture of 5CB with 20 mol % of chiral dopant
CE2 [4′′-(2-methylbutylphenyl)-4′-(2-methylbutyl)-4-biphe-
nylcarboxylate (Merck)] were used. These materials were
selected because the Kerr cell and VSF results are available for
these materials and can therefore provide benchmark systems.
The 5CB/CE2 mixture, which we will denote as M2, has both
BPI and BPII phases and is known to exhibit a large Kerr
constant [15].

A sample was placed in the IPSm cell, which was held in
a hot stage equipped with a proportional-integral-derivative
controller PID UNIPAN type 650 (Scientific Instruments).
The temperature was stabilized with an accuracy of ±0.05 ◦C.
As a source of light, a luminescent interchangeable diode
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(LED) was utilized. Additionally, to obtain a monochromatic
light source an appropriate filter was placed after the diode. To
analyze the influence of the wavelength factor, measurements
were carried out with three light wavelengths λ1 = 532 nm,
λ2 = 589 nm, and λ3 = 633 nm.

A 1 kHz sine-wave AC signal was applied to the sample,
using a synthesized function generator DS340 (Stanford Re-
search Systems Inc.) with a broadband linear amplifier F20A
(FLC Electronics). In all of our measurements the voltage
UACrms was less than 100 V.

As shown in Fig. 1 the sample on the hot stage was placed
in the path of the light wave beam between polarizers and
optical axis of the sample which forms an angle of ±45◦
with the plane of the polarizer and the analyzer, respectively.
A wavelength-compatible quarter-wave plate (Eksma Optics)
was placed between the sample and the analyzer with its axis
45◦ with respect to the analyzer plane. The light intensity was
detected by a photodiode Si PiN (Femto). Then, the signal
proportional to the light intensity was passed to a digital mul-
timeter 34401A (Hewlett Packard) and to a lock-in amplifier
Sr530 (Stanford Research Systems). The DC component UDC

of the signal was measured with the multimeter and the second
harmonic U2wrms was determined using the lock-in amplifier.

The IPSm cells for measurements were made from two
cut glass plates made from microscope slides. The size of the
bottom glass plate was 2.5 cm × 2.5 cm and the size of the
top glass plate was 1.2 cm × 2.5 cm. Two Cu film electrodes
with a thickness d were placed between the glass slides. It
was checked in the isotropic phase (5CB, M2) that cells with
different electrode widths (d = 10, 20, 30 μm) yielded prac-
tically the same results. Consequently, in the work, the results
are mostly for one d = 20 μm value.

The applied electrodes are assumed to produce a uniform
electric field E = U/l but, as their intersections are strips
and not parallel charged surfaces of infinite extent, some
limitations in the applicability of this relation may appear.
For example, in practice, the distance between the electrodes
cannot be arbitrarily large. Thus, l < lmax where the limiting
distance lmax slightly depends of the applied voltage and the
width of the electrode, and it can be readily established with
the linearity criterion from Eq. (10). In this way it was found
that for the conditions and cases considered in this work, lmax

was always less than 103 μm. Also, the distance cannot be too
small to accommodate a sufficient amount of the LC material.
The most suitable distance between the electrodes was found
to be in the range 300–900 μm. In the measurements the cells
with l = 500–700 μm were used.

The values of the Kerr constant determined have an un-
certainty of a few percent (up to 10 percent). The uncertainty
depends on the quality of the sample cell and the measuring
devices. The main systematic contribution is due to the uncer-
tainty in determining the thickness of the electrodes d and the
distance l between them (the error contribution of the UDC is
about 2 percent). The statistical error of the slope, A, is less
than 3 percent and in the figures only this error is given.

IV. RESULTS AND DISCUSSION

The first test of the new method was to see if there is a lin-
ear relationship between the resultant U2ωrms and the applied

U2
ACrms

 (103 V2)
0 1 2 3 4

U
2ω

 r
m

s (
10

-5
 V

)

0

1

2

3

FIG. 2. Test of the relation in Eq. (9). The results (symbols)
are for the 5CB in isotropic liquid phase for different temperatures
relative to the clearing temperature (from top to bottom T − Tc =
0.5, 1, 2, 3, 4, 6, 8, 10 ◦C). The solid lines are linear fits to the data.

U 2
ACrms. The results obtained for 5CB in the isotropic phase for

a range of different temperatures are shown in Fig. 2. The data
follows well a linear relationship, demonstrating the correct-
ness of the measuring scheme. Any deviation from the linear
behavior signals inaccuracies in the measurement procedure
or that some of the assumptions in the equation derivation
are not fully valid. This useful test was always performed in
this work and the slope was used to get K in accordance with
Eq. (10).

The Kerr constant for 5CB and the mixture M2 in the
isotropic phase (i.e., above their clearing temperatures) are
shown in Fig. 3. In the figure the temperature dependence
of the inverse of the Kerr constant is compared with values
obtained from the VFS [15] and the Kerr cell methods [24,25].
As is evident the data produced by the different methods are
in excellent agreement, which validates the new procedures
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FIG. 3. The inverse of the Kerr constant of 5CB and M2 as a
function of temperature, T − Tc in the isotropic phase. The square
symbols are results of this work, where the sample thickness was,
d = 20 μm, λ = 589 nm, and the distance between the electrodes
was, l = 515 μm. The filled-in circles and triangles are data from
Refs. [15,24]. Lines are the linear fits to the data of this work and the
arrows indicate the corresponding temperature difference T ∗ − Tc.
The inset shows the results for the same sample, measured over a
wider temperature range.
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used. Also, the results for higher temperatures shown in the
inset of Fig. 3 demonstrates that the measurement arrange-
ment shown on Fig. 1 enables Kerr constant values less than
10−11mV−2 to be determined. The ability to determine the
Kerr constant over such a wide range of values is a significant
advantage of the proposed scheme.

A. Temperature relation

The temperature dependence of K is of great relevance
and of fundamental importance. In the liquid state the linear
dependence,

1

K
= (T − T ∗)/C, (11)

where C is a constant, is well documented for many materials
and a general consensus exists that the Landau-de Gennes the-
ory describes well this relationship, at least for temperatures
not too close to the clearing temperature, Tc. In this region
deviations from the linear prediction have been reported by
some authors [25].

As may be seen in Fig. 3 the linear temperature dependence
is also well confirmed by this work’s data. In all measured
cases (also for different λ) the extrapolated constant T ∗ or
the second-order pretransitional temperature, is slightly lower
than the respective clearing transition temperature in accor-
dance with the Landau–de Gennes model [2,26].

Changing the amount of chiral dopant can significantly
influence the properties of BPs, which is exploited as one of
the possible mechanisms to change the K value. The presence
of CE2 in 5CB causes that Kerr constant close to the clearing
temperature to be larger in the mixture than in pure 5CB.
In addition, the dopant causes a faster decrease of K with
temperature (i.e., a larger slope of 1/K data) and hence at
a certain temperature the inverse trend is observed, i.e., the
value of K of M2 becomes lower than K of 5CB. Such behav-
ior was also observed for the mixture of 5CB with 42.4 mol
% of chiral dopant CE2 (M4). Consequently, we observe the
more chiral dopant there is in the mixture the more T ∗ shifts
toward Tc: T ∗ − Tc ≈ −1.15,−0.54,−0.1 ◦C for 5CB, M2,
M4, respectively. The measured clearing point of the mixture
M2 (58.5 ± 0.05 ◦C) and 5CB (35.1 ± 0.05 ◦C) is given in
the brackets.

The temperature dependence of K in the M2 mixture across
its BPs is shown in Fig. 4. The range of BPII is about 0.75 ◦C
and this result was verified additionally in different commer-
cial IPS cells (d = 10, 20 μm) with the polarizing optical
microscope and with the thermooptical analysis [27]. As seen
in the figure the form of K (T ) and the range of its values
are the same as from the VSF measurments in Ref. [15]. The
slight difference in the BPII temperature ranges may originate
from differences in the cell construction and/or different ini-
tial sample treatments. As is known these factors, in particular
a monodomain versus multidomains alignment in the sample,
can influence the temperature range of BPs [28,29].

In the case of the BPs the form of K (T ) is much less
well known. A useful formula in the present context has been
proposed by Rao, Yan, and Wu [30]. Considering Gerber’s
formula [31] for K , these authors proposed that the Kerr
constant in the BP should vary approximately linearly with
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c
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K
 (

10
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(a)

(b)

ISOBPIIBPI

BPI

BPII

FIG. 4. The Kerr constant as a function of temperature in the
BPs and isotropic phase in the M2 mixture. The open squares give
results from the present work, and the filled circles show data from
Ref. [15] (λ2 = 589 nm). In panel (a) the solid and dashed lines
represent fits to Eqs. (13) and (14), respectively. The vertical bars
indicate the estimated transition temperature between the BPI and
BPII phases. The solid line in the ISO phase is from Fig. 3. In
panel (b) the results obtained for different wavelengths λ1 = 532 nm
(green), λ2 = 589 nm (black), λ3 = 633 nm (red) are shown. The
solid lines are the corresponding fits to Eq. (13).

reciprocal temperature (1/T ) as

K = ζ

(
1

T
− 1

Tc

)
, (12)

where ζ is the proportionality constant. This phenomenologi-
cal formula can describe the experimental BPII data (the thin
dashed line in Fig. 4) and used to estimate the clearing point
quite well [6,15], which may be surprising taking into account
that the formula only has one free parameter. Close inspection
of the data suggests that the dependence in Eq. (12) may only
be an approximation. Indeed, plotting log(1/K − W ) versus
T − Tc the data follows a straight line for a certain value
of the constant W . It means, for the data considered, K is
described by

K ∼= 1

D exp[−η(T − Tc)] + W
, (13)

where η and D are constants. Thus, to obtain a more
accurate representation of temperature dependence of K
for the BPII at least three parameters are required. Then
the formula predicts a nonzero value of the Kerr con-
stant at Tc, K (Tc) = 1/(D + W ). The constants D,W are
in 1/K units, i.e., V2/m and η in ◦C−1. For our BPII
data in Fig. 4 the constants (W × 10−9, D × 10−9, η)
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for λ1, λ2, λ3, respectively, are (0.330, 2.1527,−5.0655),
(0.355, 2.4961,−4.690), (0.370, 2.7586,−4.4732), and for
the data from Ref. [15] they are (0.319, 2.4762,−3.2912). It
should be noted that the formula in Eq. (13) is not unique and
more experiments with other materials is needed to check its
generality.

The formula in Eq. (13) represented by bold solid lines in
Fig. 4, traces out the experimental points very well, reveal-
ing their slight systematic departures from the linear trend.
This means that the Kerr constant, K can also be represented
by a simple linear dependence which in particular can be
expressed as

K ≈ ζ

T ∗∗
(

1 − T

T ∗∗
)

(14)

∼= ζ

T ∗∗(1 − �T ∗∗
T ∗∗

) − ζ

T ∗∗ = ζ

(
1

T
− 1

T ∗∗

)
, (15)

where T ∗∗ is a constant close to Tc, �T ∗∗ = T ∗∗ − T and
as x = �T ∗∗/T ∗∗ 	 1 the relation 1 + x ∼= (1 − x)−1 is well
obeyed and has been used in going from Eqs. (14) and (15).
It is to be noted that T ∗∗ for K and the BPII-Iso transition is
similar to the T ∗ for 1/K in Iso-BPII transition in that both are
linearly extrapolated constants close to Tc [see Eqs. (14) and
(11)]. However, the physical meaning of T ∗∗, unlike T ∗, has
not yet been established. For T ∗∗ ∼= Tc the approximation in
Eq. (15) becomes the formula in Eq. (12). Thus, in general,
two parameters are needed to represent K (T ) in the linear
approximation, and K (Tc) ≈ ζ (T ∗∗ − Tc)/T ∗∗ in this approx-
imation.

The experimental data obtained, along with the linear K (T )
forms, shows that the Kerr constant can be slightly discontin-
uous at the transition to the isotropic liquid phase. Another
scenario is that departure from a straight line dependence of
1/K (T ) in the fluid for small T − Tc ≡ �T > 0 takes place
[25], which would reduce or even eliminate the discontinuity.
It is evident that more studies of K close to the transition
region or |�T | < 0.2 ◦C, are needed to help resolve these
issues.

The data in Fig. 4 show, the K (T ) in BPI is also approx-
imately linear, at least for T not too close to the transition
region. There is an abrupt change in slope, however, i.e.,
the K can change much less rapidly with temperature in
BPI than in BPII, which is a desirable feature for display
applications [32]. The precise description of the data may
require the formula like in Eq. (13) but the accuracy of the
experimental data does not allow a definite conclusion on this
matter. Also, for temperatures near the transition a departure
from linearity (where the points smoothly drop down toward
BPII K-values) is clearly seen. Nevertheless, at the BPI-BPII
boundary a small discontinuity in K cannot be excluded. Also,
it would be consistent with previous observations on other
properties at the transition temperature [33,34]. We think that
this phenomenon deserves further investigation.

B. Dispersion relation

As was noticed above even though K is often referred to
as being a “constant,” it is a complicated physical property
which depends implicitly on many factors such as temperature
or material composition. A comprehensive description of K is

not available as yet, however. In what follows we exploit ad-
vantages of the proposed scheme to investigate one important
and hardly studied issue, namely, the light wavelength depen-
dence or dispersion of K . There are not many reports dealing
with the dispersion of K for liquid crystals and in particular
for BP materials even though in designing LC-based devices
dispersion have to be taken into account. Also, knowledge of
the λ dependence of K is a step toward establishing a more
explicit formula for K (T, λ).

For a polymer-stabilized optically isotropic liquid crystal
an approach to describe the dispersion of the Kerr constant has
been proposed by Jiao, Yan, and Wu [35]. In their approach,
as a starting point, the phenomenological extended Kerr effect
model [17,18] was used to calculate the induced birefringence

�nind = �ns{1 − exp[−(E/Es)2]}, (16)

where two parameters �ns and Es have the meaning of the
saturated induced birefringence and the saturation electric
field, respectively. In the low electric-field region E/Es 	 1,
and then this extended Kerr effect reduces to the Kerr effect
formula in Eq. (1) and

K = �ns/λE2
s . (17)

The key step was to exploit the single-band birefringence
dispersion model [36] and apply it to the saturated induced
birefringence, �ns = Gλ2λ∗2/(λ2 − λ∗2), where λ∗ is the
wavelength of the nearest absorption band of the LC com-
posite and G is a proportionality constant [36]. This way, via
Eq. (17), the following dispersion relation of the Kerr constant
for a given temperature was proposed [35]:

K = Aλ

λ2 − B
, (18)

where A = λ∗2G/E2
s and B = λ∗2. For a given temperature,

the dispersion dependence can be estimated by exploiting the
extended Kerr model [in Eq. (16)] and by suitable fitting of
the voltage-dependent transmittance (V-T) curves measured
at different wavelengths [35].

The above dispersion formula in Eq. (18) in which B = λ∗2

was shown to describe well the experimental data in the case
of a polymer-stabilized LC composite [35]. Its applicability to
a broader spectrum of optically isotropic LC at different tem-
peratures is thus of considerable interest. Also, it is to be noted
that the Kerr constant in Eq. (18) in this case is the product
of a temperature-dependent Kerr coefficient K (T ) = A and a
wavelengths-dependent K (λ) = λ/(λ2 − λ∗2) part. We found
that a slightly better agreement between experimental data
and the formula in Eq. (18) can be achieved if another, more
general single-band birefringence dispersion model [37,38]
is applied to the saturated induced birefringence, �ns =
[
√

G‖λ2 − 1 −
√

G⊥λ2 − 1]/
√

Gcλ2 − 1, where the parame-
ters G‖, G⊥, Gc depend on the LC material parameters, and
the temperature (see the Appendix). The model is based on
Vuka’s relationship without extra approximations and does
not need the resonance wavelength λ∗ to calculate the disper-
sion [37]. It is shown in the Appendix that this model of �ns in
good approximation, yields the dispersion relation in Eq. (18)
in which both A = [

√
G‖ − √

G⊥)]/2
√

GcE2
s and B = 1/2Gc

are the material- and temperature-dependent parameters. This
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FIG. 5. Parameter A [panel (a)] and parameter B [panel (b)] in
Eq. (18) as a function of (T − Tw )−1 in the isotropic liquid phases
in the 5CB (symbols in black) and M2 mixture (symbols in red).
Open circles are from direct fitting of the experimental data. The
star symbols are from the linear relation Eq. (11) (solid lines in
Fig. 3) for each λ obtained for the same data. The solid line is
the linear fit to the star symbols with Eqs. (19) and (20) in panels
(a) and (b), respectively. The resultant constants (a1, b1, b2, Tw ) are
for 5CB (6.8044 × 10−8, 29 465, 154 420, −1.42) and for M2
(7.6007 × 10−8, 190 700, 74 154, −1.24).

is a notable result which shows that in general K (T, λ) cannot
be represented by the simple product K (T )K (λ). The scheme
proposed in this work generates sufficiently accurate data to
determine the A, B parameters which allows a more compre-
hensive description of K (T, λ) to be made, and to obtain some
information on G‖, G⊥, Gc, e.g., from the B, the parameter Gc

is directly estimated.
Employing the scheme in Sec.II the Kerr constant for three

wavelengths (λ1 = 532 nm, λ2 = 589 nm, and λ3 = 633 nm)
has been measured for the M2 mixture in their isotropic and
BP phases. Also, the corresponding measurements for 5CB
liquid, which can be considered to be a limiting case of zero
amount of the dopant, were performed. It was verified that
in the isotropic phase the dispersion relation formula is well
obeyed for each temperature studied and for each wavelength
the linear temperature dependence in Eq. (11) holds well (at
least for �T > 0.2 ◦C). The results show that the applica-
bility of the dispersion relation in Eq. (18) is not limited to
polymer-stabilized liquid crystal blue phases, but may also
describe K (T, λ) of other optically-isotropic medium where
the birefringence is induced by the external electric field.

The obtained temperature dependence of A and B are
shown in Fig. 5. There are a few noteworthy observations
which follow from this figure. First, that both A(T ) and B(T )
are linear in (T − Tw )−1. Second, that the constant Tw is the
same for the A and B parameters. Finally, we have the limit,

FIG. 6. Temperature and dispersion dependence of the Kerr con-
stant, K (T, λ), in the isotropic liquid phase of the 5CB and M2
mixture. The green, yellow, and red lines marked are K (T ) for three
wavelengths at which measurements were conducted and solid black
lines are examples of K (λ). The surface is given by relations in
Eqs. (18)–(20) with (a1, b1, b2, Tw ) given in Fig. 5. The dashed line
marks the intersection between the surfaces.

A(T → 0) → 0. Thus, from Fig. 5, the Kerr constant obtained
for the liquid is well-described by the dispersion relation in
which

A(T ) = a1

T − Tw

, (19)

B(T ) = b1

T − Tw

+ b2. (20)

From these semiempirical forms the Kerr constant, K (T, λ)
with only four constants a1, b1, b2, Tw can be estimated.

For small b1 the constant Tw becomes T ∗ and B becomes
the constant b2. In this case K (T, λ) becomes the simple
product K (T )K (λ) and in a particular case b2 = λ∗ the re-
lation holds a1 = λ∗2G(T − T ∗)/E2

s . As the slope of the
line or b1 for 5CB is considerably smaller than that for M2
[Fig. 5(b)] one can expect better realisation of the product
form K (T )K (λ) in the former case.

The K (T, λ)-surfaces of 5CB and M2 fluids are shown in
Fig. 6. The K (T, λ) is a decreasing function in both �T and
λ. Apart from the region near Tc (or small �T ) it is fairly
similar and flat for the materials considered. Thus, it is mainly
the value of T ∗ that can cause a more significant increase
in K in liquids near Tc. As mentioned above (see Fig. 3)
addition of the chiral component leads to smaller |�T ∗| which
in turn results in the sequence K(M2)> K(5CB). For higher
temperatures, this sequence reverses (i.e., the dopant lowers
K) and thus, there exists a crossover line (see the dashed line
in Fig. 6).

In the case of the BPII of M2 the character of the
temperature dependence of K for three wavelengths at which
measurements were conducted are very similar as can be
seen in Fig. 4(b). In particular they are well represented
by the relation given in Eq. (13). Also, the data can be
approximated by the linear relation in Eq. (14) [or Eq. (15)].
Our results for different λ show that the dispersion relation
in Eq. (18) describes well the K (T, λ). However, this time
we do not observe any obvious functional regularity of
the temperature dependence of the A and B parameters.
Nonetheless,

√
B(T ) can be well represented by the
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FIG. 7. Temperature and dispersion dependence of the Kerr con-
stant, K (T, λ), in BPII phase of M2 mixture. The color solid lines
are for λ1, λ2, and λ3 in Fig. 4(b). Examples of K (λ) are denoted as
solid black lines. The surface is given by relations in Eqs. (18)–(20)
and the A, B parameters are represented by polynomials given in the
main text.

polynomial −201.73�T 3− 925.54�T 2− 521.9�T = 227.15.
Its values are within ∼227–305 nm which is the same order
as the ∼ 216 nm reported for the polymer-stabilized LC
composite [35]. The second parameter decreases with temper-
ature and can be well represented as A(T ) = (4.1707�T 3 +
17.947�T 2 − 3.4972�T + 1.9048)10−7V −2. With these
relations for A and B, the K (T, λ) of M2 BPII can be obtained
with Eq. (18) and the resultant surface is shown in Fig. 7.
We emphasize that the above polynomials are not unique
representations of A and

√
B, and other functions could be

used as well.

V. CONCLUSIONS

A direct and simple scheme to determine the Kerr constant
(K) in optically isotropic liquid crystals has been proposed
and tested. The method is based on the relation between the
induced birefringence and the light intensity modulated by the
electric field in the sample. The explicit expression for K is
derived in terms of the two measuring voltages. In the scheme
a modified IPS geometry is used which provides a sufficiently
uniform longitudinal electric field. The method can operate on
application of comparatively small driving voltages and can
measure relatively small K values (10−11mV−2). Also, just
as for the VFS approach [15], the method gives the ability
to view the sample texture during the measurement, allowing
monitoring of phase changes and the sample alignment. This
feature is especially useful in studies of transition regions and
temperature-narrow BPs. Another advantage is the possibility
to measure directly K for different light wavelengths. A com-
parison of results obtained for two liquid crystals (5CB and its
mixture with a chiral dopadt CE2) shows the performance and
accuracy of the scheme is comparable to that of VSF.

The scheme has been used to derive some insights into the
general T and λ dependence of the Kerr constant which is a
difficult property to measure and a largely unexplored issue.
The dependence has been investigated in liquid and BPII
phases for a range of temperatures and three wavelengths. The
performed measurements showed that the dispersion relation
in Eq. (18) describes the experimental data very well both in
the liquid phase and in the BP phase. This may mean that the

relation in Eq. (18) points to some universal behavior and can
describe well the dispersion of the Kerr constant in different
optically isotropic materials.

In all considered cases, the temperature dependence in
isotropic liquids follows well the simple linear relationship,
1/K ∼ T (but, the region close to the clearing temperature
needs more detailed studies to confirm or disprove this be-
havior). In the BPII the temperature dependence of the Kerr
constant can also be approximated by the linear relation which
is practically equivalent to the relation proposed by Ref. [30].
The results of this work as well as results in Ref. [15] indicate
however that the some departures from the linear trend are
present and the K in BPII is represented well by the three
parameter exponential-like formula [in Eq. (13)].

It is found that in the isotropic fluid both parameters in the
dispersion relation have a simple linear T -dependence, which
allows us to formulate a general form of K (T, λ)-surface with
only four constants. This important and useful finding is worth
further investigations (including different isotropic liquids) to
establish the range of its applicability. In the case of the BPII
the parameters do not display a simple T -dependence. They
are however functions which can be fitted with a low-order
polynomial.
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APPENDIX: THE DISPERSION RELATION OF
THE KERR CONSTANT

In this Appendix, the expression for the K (T, λ) in Eq. (18)
in which both parameters A, B depend of temperature is
derived. The starting point is the rigorous and explicit single-
band birefringence dispersion model derived by Abdulhalim
[37,38] and its application to the saturated induced birefrin-
gence,

�ns =
√

G‖λ2 − 1 −
√

G⊥λ2 − 1√
Gcλ2 − 1

. (A1)

In the above expression G‖, Gc, G⊥, are temperature- and
material-dependent parameters

G‖ = 1

λ∗2
+ 2a(g⊥ + 4g‖),

Gc = 1

λ∗2
− a(2g⊥ + g‖), (A2)

G⊥ = 1

λ∗2
+ a(7g⊥ − g‖), (A3)

in which a = 4πN/9, N is the number of molecules per
unit volume, λ∗ as above is the wavelength of the nearest
absorption band and g⊥, g‖ are the oscillator strengths per-
pendicular and parallel to the molecular axis, respectively.
Writing Eq. (A1) in the form

�ns =
√

G‖
√

1 − 1
G‖λ2 − √

G⊥
√

1 − 1
G⊥λ2

√
Gc

√
1 − 1

Gcλ2

, (A4)
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and exploiting that x ≡ 1/Gsλ
2 (s =‖, c,⊥) are generally

small [37], we get

�ns
∼=

√
G‖ − 1

2
√

G‖λ2
− √

G⊥ + 1
2
√

G⊥λ2

√
Gc − 1

2
√

Gcλ2

=
λ2(

√
G‖ − √

G⊥) + 1
2

(
1√
G⊥

− 1√
G‖

)
√

Gc(λ2 − 1
2Gc

)
(A5)

= G∗λ∗2λ2

λ2 − B

(
1 + 1

2
√

G⊥G‖λ2

)
, (A6)

where G∗ = (
√

G‖ − √
G⊥)/

√
Gcλ

∗2 and B = 1/2Gc. As x is
small it follows that the second term in parenthesis (A6) is

small compared to unity and from Eq. (17) one gets the ex-
pression in Eq. (18) for the Kerr constant in which both A and
B are the LC material- and temperature-dependent parameters,

K ∼= Aλ

λ2 − B
, (A7)

where A = G∗λ∗2/E2
s . If in particular case Gc = 1/2λ∗2

or B = λ∗2, then G∗ can be treated as G and K (T, λ) is
the product of temperature-dependent K (T ) = Gλ∗2/E2

s and
wavelength-dependent K (λ) = λ/(λ2 − λ∗2) parts. It is worth
noting that in applying the (A7) relation the wavelength λ∗
does not need to be known. Another advantage is the possi-
bility to determine A, B with the data obtained at only two
wavelengths.
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