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Active colloidal molecules in activity gradients
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We consider a rigid assembly of two active Brownian particles, forming an active colloidal dimer, in a
gradient of activity. We show analytically that depending on the relative orientation of the two particles the
active dimer accumulates in regions of either high or low activity, corresponding to, respectively, chemotaxis
and antichemotaxis. Certain active dimers show both chemotactic and antichemotactic behavior, depending on
the strength of the activity. Our coarse-grained Fokker-Planck approach yields an effective potential, which we
use to construct a nonequilibrium phase diagram that classifies the dimers according to their tactic behavior.
Moreover, we show that for certain dimers a higher persistence of the motion is achieved similar to the effect of
a steering wheel in macroscopic devices. This work could be useful for designing autonomous active colloidal
structures which adjust their motion depending on the local activity gradients.
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I. INTRODUCTION

Active matter has a wide range of applications [1]: material
science [2], environmental science (e.g., clean up of pollu-
tants [3–5]), transport of cargo [6–9], and biomedical science
[10–12] (e.g., drug delivery [13–20]). For many applications
it is important to steer the active particles towards the correct
target zone. Steering of active particles has been realized ex-
perimentally by feedback mechanisms, where the state of the
active particle (position and orientation) are measured and ac-
cordingly the external stimuli are modified [21,22]. However,
since it is not always be possible to externally measure the
state and tune the behavior of active particles, an autonomous
approach is desirable where an active particle senses the local
environment and adjusts its behavior accordingly.

A way to control the behavior of active particles is by
subjecting them to spatial external fields. For example a space-
dependent friction [23] or a space-dependent swim force
[24–29]. Here we focus on the latter. It is well known that
objects accumulate where they are less agitated. For active
particles this means that they accumulate where the swim
force is small [24,30,31]. Active particles with a space depen-
dent swim force give rise to a wide variety of behavior that
has consequences for their tactic properties [31–35], search
strategies [36,37], trapping [38], and, when the swim force is
both space and time dependent, can be used to induce a flux
[39–43].

Colloidal sized active Brownian particles (APBs) can be
assembled into active colloidal molecules [44], for example,
dimers and tadpole shaped particles [45–47], active polymers
[48], or more complex structures [49,50]. From a theoretical
perspective, active particles connected in a chain to form
polymers, have recently received much attention [9,51–60].
In contrast to previous work [9], here we consider an active

dimer where the orientation of the active particles that con-
stitute the dimer are fixed with respect to the bond vector
(see Fig. 1), which corresponds to the experimental systems
in Refs. [45–47]. In particular, we study the behavior of
active colloidal dimers with a space dependent swim force,
and how the orientation of the active particles relative to
the bond vector affects the dimer’s behavior, as proposed in
Ref. [61]. With the recent advances in fabrication techniques,
colloidal particles can now be assembled into desired struc-
tures [62–67]. Since structure determines the functionality of
the active dimer our study could be important for the design
of active matter for environmental and medical applications
where, generally, one has little or no control over the external
gradients [68].

II. MODEL

We consider a two-dimensional model consisting of two
ABPs [69] attached to each other forming an active colloidal
dimer; see Fig. 1. The motion of the dimer is governed by the
following stochastic differential equations (SDEs):

∂t r1 = 4F + 4 fs(r1)n1 + 2ξ1, (1)

∂t r2 = −4F + 4 fs(r2)n2 + 2ξ2, (2)

where r1 (r2) is the position of particle 1 (2), the vector ξ1 and
ξ2 are random Gaussian vectors with 〈ξ1(t )〉 = 〈ξ2(t )〉 = 0,
〈ξ1(t )ξ1(t ′)〉 = 〈ξ2(t )ξ2(t ′)〉 = 1δ(t − t ′), fs(r) is the active
force at position r, and n1 (n2) is the direction of the ac-
tive force on particle one (two). The force F holds the two
particles together. In the following we take this force to be
strong enough to keep the two particles at a fixed distance l
from each other. Furthermore, this force fixes the orientation
of the two ABPs relative to the bond vector. The unit of length
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and time are such that l = 1 and the diffusion constant of
the center-of-mass coordinate of the dimer is unity. The unit
of force is 2T/l , where T is the temperature in units such
that the Boltzmann constant is unity. Note that in contrast
to other theoretical studies [24,70–72], the rotational diffu-
sion constant is not a free parameter, but comes from the
translational diffusion of the two particles. Note that, to keep
our analysis general, we do not take into account the torque
on the two active particles due to the activity gradient be-
cause this depends on the specific self-propulsion mechanism
[73]. However, this torque can be included in the analy-
sis presented here. We ignore the hydrodynamic interaction
between the two particles, and their effect on the self-
propulsion [74–77].

Because the distance between the two particles is constant,
the two translational degrees of freedom of the two particles
can be transformed to the center-of-mass coordinate of the
dimer R = (r1 + r2)/2 and θ , the angle between the bond
vector n = r1 − r2 = (cos θ, sin θ ) and the x axis. We call the
bond vector n the orientation of the dimer. The corresponding
SDEs are

∂t R = 2[ fs(r1)n1 + fs(r2)n2] +
√

2ξ, (3)

∂tθ = −4n·ε·[ fs(r1)n1 − fs(r2)n2] +
√

8η, (4)

where r1 = R + 1
2 n, r2 = R − 1

2 n, εyx = −εxy = 1, εxx =
εyy = 0, ξ and η are a random Gaussian vector and num-
ber, respectively, with 〈ξ(t )〉 = 0, 〈ξ(t )ξ(t ′)〉 = 1δ(t − t ′), and
〈η(t )〉 = 0, 〈η(t )η(t ′)〉 = δ(t − t ′). The free parameters in this
study are the swim force fs(r) and the two angles φ1 and φ2.

The Fokker-Planck equation corresponding to the SDEs (3)
and (4) governs the time evolution of the probability density
P(R, θ, t ) [78]. We coarse grain this equation by integrating
out θ and only retain terms up to order ∼O(∇2). This re-
sults in a Fokker-Planck equation for the probability density
of the dimer ρ(R, t ) = 1

2π

∫
dθP(R, θ, t ). In the following

we only consider steady-state properties. From the Fokker-
Planck equation one can extract the steady-state density ρ(R),
flux J(R) and polarization p(R) = ρ−1(R)

∫
dθnP(R). De-

tails of the coarse graining procedure and the calculation of
the steady-state properties are shown in the Appendix.

III. RESULTS AND DISCUSSION

Before we discuss the solution to the FPE, we inspect
Eqs. (3) and (4) to understand what kind of behavior one
can expect from this system. To do this, we ignore terms
∼O(∇2 fs), and assume that the swim force only depends on
the x coordinate. Equations (3) and (4) then become

∂t x = 2 fs(x)(c+nx − s+ny)

− (c−nx − s−ny)nx∂x fs(x) +
√

2ξx, (5)

∂t y = 2 fs(x)(s+nx + c+ny)

− (s−nx + c−ny)nx∂x fs(x) +
√

2ξy, (6)

∂tθ = − 4s− fs(x) − 2s+nx∂x fs(x) +
√

8η, (7)

FIG. 1. A sketch of an active colloidal dimer consisting of two
active Janus particles. The orientation vectors n1 and n2 of the active
particles are shown in blue. The angles φ1 and φ2 are the angles
between n1 and n2 and the vector connecting the centers of the
particle.

where x = R · êx, y = R · êy, c± = cos(φ1) ± cos(φ2), and
s± = sin(φ1) ± sin(φ2).

Because of the torque on the orientation of the dimer, that
is the −4s− fs term in Eq. (7), these dimers are chiral active
particles [69,79], and because of that they are odd diffusive
[80], meaning that they have diffusive fluxes perpendicular to
density gradients (see Appendix C).

To get a better physical understanding of the different
contributions to the equations of motion, a few illustrative
examples are discussed. A dimer with φ1 = φ2 = 0, shown
in the inset of Fig. 2(a), is structurally similar to a single
ABP. Accordingly, this dimer accumulates where the swim
force is small. Dimers where the two active particles have
opposite orientations along the orientation vector are shown in
the insets of Figs. 2(b) and 2(c). These dimers are symmetric
under nx → −nx. Since the swim-force varies only along the
x coordinate, at any location, a dimer with φ1 = 0, φ2 = π ,
experiences a net force towards the region of small swim force
(antichemotactic), whereas an dimer with φ1 = π, φ2 = 0 ex-
periences a net force towards the region of large swim force
(chemotactic).

A particularly interesting structure is an dimer with φ1 =
φ2 = π/2 shown in the inset of Fig. 2(f). In this case, the
orientations of the two particles are parallel to each other
and perpendicular to the orientation vector. The equations of
motion are

∂t x = − 4ny fs(x) +
√

2ξx, (8)

∂t y =4nx fs(x) +
√

2ξy, (9)

∂tθ = − 4nx∂x fs(x) +
√

8η. (10)

The first two of these equation are the same as that for a ABP
with rotated orientation vector. In the equation of motion of
the angle, however, a new feature appears. There is an active
torque on the dimer proportional to nx and the gradient in
the swim force. This torque rotates the dimer, like a steering
wheel, in such a way that the orientation vector points in
the direction perpendicular to the gradient in the swim force,
therefore, this torque stabilizes the dimer such that the active
forces point in the direction opposite the gradient in the swim
force. Accordingly, this dimer accumulates where the swim
force is small.

Dimers in which the orientations of the two active particles
have opposite orientations and perpendicular to the orientation
vector are shown in the insets of Figs. 3(a) and 3(b). For
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FIG. 2. Density for different dimers (see insets) relative to the
bulk density ρb = ∫ L

0 dxρ(x)/L, where L = 25 is the simulation box
with periodic boundary conditions. The orientations of the particles
in the dimer are indicated in the figure. The symbols show the
simulation of Eqs. (3) and (4), the solid line show the theoretical
prediction [Eq. (15)], and the red dashed line in panel (a) shows the
shape of the swim-force profile fs(x) = 8[1 + sin(2πx/L + 3π/2)].
The orientation of the particles in the dimer can be used to control
wether the dimer accumulates in regions where fs is small [panels
(a), (b), (e), and (f)], or in regions where fs is large [panels (c) and
(d)].

φ1 = π/2, φ2 = 3π/2, the equations of motion are

∂t x = 2nynx∂x fs(x) +
√

2ξx, (11)

∂t y = − 2n2
x∂x fs(x) +

√
2ξy, (12)

∂tθ = − 8 fs +
√

8η. (13)

Two features of these equations are noteworthy. First, there
is an active torque acting on the dimer (the −8 fs part in
the equation for the time evolution of the angle). This is
equivalent to the active torque in case of an active chiral
particle [79,81,82]. Second, the term −n2

x∂x fs(x) in the time
evolution equation for the y coordinate is nonzero on average
for a fixed value of x. Since there is translational invariance in
the y direction, this effective force, remains unbalanced giv-
ing rise to stationary fluxes perpendicular to the swim-force
and density gradients. Note that since the dimer is symmet-
ric under nx → −nx, on average the x coordinate gets no

FIG. 3. Flux perpendicular to swim-force gradients. The bulk
density is ρb = ∫ L

0 dxρ(x)/L with L = 25. These transverse fluxes
are reminiscent of, for instance, chemotactic sea urchin sperm swim-
ming in the presence of a chemical source [83]. The swim force is
fs(x) = 8[1 + sin(2πx/L + 3π/2)] (same as Fig. 2). The orienta-
tions of the particles in the dimer are shown in the figures.

contribution from the swim-force gradients. Accordingly, this
dimer shows no preferential accumulation in a swim-force
gradient. The behavior of a dimer with φ1 = 3π/2, φ2 =
π/2 [inset of Fig. 3(b)] is similar except that its chirality is
reversed.

The structural properties of the dimer, namely net activity
proportional to fs, force proportional to ∇ fs, torque propor-
tional to fs, and a torque proportional to ∇ fs, are determined
by the orientation of the two particles and result in two classes
of steady-state behavior. One could design the dimer in such
a way that it preferentially moves towards regions with high
or low swim force. Going beyond the examples above, for a
generic structure of the dimer, the stationary density distribu-
tion can be obtained from the coarse grained Fokker Planck
equation by setting the flux along the gradient of swim force
to zero [see the Appendix for the derivations of Eqs. (3), (4),
and (15)]. This yields

ρ(x) ∝ exp(−U ), (14)

with

U = c

2d
fs + b

4d
ln(1 + df 2

s ) + ad − c

2d3/2
atan(

√
d fs), (15)

where a = c−, b = c2
+ + 2s2

+, c = s2
−c− − s−s+c+, and d =

1
2 (2s2

− + c2
+ + s2

+). Figure 2 shows the stationary density dis-
tribution of dimers with different structures obtained from
simulations of Eqs. (3) and (4). Depending on the structure,
dimers accumulate in the regions where swim force is small
or large. The theoretical predictions [Eq. (15)] are in perfect
agreement with the simulations.

The steady-state density distribution obtained from the
coarse grained Fokker Planck equation is Boltzmann-like
with an effective potential (U ). However, this does not imply
that on this coarse-grained level the dynamics obey detailed
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(a) (b)

FIG. 4. Phase diagrams for the tactic behavior of dimers for a
value of the swim force of fs = 0.5 in (a) and fs = 5 in (b). Every
point in the φ1-φ2 plane corresponds to a different dimer structure.
The blue region corresponds to antichemotactic dimers, which ex-
perience an effective force down the swim-force gradients (U ′ > 0).
The red region corresponds to chemotactic dimers (U ′ < 0). These
tactic regions are separated by white boundaries which correspond
to dimers which show no preferential accumulation (U ′ = 0). The
phase behavior is dependent on the magnitude of the swim force
implying that the same dimer can be chemotactic or antochemotactic
depending on the magnitude of the swim force.

balance; there are configurations of the dimer that result in
steady-state fluxes in the direction perpendicular to gradi-
ents in the swim force (see Fig. 3). For instance, a dimer
with φ1 = π/2 and φ2 = 3π/2 is a chiral particle that rotates
clockwise whereas a dimer with φ1 = 3π/2 and φ2 = π/2 ro-
tates anticlockwise. While these dimers show no preferential
accumulation [U = 0 in Eq. (15)], the gradient in the swim
force gives rise to a net force along the y direction that gives
rise to fluxes Jy = −ρb∂x fs for the clockwise dimer [Fig. 3(a)]
and Jy = ρb∂x fs for the anticlockwise dimer [Fig. 3(b)]. In
case of a generic dimer structure, for which the stationary
distribution is not homogeneous [Figs. 3(c) and 3(d)], the
flux along the y direction is perpendicular to the density
gradient (along x). Fluxes perpendicular to the density gra-
dients is a characteristic property of odd-diffusive systems
[80,84,85]. The odd-diffusive flux of active dimers can be
obtained from the coarse grained Fokker Planck equation (see
the Appendix). These fluxes are a clear indication of broken
detailed balance, and show that on this coarse-grained level
not all properties of the dimer can be captured by the effec-
tive potential [Eq. (15)] alone. Whether a dimer accumulates
in small or large swim-force regions is determined by the
effective force that it experiences in swim-force gradients.
The effective force can be obtained from the effective poten-
tial as −∇U = −U ′∇ fs, where U ′ = dU

dfs
. Wherever U ′ < 0

(U ′ > 0) the dimer moves up (down) the swim-force gradi-
ent, corresponding to chemotactic (antichemotactic) behavior.
Figure 4(a) shows a phase diagram in the φ1-φ2 plane that
categorises different dimer structures according to their tactic
behavior for fs = 0.5. Dimers which show no preferential ac-
cumulation in a swim-force gradient correspond to the white
lines shown in Fig. 4(a) obtained as U ′ = 0.

FIG. 5. Top: Density relative to the bulk density for a dimer
with φ1 = π/2 and φ2 = 0 (see inset) for different values of the
swim force. This is the same dimer as Fig. 2(d). The bulk den-
sity is ρb = ∫ L

0 dxρ(x)/L, where L = 25 is the simulation box with
periodic boundary conditions. The swim force is fs(x) = f 0

s [1 +
sin(2πx/L + 3π/2)], with the value of f 0

s as indicated in the legend.
Bottom: Derivative of the effective potential U ′ = dU/dfs. Wherever
U ′ < 0 (U ′ > 0) the dimer is chemotactic (antichemotactic). The
density profile changes qualitatively when the swim force increases.
In this case there is a single peak in the density where fs is large for
f 0
s = 1/4, as the swim force increases ( f 0

s = 1/2) the peak split in
two, and if the swim force is increased further ( f 0

s = 1) a third peak
appears.

As can be seen in Fig. 4(b), the phase behavior depends
on the magnitude of the swim force. This means that a dimer
can be antichemotactic in case of a small swim force and
chemotactic in case of a large swim force, or vice versa. This
can result in “local” (anti)chemotaxis, as shown in Fig. 5,
where at low swim force there is a single peak in the density
that coincides with the peak in fs, as the swim force increases,
the peak splits in two, and on further increasing the swim force
a third peak appears. The density distribution has multiple
peaks because U ′ is negative in some regions and positive in
others which can be regarded as coexisting chemotactic and
antichemotactic dynamic phases.

Using experimental values from Ref. [45] for dimers with
a constant activity, we estimate the change in density relative
to a passive region for the dimer shown in Fig. 2(d) to be
ρactive/ρpassive ≈ 4 (see Appendix F for details of the estimate).
While this is a conservative estimate, it is likely possible
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to obtain much larger density changes, for example for the
dimer in Fig. 2(b), or by different experimental conditions. To
obtain better predictions for experimental system, it would be
interesting to include the effects of the specific self-propulsion
mechanism [86] and the hydrodynamic interaction between
the two particles in the dimer [76,77].
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APPENDIX A: ACTIVE DIMER MODEL

The equations of motion for the dimer (see Fig. 1 in the
main text) are

∂t r1 = 1

γ
F + 1

γ
fs(r1)n1 +

√
2T/γ ξ1, (A1)

∂t r2 = − 1

γ
F + 1

γ
fs(r2)n2 +

√
2T/γ ξ2, (A2)

where r1, n1, r2, and n2 are, respectively, the position and ori-
entation vectors of particles 1 and 2, γ is the friction constant
of a single particle in the dimer, fs(r) is the swim force, T
is the temperature in units such that the Boltzmann constant
is unity, the vectors ξ1 and ξ2 are random Gaussian vectors
with 〈ξ1(t )〉 = 〈ξ2(t )〉 = 0 and 〈ξ1(t )ξ1(t ′)〉 = 〈ξ2(t )ξ2(t ′)〉 =
1δ(t − t ′). The force between the two active particles F is
always such that the distance between the two is constant and
equal to l .

We make the equations dimensionless by r1 → lr1, r2 →
lr2, t → 2γ l2t/T , and fs(r) → 2T fs(r)/l , so length is mea-
sured in units such that the distance between the two particles
is unity, time is measured in units such that the dimer typically
diffuses a unit length per unit time, and forces are measured
in units of 2T/l . The dimensionless equations corresponding
to Eqs. (A1) and (A2) are

∂t r1 = 4F + 4 fs(r1)n1 + 2ξ1, (A3)

∂t r2 = −4F + 4 fs(r2)n2 + 2ξ2. (A4)

These equations can be rewritten using the center-of-mass
coordinate R = 1

2 (r1 + r2) and the relative coordinate r =
r1 − r2:

∂t R = 2[ fs(r1)n1 + fs(r2)n2] +
√

2ξ, (A5)

∂t r = −8F − 4[ fs(r1)n1 − fs(r2)n2] +
√

8η, (A6)

where 〈ξ(t )〉 = 〈η(t )〉 = 0 and 〈ξ(t )ξ(t ′)〉 = 〈η(t )η(t ′)〉 =
1δ(t − t ′). The second equation accounts for the relative
movement of the two particles, which can be decomposed in a
rotation of the unit vector pointing from r1 to r2, and a change
in the distance between the two particles (see Appendix E).
r = rn, with n = [cos(θ ), sin(θ )]. The Langevin equation for
the change in the distance is

∂t r = −8n·F − 4n·[ fs(r1)n1 − fs(r2)n2] +
√

8n·η. (A7)

Because the particles are connected by a stiff rod, the force
due to the rod F is always such that r = 1 and ∂t r = 0. The

equation for the orientation is

∂t n = −8(1 − nn)·F − 4(1 − nn)·[ fs(r1)n1 − fs(r2)n2]

+
√

8(1 − nn)·η. (A8)

This equation should be integrated with the Stratonovich rule.
The first term on the right-hand side is zero because F ∝ n,
and the last term can be replaced by ε·nη where εyx = −εxy =
1 and εxx = εyy = 0, so

∂t n = 4(1 − nn)·[ fs(r1)n1 − fs(r2)n2] +
√

8ε·η. (A9)

The previous equation is equivalent to

∂tθ = 4n·ε·[ fs(r1)n1 − fs(r2)n2] +
√

8η, (A10)

with 〈η(t )〉 = 0 and 〈η(t )η(t ′)〉 = δ(t − t ′). This equation to-
gether with Eq. (A5) describes the dynamics of the dimer and
are used for the simulations.

APPENDIX B: SMALL GRADIENT APPROXIMATION

The orientation vectors of the active particles can be writ-
ten as a rotation of the orientation vector of the dimer: n1 =
R1n and n2 = R2n, where R1 = R(φ1), R2 = R(φ2) and

R(φ) =
[

cos φ − sin φ

sin φ cos φ

]
. (B1)

We define A = R1 + R2 = c+1 + s+ε and B = R1 − R2 =
c−1 + s−ε, where c± = cos(φ1) ± cos(φ2) and s± =
sin(φ1) ± sin(φ2).

We assume gradients in the swimforce to be small, so we
expand the swim force in Eqs. (A5) and (A10):

∂t R = 2 fsA·n − n·(∇ fs)B·n +
√

2ξ + O(∇2 fs), (B2)

∂tθ = 4n·ε·B·n fs − 2n·ε·A·n n·∇ fs +
√

8η

+ O(∇2 fs),

= −4s− fs + 2s+n·∇ fs +
√

8η + O(∇2 fs), (B3)

where fs = fs(R), and ∇ is the gradient with respect to R.
The motion of a single chiral active Brownian particle is

described by [69,79]

∂t r = vsn +
√

2Dξ, (B4)

∂tθ = � +
√

2Drη, (B5)

where vs is the swim speed, D the thermal diffusion constant,
� the torque on the particle and Dr its rotational diffusion
constant. Comparing with Eqs. (B2) and (B3) shows that if
the swim force is constant, then the swim speed of the dimer

is vs = |2 fsA · n| = 2 fs

√
c2+ + s2+, its thermal diffusion con-

stant is D = 1, the torque is � = −4s− fs, and the rotational
diffusion constant is Dr = 4. The active diffusion constant is

Da = v2
s

2Dr
= 1

2
f 2
s (c2

+ + s2
+). (B6)

If � �= 0, then there is a torque on the particle, and it swims
in circles. These particles are called circle swimmers [81] or
chiral active particles [82]. The chirality results in diffusive
fluxes perpendicular to density gradients. This property is

014617-5



HIDDE D. VUIJK et al. PHYSICAL REVIEW E 106, 014617 (2022)

called odd diffusion (see Appendix C). By tuning s− one can
tune the chirality and with that the odd diffusivity of these
dimers.

The Fokker-Planck equation corresponding to Eqs. (B2)
and (B3) is

∂t P = −2∇·[ fsA·nP] + ∇·[B·n n·(∇ fs)P]

+ ∇2P + 4s− fsRP − 2s+R[n·(∇ fs)P]

+ 4R2P + O(∇3), (B7)

= −2Ai j∇i[ fsn jP] + Bi j∇i[(∇k fs)n jnkP]

+ ∇2P + 4s− fsRP − 2s+(∇i fs)R[niP]

+ 4R2P + O(∇3), (B8)

where R = ∂
∂θ

= nx
∂

∂ny
− ny

∂
∂nx

. The previous equation is
valid up to third order in the gradient operator because the
SDEs [Eq. (B2) and (B3)] are only valid up to second order in
the gradient.

We expand the probability density in eignefunctions of R2

[87–89]:

P(R, n(θ ), t ) = ρ(R, t ) + σ(R, t )·n
+ τ (R, t ):(nn − 1/2) + �, (B9)

where ρ(R, t = 1
2π

∫
dθP(R, t ) is the density, σ and τ are the

coefficients of, respectively, the second and third moment, and
� is the projection onto higher-order moments. If the swim
force is uniform (∇ fs = 0), then the system is isotropic and
therefore σ = 0, τ = 0, and � = 0, all moments except the
zeroth are at least proportional to ∇. For the integral over the
orientation n(θ ) we write 〈·〉 = 1

2π

∫ 2π

0 dθ ·. The equation for
ρ can be obtained by averaging Eq. (B8):

∂t 〈P(t )〉 = −2Ai j∇i[ fs〈n jP〉]
+ Bi j∇i[(∇k fs)〈n jnkP〉] + ∇2〈P〉
+ 4s− fs〈RP〉 − 2s+(∇i fs)〈RPni〉
+ 4〈R2P〉 + O(∇3). (B10)

All averages with R in this equation are zero. With 〈P〉 = ρ,
〈n jP〉 = σ j/2 and 〈n jnkP〉 = δ jk〈P〉 + 〈(n jnk − δ jk/2)P〉 =
δ jkρ/2 + τ jk/4 the previous equation becomes

∂tρ = − ∇·J, (B11)

with

Ji = Ai j fsσ j − 1
2 Bi j (∇ j fs)ρ − 1

4 Bi j (∇k fs)τ jk

− ∇iρ + O(∇2),

= Ai j fsσ j − 1
2 Bi j (∇ j fs)ρ − ∇iρ + O(∇2), (B12)

where in the last step we ignored the term with τ because if
there is no gradient in the swim force, the system is isotropic,
so there is no nematic ordering (τ = 0), and therefore τ ∼
O(∇ fs) and τ jk∇k fs ∼ O(∇2).

To get an equation for σ, we multiply Eq. (B8) by nl and
average over n:

2∂t 〈nl P〉 = −2Ai j∇i[ fs2〈n jnl P〉]
+ Bi j∇i[(∇k fs)2〈n jnknl P〉]
+ ∇22〈nlP〉 + 4s− fs2〈nlRP〉
− 2s+(∇i fs)2〈nlRniP〉
+ 8〈nlR2P〉 + O(∇3). (B13)

With what we used before together with 2〈njnknlP〉 =
2σm〈n jnknlnm〉 + 〈n jnknl�〉 = σmT (4)

jklm + χ jkl where

T (4)
jklm = (δ jkδlm + δ jlδkm + δ jmδkl ) and χ jkl is the

projection of n jnknl on �, 2〈nlRP〉 = −2〈(Rnl )P〉 =
−εlm2〈nmP〉 = −εlmσm, 2〈nlRniP〉 = −2〈(Rnl )niP〉 =
−εlm2〈nmniP〉 = −εlm2( 1

2δmiρ + 1
4τmi ) = −εliρ − 1

4εlmτmi,
and 2〈nlR2P〉 = 2〈(R2nl )P〉 = −2〈nl P〉 = −σl , the previous
equation becomes

∂tσl = −2Ail∇i[ fsρ] − Ai j∇i[ fsτ jl ]

+ Bi j∇i[(∇k fs)(σmT (4)
jklm + χ jkl )]

+ ∇2σl − 4s− fsεlmσm + 2s+εli(∇i fs)ρ

+ s+(∇i fs)εlmτmi − 4σl + O(∇3). (B14)

Equation (B11) shows that the time scale of the time evolution
in the density is ∼O(∇−1). The previous equation show that
the time scale of the time evolution of σ is at least ∼4, so
compared to ρ, σ is a fast degree of freedom, and therefore
∂tσ ≈ 0. With this together with σ ∼ O(∇), τ ∼ O(∇), χ ∼
O(∇), we can re-arrange the previous equation:

σ j = −1

2

1

1 + s2− f 2
s

[δ jl − s− fsε jl ]

× [Akl∇k ( fsρ) − s+εlk (∇k fs)ρ]

+ O(∇̃2). (B15)

Equations (B11), (B12), and (B15) describe the coarse-
grained dynamics of the dimer. We assume gradients in the
swimforce to be small, so we expand the swim force in
Eqs. (A5) and (A10).

APPENDIX C: ODD DIFFUSION

Odd-diffusive systems have a diffusion tensor with anti-
symmetric components which can be written as [80,84,85,90]

Di j = D‖δi j + D⊥εi j . (C1)

The diagonal components of this tensor (D‖) are related to
the diffusion along the density gradient; the antisymmetric
components (D⊥) are related to the diffusion perpendicular
to the density gradient.
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The diffusion tensor of the dimers can be calculated from
Eqs. (B12) and (B15) resulting in

D‖ = 1 + Da
1

1 + ω2
, (C2)

D⊥ = Da
ω

1 + ω2
, (C3)

where ω = �/Dr = −s− fs is the active torque divided by the
rotational diffusion constant.

APPENDIX D: STEADY STATE

1. Density

We calculate the steady-state density for fs = fs(x), so ρ =
ρ(x) and σ = σ(x). In this case the flux in the x-direction is
zero:

0 = Jx

= fsAx jσ j + 1
2 Bxx(∇x fs)ρ − ∇xρ. (D1)

For the first term we use Eq. (B15):

Ax jσ j = −1

2

1

1 + s2− f 2
s

(c2
+ + 2s2

+ − s−s+c+ fs)(∇x fs)ρ

− 1

2

fs

1 + s2− f 2
s

(c2
+ + s2

+)∇xρ. (D2)

With this, the steady-state density becomes

ρ ∝ e−U , (D3)

where

∇xU = 1

2
(∇x fs)

c− + (c2
+ + 2s2

+) fs + s−(s−c− − s+c+) f 2
s

1 + 1
2 (c2+ + s2+ + 2s2−) f 2

s

,

(D4)

U =
∫

dx ∇xU,

= c

2d
fs + b

4d
ln(1 + df 2

s ) + ad − c

2d3/2
atan(

√
d fs), (D5)

where a = c−, b = c2
+ + 2s2

+, c = s2
−c− − s−s+c+, and d =

1
2 (2s2

− + c2
+ + s2

+).

2. Polarization

The polarization is defined as the average orientation per
particle:

p = 〈nP〉
〈P〉 = σ

2ρ
. (D6)

Together with Eq. (B15), this gives

px = −1

4

1

1 + s2− f 2
s

[(c+ − 2s−s+ fs)∇x fs

− (c+ − s−s+ fs) fs∇xU ], (D7)

and

py = 1

4

1

1 + s2− f 2
s

[(2s+ + s−c+ fs)∇x fs

− (s+ + s−c+ fs) fs∇xU ]. (D8)

3. Flux

The flux in the y direction [see Eqs. (B12) and (B15)] is

Jy = fsAy jσ j − 1
2 Byx(∇x fs)ρ

= 2 fsAy j p jρ − 1
2 Byx(∇x fs)ρ

= Vyρ, (D9)

where

Vy = 2 fsAyx px + 2 fsAyy py − 1
2 Byx(∇x fs),

= 2 fs(s+ px + c+ py) − 1
2 s−(∇x fs). (D10)

APPENDIX E: TORQUE

∂t r = F(r) + η. (E1)

The vector r can be decomposed in a length and a orientation:
r = rn, with |n| = 1. With Stratonovich integration one can
then use n·dn = 0 to find the equations of motion for n and r:

∂t r = n·∂t r = n·F + n·η, (E2)

∂t n = 1

r
(1 − nn)·F + 1

r
(1 − nn)·η. (E3)

The Fokker-Planck equation corresponding to the last equa-
tion is

∂t P(n, t ) = −1

r
(nx∂y − ny∂x )[(nxFy − nyFx )P]

+ 1

r2
(nx∂y − ny∂x )2P, (E4)

= −1

r
∂θ [(nxFy − nyFx )P] + 1

r2
∂2
θ P, (E5)

where in the last step we used n = [cos(θ ), sin(θ )]. The SDE
for n is equivalent to

∂t n = 1

r
(1 − nn)·F + 1

r
ε·nη, (E6)

where ε = [
0 −1
1 0 ], and it is equivalent to

∂tθ = 1

r
nxFy − 1

r
nyFx + 1

r
η, (E7)

= −1

r
n·ε·F + 1

r
η. (E8)

APPENDIX F: MAPPING TO EXPERIMENTAL DIMER

Reference [45] reports experiments on dimers similar to the
dimers in our work but with a costant swim force. Example c
of Ref. [45] corresponds to φ1 = π/2 and φ2 = π , which is
shown in Fig. 2(e) of the main text.
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The dynamics of this dimer can be described by the follow-
ing Langevin equations:

∂t r = ṽñ +
√

2D̃ξ, (F1)

∂tθ = ω̃ +
√

2D̃rη, (F2)

see Eqs. (1), (2), and (3) of Ref. [45]. The experimentally
measured value of the parameters are ṽ = 1.3 μm/s, D̃ =
0.15 μm2/s, ω̃ = 1.1 s−1, and D̃r = 1/16 s−1 (see Table I, row
c, of Ref. [45]).

The difference between the dimer in Figs. 2(d) and 2(e) of
the main text disappears if there is no activity gradient. The
dynamics of the dimer in Fig. 2(e) with a constant activity are
described by

∂t x = 1

2γ
fs(nx − ny) +

√
T

γ
ξx, (F3)

∂t y = 1

2γ
fs(nx + ny) +

√
T

γ
ξx, (F4)

∂tθ = − 1

γ l
fs +

√
4T

γ l2
η, (F5)

where we have put the dimensions back to compare with the
experimental system.

The x component of the active force is 1
2γ

fs(nx − ny),

which is equal to 1√
2γ

fsñx, and similarly, for the y component

of the active force is 1√
2γ

fsñy, where ñx and ñy are the x and

y components of the unit vector ñ that points in the direction
of the active force. By comparing the previous equations with
Eqs. (F1) and (F2) shows that

ṽ = fs√
2γ

, (F6)

D̃ = T

2γ
, (F7)

ω̃ = fs

γ l
, (F8)

D̃r = 2T

γ l2
. (F9)

The dimensionless swim force l fs/(2T ) can be calculated in
two ways:

l

2T
fs = ṽ2

2D̃ω̃
≈ 5.1, (F10)

l

2T
fs = ṽ√

2D̃D̃r

≈ 9.5. (F11)

The two ways to calculate the dimensionless force do not
agree because in our model we ignore hydrodynamics and
the fact that connecting the two ABPs has an effect on their
activity.

The ratio of the density of the dimers in an active re-
gion and a region without activity ρactive/ρpassive ≈ 4, or
ρactive/ρpassive ≈ 16, depending on which way the force is
estimated.
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