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Structural properties of liquids in extreme confinement
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We simulate a hard-sphere liquid in confined geometry where the separation of the two parallel, hard
walls is smaller than two particle diameters. By systematically reducing the wall separation we analyze the
behavior of structural and thermodynamic properties, such as inhomogeneous density profiles, structure factors,
and compressibilities when approaching the two-dimensional limit. In agreement with asymptotic predictions,
we find for quasi-two-dimensional fluids that the density profile becomes parabolic and the structure factor
converges toward its two-dimensional counterpart. To extract the compressibility in polydisperse samples a
perturbative expression is used which qualitatively influences the observed nonmonotonic dependence of the
compressibility with wall separation. We also present theoretical calculations based on fundamental-measure
theory and integral-equation theory, which are in very good agreement with the simulation results.
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I. INTRODUCTION

Simple liquids in confinement exhibit a rich phenomenol-
ogy, including inhomogeneous density profiles and layering
[1–4], anisotropic structure factors and orientational align-
ment [5–7], as well as multiple-reentrant crystallization and
glass transitions [8–13], and demixing [14]. All these phe-
nomena become particularly pronounced in the regime of
strong confinement where the wall separation extends to less
than three particle diameters. The structure of simple liq-
uids in this regime has been extensively studied in theory
[9,10,12,15–19], simulations [7,9,10,12,14,20–28], and ex-
periments [5,6,29–33]. These studies highlight that basically
all of the above phenomena can be explained by the interplay
between the length scale of the confinement and the typical
particle diameters and interaction range. The nonmonotonic
dependence of the inhomogeneous density profile and of
the gene ralized structure factor on the wall separation as
reported by theory and simulations in Refs. [7,12] can for
example be explained with the concepts of commensurate
packing if the confinement length is close to an integer mul-
tiple of the particle diameter, and incommensurate packing
otherwise. The former favors the packing into pronounced
layers with few particles between, while the latter inevitably
requires some particles to be placed between those layers, cre-
ating a somewhat “frustrated” and interlocked liquid structure
[6,12]. When increasing the packing fraction the same effect
leads to the emergence of reentrant crystallization transitions.
An originally crystalline sample melts when reducing the
wall separation and entering the incommensurate regime and
then freezes again when reducing the separation even further
[8–11]. The reason is that incommensurate packing disfavors
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freezing into stacked layers of two-dimensional (2D) crystals
and thus significantly increases the critical packing fraction.

Observing these phenomena in strong confinement im-
mediately leads to the question how the structure of a
three-dimensional liquid behaves in even more extreme con-
finement and how it finally converges toward the structure
of its 2D counterpart. Such questions are particularly in-
teresting to understand the dimensional crossover behavior,
for example for the emergence of the hexatic phase [25,26],
or the decoupling of lateral and transverse currents [27,34].
Important results have already been obtained from theory
and simulations for the inhomogeneous density profiles of
hard-sphere liquids, highlighting the emergence of parabolic
profiles in the regime of extreme confinement, which become
increasingly flat and finally converge toward the area den-
sity of the hard-disk fluid [15,19]. Similarly, the convergence
of the critical packing fraction for the freezing transition
in extreme confinement toward its 2D counterpart has been
quantified in computer simulations [9,10] in very good agree-
ment with density-functional theory and asymptotic formulas
[10,16,18].

In contrast to these well-established results, very little is
known about the actual packing of the particles as character-
ized for example by the anisotropic structure factor [6,7]. The
particular focus of this manuscript therefore lies on studying
the impact of confinement on packing and thermodynamic
quantities of hard-sphere fluids and how these properties
converge toward the quasi-two-dimensional limit in extreme
confinement. For monodisperse systems, theoretical predic-
tions have been derived for the rapidity of convergence of
the density profiles and structure factors toward their 2D
counterparts [19], thus we also compare simulation and nu-
merical results performed in this work with these theoretically
predicted asymptotic formulas. Since experimental studies
are usually based on polydisperse samples [5,6,29,31] we
also analyze the behavior of polydisperse hard spheres in
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FIG. 1. Schematic of the slit geometry highlighting the important
length scales: the wall separation H , the accessible slit width L, and
the average particle diameter σ.

strong confinement, where we find an anomalous behavior
of the structure factor at small wavelengths which could be
connected to the observation of microscopic demixing of dif-
ferently sized particles. To extract the compressibility of the
polydisperse samples from the structure factor we adapt the
perturbative expansion proposed in Ref. [35].

Our manuscript is organized as follows. In Sec. II we in-
troduce the confined geometry and the simulation model. We
then discuss in Sec. III the structural quantities used to charac-
terize the confined fluid and present numerical algorithms to
calculate these quantities theoretically. Afterwards, we reca-
pitulate the results presented in Ref. [19] on the convergence
of these structural quantities toward the 2D fluid in Sec. IV.
The simulation results compared to the theory for the density
profiles and structure factors are then presented and discussed
in Secs. V and VI, respectively. We summarize and conclude
in Sec. VII.

II. SLIT GEOMETRY AND SIMULATION MODEL

The systems considered in this work are composed of N
polydisperse or monodisperse hard spheres with average par-
ticle diameter σ , confined between two parallel, hard walls at
a distance H (see Fig. 1). In the following, we will denote
the direction perpendicular to these walls as the transverse
direction (z direction) and the directions parallel to the walls
as the lateral directions. Due to the finite particle size, the
centers of particles with diameter σ cannot enter the wall
regions which leads to the definition of an accessible slit width
L = H − σ , which will play an important role since it is the
quantity that approaches zero in the quasi-two-dimensional
limit.

We will consider two control parameters in this work. First,
the packing fraction of the particles in the slit, which is defined
as ϕ = Vsphere/V where Vsphere is the total volume occupied
by the spheres and V = AH is the total volume of the slit
with area A. The packing fraction is directly related to the
number density n3D = N/V = 6ϕ/πσ 3. Second, we consider
the area number density n0 = N/A which will prove to be
useful for the convergence analysis toward to the 2D limit
[19]. It should be noted that since ϕ = πσ 3n0/6(L + σ ) we
have ϕ → πσ 2n0/6 for L → 0, thus also ϕ becomes constant
for small wall separation.

We will study systems with different polydispersities δ,
defined as the standard deviation divided by the mean σ of
the Gaussian distribution from which the particle diameters
are drawn at initialization. In particular, we will also focus on
the monodisperse case, which allows analyzing systematically

the limit L → 0. After initialization of N = 5000 − 13000
particles, dense packings are created using a linear com-
pression algorithm [36,37]. The system is then equilibrated
using event-driven molecular dynamics (EDMD) simulations
[38–40] for at least 1010 events, which is sufficient to ensure
full equilibration. Both the compression algorithm as well as
the EDMD simulations are implemented in the open-source
library DynamO [40] which has thus been used for all simu-
lations presented in this work.

III. STRUCTURAL QUANTITIES AND THEORETICAL
MODELS

The structural quantities of interest for this work are the
inhomogeneous density profile n(z), the generalized structure
factor Sμν (q) and the anisotropic structure factor S(q, q⊥).
The inhomogeneous density profile n(z) is defined as the
average of the particle density,

n(z) = 〈ρ(r, z, t )〉, (1)

ρ(r, z, t ) :=
N∑

n=1

δ[r − rn(t )]δ[z − zn(t )], (2)

with the particle positions at time t in lateral rn(t ) =
(xn(t ), yn(t )) and transverse direction zn(t ). Here and in the
following 〈. . .〉 indicates a time average in the computer sim-
ulations. The profile only depends on the transverse direction
z due to translational invariance in the lateral dimensions.

In addition to the computer simulations we will re-
port results obtained from fundamental-measure theory
(FMT) for polydisperse particles in confinement [12,14,41].
Fundamental-measure theory is based on density-functional
theory and the underlying idea is to minimize the grand po-
tential. This minimization procedure leads to the fundamental
equation [41,42],

ln
(
ni(z)λ3

i

) = βμi − β
δF ex[ni]

δni(z)
− βVi(z), (3)

for the inhomogeneous number densities ni(z) of different
species i. Here λi denotes the thermal wavelength, which does
not affect the structural properties. μi is the chemical poten-
tial, β = (kBT )−1 is the inverse temperature and Vi(z) is an
external potential which will model the hard walls. The excess
free energy F ex[ni] contains the contribution of the particle in-
teractions and has to be approximated in FMT. In this work we
adapt the White-Bear Version II functional [41]. The different
species emulate the polydispersity of the system, where the
diameter of each species is given by σi = σmin + (i + 0.5)
σ

for i = 0, . . . , m − 1. We use m = 25 with 
σ = 0.024 σ and
σmin = 0.7 σ , similar to Ref. [14]. The density profile is de-
termined by a self-consistent iterative procedure, as described
in Refs. [14,41]. The definition of the inhomogeneous number
density ni(z) in FMT is consistent with the density profile n(z)
defined above, which can be evaluated as n(z) = ∑

i ni(z).
In the monodisperse case, the algorithm significantly simpli-
fies, featuring only a single species with diameter σi = σ.
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The generalized structure factor (GSF) can be calculated
from the fluctuating density modes [7,43,44],

δρμ(q, t ) :=
∫ L/2

−L/2
dz

∫
A

dr exp(iQμz)eiq·rδρ(r, z, t ), (4)

with the density fluctuations δρ(r, z, t ) = ρ(r, z, t ) − n(z), in-
plane wave vector q = (qx, qy), discrete wave numbers Qμ =
2πμ/L, and mode indices μ ∈ Z. The GSF is then defined as

Sμν (q) := 1

N
〈δρμ(q, 0)∗δρν (q, 0)〉, (5)

where q = |q| defines the wave number in lateral direc-
tion, parallel to the walls. Here, the average is calculated
from many independent initial configurations for which we
set t = 0.

The matrix-valued GSF [S]μν := Sμν (q) can be evaluated
theoretically for monodisperse samples using the inhomo-
geneous density profile n(z) as input for the generalized
Ornstein-Zernicke (OZ) equation [43–46],

S−1 = n0

L2
[v − c]. (6)

Here [c]μν = cμν (q) is the direct correlation function, and the
inverse-density Fourier amplitudes [v]μν = vμ−ν are defined
as

vμ :=
∫ L/2

−L/2
n(z)−1 exp [iQμz]dz. (7)

The OZ equation can be solved numerically using a self-
consistent iterative procedure based on the Percus-Yerwick
closure (OZ+PY). This procedure takes the density profiles
n(z) determined from FMT, as discussed above, as input. For
details on the algorithm see Refs. [47,48].

To connect our simulation and numerical results to the
experiments of Nygård et al. [5,6,29,31] we also calculate an
anisotropic structure factor, S(q, q⊥), which can be directly
measured in scattering experiments, defined as,

S(q, q⊥) := 1

N
〈δρ̂(q, q⊥, 0)∗δρ̂(q, q⊥, 0)〉. (8)

Here q⊥ denotes the wave number in transverse direction and
the fluctuating density modes are given by

δρ̂(q, q⊥, t ) :=
∫ L/2

−L/2
dz

∫
A

dr eiq⊥zeiq·rδρ(r, z, t ). (9)

It should be noted that the definition of the GSF Sμν (q)
contains more information than the experimental definition
of S(q, q⊥). This is because the off-diagonal components of
Sμν (q), which are nonzero due to the breaking of transla-
tional invariance, cannot be calculated from S(q, q⊥), since
the latter does only contain information on relative distances
z − z′. Calculating S(q, q⊥) from Sμν (q) is, however, always
possible. This can be easily shown by writing the van Hove
function,

G(|r − r′|, z, z′) := n−1
0 〈δρ(r, z, 0)δρ(r′, z′, 0)〉, (10)
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FIG. 2. Transverse form factors Aμ(q⊥) defining the transfor-
mation from the anisotropic to the generalized structure factor as
described by Eq. (12).

in terms of the GSF Sμν (q),

G(r, z, z′) =
∫

dq
(2π )2

1

L2

∑
μν

Sμν (q) exp [i(Qμz − Qνz′)]eiq·r.

(11)

This finally enables us to calculate the connection with the
anisotropic structure factor S(q, q⊥),

S(q, q⊥) =
∫

dr
∫ L/2

−L/2
dz

∫ L/2

−L/2
dz′ G(r, z, z′)eiq⊥(z−z′ )eiq·r

=
∑
μν

Sμν (q)Aμ(q⊥)Aν (q⊥)∗, (12)

using the transverse form factors,

Aμ(q⊥) = 1

L

∫ L/2

−L/2
dzeiz(q⊥−Qμ ) = sinc

[L

2
(q⊥ − Qμ)

]
, (13)

with the “sinc” function sinc(x) := sin(x)/x. In particular,
we find that S00(q) = S(q, q⊥ = 0) and S11(q) = S(q, q⊥ =
2π/L). More generally, the dependence of the anisotropic
structure factor S(q, q⊥) on values of q⊥ which are not in-
teger multiples of 2π/L, is given by a superposition of the
individual modes of Sμν (q) with an amplitude defined by the
transverse form factors, Aμ(q⊥) (as visualized in Fig. 2).

Although the description of the structure via the GSF
Sμν (q) is more general than via S(q, q⊥), the superposition
discussed above indicates that some of the information visible
in S(q, q⊥), such as the subtleties of the confinement-induced
orientational alignment described in Ref. [5], could be hidden
in the GSF. It therefore appears to be promising to study both
definitions of the structure factor.

IV. CONSIDERATIONS ON THE CONVERGENCE
TOWARD THE 2D FLUID

A particularly interesting question when analyzing struc-
tural properties of strongly confined fluids is their conver-
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gence toward their 2D counterparts. In Ref. [19] this problem
has been discussed theoretically for monodisperse systems
and predictions for the rapidity of convergence have been
derived which we recapitulate below.

For the specific case of symmetric and neutral hard walls
the authors derive the asymptotic behavior of the inhomoge-
neous density profile for constant area number density n0 [19],

n(z; L) = n0

L

{
1 + π (n0L2)C

[( z

L

)2
− 1

12

]
+ O(n0L2)2

}
,

(14)
where, C = g(σ+) corresponds to the contact value of a 2D
hard-disk system with number density n0. It is therefore ex-
pected that the density profile becomes parabolic at very small
distances and the curvature of the parabola goes to zero in the
limit L → 0, if n(z)L/n0 is plotted versus z/L. This parabolic
shape has already been confirmed via computer simulations
[15,20]. An interesting feature of the above equation is that it
allows determining the contact value of a 2D hard-disk fluid,
purely by investigating density profiles of a confined hard
sphere fluid, as has been pointed out in Ref. [19].

The most important results in Ref. [19] concern the rapidity
of convergence of the generalized structure factor Sμν (q) for
very small wall separations,

Sμν (q; L) =
{

S2D(q)[1 + O(L2)] for μ = ν = 0
δμν + O(L2) else,

(15)

for constant area density n0. Here S2D(q) denotes the structure
factor of hard disks at area density n0. The equations predict
a quadratic convergence of the in-plane GSF S00(q) toward
S2D(q) and similarly state that the generalized structure factor
becomes diagonal, but only the in-plane-mode has a nontrivial
q dependence to lowest order in L.

V. INHOMOGENEOUS DENSITY PROFILES

We first analyze the inhomogeneous density profiles of
polydisperse (δ = 0.15) hard-sphere liquids for accessible
slit widths L � 1.0σ . At L = 1.0σ the polydisperse profile
reveals a structure with two very pronounced layers and a
minimum in the center in which the density is vanishingly
low (see Fig. 3). When decreasing the wall separation at
constant packing fraction ϕ, the two layers become slightly
less pronounced and their distance is reduced. Importantly, the
density in the center minimum increases and one can observe
the emergence of a parabolic profile (black, dotted line in
Fig. 3). The agreement between the FMT results and the
EDMD simulations is very good. When plotting the data using
dimensionless quantities in Fig. 3(b) it can be observed that
the density profiles indeed start to approach the asymptotic
behavior suggested by Eq. (14). Due to the polydispersity it
is, however not possible to systematically approach the limit
L → 0 since we are restricted to L/σ � 0.6, which is also
the minimal system size studied in the experiments [6]. To
analyze even smaller wall separations, we therefore focus on
monodisperse liquids in the following.

In monodisperse samples, at an accessible slit width L =
0.75σ , the density profiles of the monodisperse samples are
already approximately parabolic and the agreement of the
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FIG. 3. Inhomogeneous density profile n(z) for polydisperse
(δ = 0.15) hard spheres at constant packing fraction ϕ = 0.4 for
accessible slit widths L/σ = 1.0, 0.9, 0.75, and 0.6. Shown are sim-
ulations (solid lines) and FMT results (dashed lines) which strongly
overlap. Profiles are shifted along the y axis for the sake of visibility.
The black dotted line represents a parabola. (a) and (b) show the same
data in different representation.

profiles obtained from simulations, FMT and the asymptotic
prediction in Eq. (14) is very good, as shown in Fig. 4.
There are only small deviations from the parabolic profile
at the boundary [see Fig. 4(b)]. By fixing the area density
n0 = 0.573σ−2 and reducing the wall separation we observe a
monotone flattening of the parabolic profile which converges
toward a homogeneous density inside the slit in the quasi-
two-dimensional limit. These observations are in agreement
with results presented in Ref. [15]. Very interestingly, when
fixing the packing fraction ϕ instead of the area density n0 one
can observe that the agreement between simulations and the
asymptotic prediction is significantly worse (see Appendix A1
and Fig. 14). This is mainly caused by the denser packing,
since n0 = 0.573σ−2 corresponds to a packing fraction of
just ϕ = 0.2 at L = 0.5σ , compared to ϕ = 0.3 in Fig. 14.
This behavior can already be anticipated from the asymptotic
calculation in Eq. (14) which predicts that the relevant “small-
ness” parameter is not L/σ but rather n0L2. For the profile
shown in Fig. 14 with L = 0.5σ the smallness is therefore
n0L2 = 0.215 which is thus effectively “larger” than for the
profiles in Fig. 4 with L = 0.5σ which corresponds to n0L2 =
0.143. This analysis therefore shows again that the effects
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FIG. 4. Inhomogeneous density profile n(z) for monodisperse
hard spheres at constant area density n0 = 0.573σ−2 for accessible
slit widths L/σ = 0.75, 0.5, 0.3, 0.2, 0.15 and 0.1 (bottom to top).
(a) Shown are simulations (solid lines), FMT (dashed lines) and
quasi-2D theory (14) (dotted lines) which strongly overlap. Profiles
are shifted along the y axis for the sake of visibility. The insets show
a zoom for L = 0.1σ (left) and L = 0.3σ (right). For L � 0.15σ

no convergence was achieved for the FMT calculations. (b) Similar
simulation data but rescaled according to Eq. (14). The dashed line
shows a parabolic law fitted to L = 0.75σ between −0.3 � z/L �
0.3.
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FIG. 5. Prefactor C as defined in Eq. (14) determined by fitting
the density profiles for n0σ

2 = 0.573 shown in Fig. 4. The arrow
marks the contact value of hard disks as determined from simulation
results of the radial distribution function g(σ+).

of confinement are strongly enhanced for denser packings
[49].

For the above determination of the asymptotic prediction,
the contact value g(σ+) of the 2D hard-disk liquid has been
extracted directly from EDMD simulations. As discussed in
the introduction, one could also invert this calculation and de-
termine the contact value by fitting the profiles shown in Fig. 4
and extracting the unknown factor C, as defined in Eq. (14).
Following this route indeed allows us to determine the contact
value with a precision of roughly 2–3% (see Fig. 5).

VI. STRUCTURE FACTORS AND COMPRESSIBILITY

The packing of the particles in confinement can be best
described using the generalized and anisotropic structure fac-
tors introduced in Sec. III. The anisotropic structure factor of
polydisperse samples in the range 0.6 � L/σ � 1.0 has been
extensively discussed in Refs. [5,6], here we will therefore
concentrate on the generalized structure factor.

When decreasing the wall separation from L = 1.0σ to
L = 0.6σ we observe that the peaks of the in-plane GSF
S00(q) become more pronounced (see Fig. 6). This finding
is consistent with the results discussed in Ref. [12] showing
that at incommensurate packing (half-integer multiples of σ )
the peak height is larger than at commensurate packing (in-
teger multiples of σ ). This nonmonotonic dependence can
be understood by the interlock of the layered structure for
incommensurate packings due to the large amount of particles
that have to be squeezed between those layers [7].

The off-diagonal generalized structure factor S01(q) is neg-
ative indicating that the particles are more likely to be found
at the boundary than at the center of the cell. This is a direct
consequence of the layering as discussed in Sec. V. Apart
from the different sign, the behavior of the off-diagonal is
very similar to S00(q). In particular, the minimum at qσ ≈ 2π

for L = 0.6σ seems to be more pronounced, considering that
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FIG. 6. GSF S00(q) (top) and S01(q) (bottom) for polydisperse
(δ = 0.15) hard spheres at constant packing fraction ϕ = 0.4.

for this confinement length the off-diagonal component S01(q)
converges to a smaller absolute value in the limit q → ∞.

The most striking observation visible in all modes of the
generalized structure factor is the extremum at small wave
numbers qσ ≈ 4.5 for incommensurate packing (most pro-
nounced for the red curve at L = 0.6σ ). Usually structure
factors show a monotonic decay for q → 0 toward a finite
value which can be related to the isothermal compressibility
κT [45]. Similar shapes of the structure factor with minima
have been observed in jammed polydisperse samples [35],
sticky hard spheres [50], or at macroscopic demixing transi-
tions [45,51,52], albeit in the latter case the behavior is only
visible in the concentration-fluctuation structure factor. We
believe that in the present case of confinement the unusual
behavior of the structure factor is caused by microdemixing.
In Ref. [14] we have studied in detail the confinement-induced
demixing and crystallization of polydisperse hard spheres. In
the present case, the packing fraction is much smaller, which
prevents crystallization but specific wall separations could
still favor specific particle sizes. For example, accessible
widths of L = 0.9σ enable the transverse packing of one small
sphere and one large sphere (or two medium-sized spheres),

while at L = 0.6σ only two small spheres can be combined.
When studying snapshots of particles packed in slit geometry
we indeed observe such a microdemixing (see Fig. 7). We
quantify this phenomenon in Appendix B by calculating the
species-dependent radial distribution function and find that
incommensurate packing indeed favors the pairing of small
spheres and therefore induces a microscopic separation of
particles (see Fig. 17). The microscopic demixing also occurs
at L = 1.6σ and for smaller polydispersities δ = 0.1 and δ =
0.05, but, as could be expected, it is much less pronounced
than at extreme confinement and strong polydispersity, as
shown in Fig. 18.

From the in-plane generalized structure factor S00(q) we
also extract the long wavelength limit [6,35,45,50,53],

lim
q→0

S00(q) = kBT n3Dχ (0), (16)

by fitting the GSF to a quadratic function, S00(q) =
S00(q → 0) + Aq2 + O(q4) for small wave numbers. While
for monodisperse bulk samples it is well known that χ (0)

corresponds to the isothermal compressibility χT [45] for
polydisperse samples it is important to realize that χT can only
be determined by explicitly taking into account the partial
structure factors of the different components [35,50,53]. Here
we employ a perturbative expression suggested in Ref. [35] to
calculate a higher-order quantity kBT n3Dχ (2)(q) which allows
extracting a lateral compressibility χT ≈ lim

q→0
χ (2)(q) from the

in-plane GSF. Details are presented in Appendix C.
The results feature a clear nonmonotonic dependence of

the compressibility (see Fig. 8). Very interestingly one can
observe that the difference χ

(0)
poly − χ

(2)
poly is much larger for

incommensurate packing and actually leads to a trend rever-
sal: While the naive expression χ

(0)
poly would imply that the

polydisperse sample has a large compressibility peaking at
incommensurate packing, the corrected formula χ

(2)
poly reveals

that the compressibility in the poly- and monodisprse case
behave qualitatively similar and are mainly different due to
the different packing fraction. This observation thus highlights
the subtle effects of polydispersity and microscopic order-
ing on the fundamental properties of confined liquids. Our
simulation result is in agreement with experimental results
for confined polydisperse fluids (δ = 0.12) [6] which also
feature an increased long-wavelength limit of the anisotropic
structure factor S(q → 0) at L = 0.6σ compared to L = 1.0σ

(see Fig. 8 in Ref. [6]). In Ref. [6] the effect is explained by
the slightly “frustrated” structure at incommensurate packing
which supposedly leads to an increased compressibility. Our
simulations do not support this explanation, since monodis-
perse spheres feature an inverted behavior although they are
clearly also affected by the same frustration at incommensu-
rate packing (see Fig. 8). From our monodisperse simulations
and the correction scheme we therefore conclude that the
“frustrated” structure effectively reduces the compressibility
since the individual layers are interlocked by the particles
which are located between those layers. This effect is further
highlighted in Fig. 9 in which the original in-plane GSF is
compared to the higher-order correction χ

(2)
poly(q) [35] account-

ing for the polydispersity of the system. The figure shows that
the first peak in the structure factor at qσ ≈ 6.5 is basically
unaffected by the correction, and still exhibits the same non-
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FIG. 7. Snapshot of the slit geometry for two accessible slit widths L. The color code indicates the diameter of the particles [from diameter
<0.9 σ (blue) to diameter >1.1 σ (red) and interpolation between]. The snapshot has been created with the visualization tool of DynamO [40].
For L = 0.6σ many pairs of small spheres with diameter smaller than σ can be found (blue), while at L = 0.9σ several pairs of small and large
spheres with diameter larger than σ emerge (red and blue).

monotonic behavior as the original structure factor. However,
it is clearly visible that the anomalous behavior at small wave
numbers vanishes in the higher-order correction.

In the following, we will continue to analyze monodis-
perse fluids, which allows us to systematically study the limit
L → 0. We first investigate the anisotropic structure factor
as defined in Eq. (8). For an accessible wall separation L =
0.75σ we observe the effect of confinement-induced orien-
tational alignment [5,6], visible by the nonspherical profiles
displaying increased in-plane packing (qσ = 2π , q⊥σ = 0)
and basically no packing in transverse direction (qσ = 0,
q⊥σ = 2π ) (see Fig. 10). In fact, Fig. 10(d) is very similar
to Fig. 5(b) in Ref. [6]. When reducing the wall separation
even further, the most prominent observation is that the orig-
inally circular center becomes increasingly stretched until the
dependence on q⊥ becomes very weak for L = 0.2σ , indi-
cating the approach of the quasi-two-dimensional limit. This
transformation is very well described by both OZ+PY and
computer simulations.
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FIG. 8. Compressibility as calculated from the small-wave-
number limit of the in-plane GSF Eq. (16). Data are shown for
polydisperse samples (δ = 0.15) at ϕ = 0.4, as characterized in
Fig. 6, and for monodisperse samples at ϕ = 0.3, as shown in
Fig. 15. The arrows show the compressibility of the corresponding
two-dimensional fluids at density n2D = 6ϕ/πσ 2.

To study the convergence toward the 2D limit more quan-
titatively we calculate the generalized structure factor Sμν (q).
In agreement with the asymptotic relations given in Eq. (15)
we indeed observe that the in-plane structure factor con-
verges smoothly toward its 2D counterpart, S00(q) → S2D(q),
as shown in Fig. 11, which also corresponds to the profile
S(q, q⊥ = 0) as visible in Fig. 10. Similarly, the off-diagonal
components are vanishing in the 2D limit, Sμν (q) → 0 for
μ �= ν, and the remaining diagonal terms converge toward
Sμμ(q) → 1 (for μ > 0). The latter can already be antici-
pated from Figs. 10(c) and 10(d) since it corresponds to the
profile S(q, q⊥ = 2πμ/L) and thus already lies outside the
circular center for L = 0.5σ, despite the observed stretching
of the profiles in the q⊥ direction. When comparing theory
and simulations one can observe a very good agreement. The
only exception is the GSF S11(q), where one can observe
that FMT+OZ+PY underestimates the oscillations around
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FIG. 9. In-plane GSF S00(q) = kBT n3Dχ
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poly(q) and higher order

correction kBT n3Dχ
(2)
poly(q) to account for the polydispersity of the

system [35]. Data are shown for polydisperse samples (δ = 0.15) at
ϕ = 0.4.
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FIG. 10. Color plots of the anisotropic structure factor S(q, q⊥)
for monodisperse hard spheres as calculated from Eq. (8), visual-
ized as a function of the wave-vector components in lateral (q) and
transverse (q⊥) direction to the confining walls. Shown are theory
results (FMT+OZ+PY) and simulations (EDMD) for wall separa-
tions L/σ = 0.2, 0.3, 0.5, and 0.75. The black dashed and dotted
lines highlight the positions of S00(q) and S11(q), respectively.

S11(q) = 1. These deviations are, however, very small in ab-
solute terms.

We can now analyze the convergence toward the 2D limit
by subtracting the respective limits and dividing by the theo-
retically predicted quadratic power of convergence. By doing
this, we find the important result that the quadratic conver-
gence can indeed be confirmed by the EDMD simulations,
since all curves collapse onto a single master curve (see
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FIG. 11. GSF Sμν (q) for monodisperse hard spheres at constant
area density n0 = 0.573 for modes ν = ν = 0 (top panel), μ =
ν = 1 (middle panel), and μ = 0, ν = 1 (bottom panel). Results
are shown for computer simulations (full line) and FMT+OZ+PY
(dashed line). For S00(q) the results of theory and simulations
overlap.

Fig. 12). Interestingly, these master curves are comparable in
shape for the in-plane mode S00(q) and the first off-diagonal
mode S01(q), while S11(q) shows completely different conver-
gence behavior. From Fig. 12 we can also assess the impact
of higher-order terms on the GSF. While the diagonal modes
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FIG. 12. Difference between the generalized structure factor
Sμν (q) for monodisperse hard spheres at constant area density n0 =
0.573 and the 2D limit. The difference are scaled by L−2.

seem to be well described by the asymptotic formulas up to
an accessible slit width of L = 0.75σ the off-diagonal mode
already shows significant deviations for this wall separation.

It should be noted that the quadratic convergence strongly
depends on which control parameter is kept constant. The
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FIG. 13. Differences between the generalized structure factor
S00(q) for monodisperse hard spheres at constant packing fraction
ϕ = 0.3 and the corresponding 2D limit. The differences are scaled
by L−1.

asymptotic theory predicts a quadratic convergence for con-
stant n0, which could be confirmed by computer simulations.
However, when keeping the packing fraction ϕ constant, the
in-plane mode surprisingly shows a linear convergence, as can
be clearly observed in Fig. 13 (observe the different rescal-
ing factor). This change of the power of convergence clearly
originates from the linear scaling with L in the relationship
between the area density n0 and the packing fraction ϕ,

n0
πσ 2

6
=

(
1 + L

σ

)
ϕ. (17)

Consequently, by choosing the packing fraction as control pa-
rameter, one loses one order in the convergence rate although
the asymptotic limit is the same. The other modes are not
affected by the control parameter and also show quadratic
convergence for constant ϕ as is shown in Appendix A and
Fig. 16.

VII. SUMMARY AND CONCLUSIONS

We have investigated structural properties of poly- and
monodisperse hard spheres in extreme confinement by
fundamental-measure theory and computer simulations. For
polydisperse samples we found an interesting microscopic
demixing effect, which can be seen as precursor of the
confinement-induced crystallization through demixing re-
ported in Ref. [14] and has direct consequences on the
qualitative behavior of the structure factor. We have further
shown that the application of a perturbation expansion is
essential to calculate the compressibility from the structure
factor in order to account for the impact of polydispersity.

While polydisperse hard spheres prevent the approach
of the two-dimensional limit we found for the inhomoge-
neous density profiles of monodisperse hard-sphere liquids
the expected emergence of parabolic profiles which smoothly
converge toward flat profiles in the two-dimensional limit.
Importantly, we observe very good agreement between the
asymptotic theory [19] and simulations which opens up the

014614-9



GERHARD JUNG AND THOMAS FRANOSCH PHYSICAL REVIEW E 106, 014614 (2022)

possibility to extract the contact value of hard-disk liquids
from the data. This is a fascinating result since the con-
tact value is, for example, connected to the pressure of the
hard-disk system via the equation of state [45], showing
that one can determine thermodynamic quantities of a two-
dimensional system by observing density profiles in confined
geometry. We also studied extensively the convergence of
the anisotropic and generalized structure factors toward their
two-dimensional counterparts. As predicted by the asymptotic
theory, we found a smooth quadratic convergence if the area
density is kept constant, as opposed to a linear convergence of
the in-plane mode for constant packing fraction.

Our work significantly enhances the understanding of
simple liquids in confinement by smoothly connecting their
structural properties in extreme confinement to the known
structural properties of two-dimensional liquids. This result is
also particularly important with respect to the understanding
of dynamical properties in this regime since we know that
the impact of confinement on diffusion and glass transition
is strongly connected to the structural quantities [4,12,54–
56]. In future work it would therefore be interesting to extend
the present analysis to dynamical properties such as diffu-
sion coefficients and decorrelation time scales [4,27,34,57],
the critical packing fraction for the glass transition [12] or
the nonergodicity parameters [7] and investigate whether
they similarly smoothly approach the properties of their two-
dimensional counterparts.

It would also be exiting to validate whether a scenario
in which the structure factor attains a minimum at small q
is also observable in experiments. Very precise experimental
data have been presented in Ref. [6] for a particle dispersity
of roughly δ = 0.12. While these curves neither confirm nor
disprove the existence of such a minimum, one can clearly
see that at incommensurate packing in their Fig. 8(a), the
curves are leveling off much stronger than in their Fig. 8(b)
for commensurate packing and it is definitely possible that
they grow in the regime qσ � 2 where no experimental data
are available. It should also be discussed whether the impact
of the higher-order expansion to calculate the compressibil-
ity from the structure factor in polydisperse samples [35],
as extensively discussed in this manuscript, might also af-
fect the interpretation of the experiments in Ref. [6]. Since
a straightforward application of the algorithm in Ref. [35]
requires knowledge of every particle diameter it will, however,
be challenging to apply the same correction to experimental
measurements.
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APPENDIX A: ASYMPTOTIC CONVERGENCE
AT CONSTANT PACKING FRACTION

We have discussed in the main text that the convergence
toward the two-dimensional hard-disk fluid can be best de-
scribed using a constant area density n0 as control parameter
instead of the packing fraction ϕ. Here we will present some
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FIG. 14. Inhomogeneous density profile n(z) for monodisperse
hard spheres at constant packing fraction ϕ = 0.3 for accessible slit
widths L/σ = 0.6, 0.5, 0.4, 0.2, and 0.1 (bottom to top). Shown are
simulations (solid lines), FMT (dashed lines) and quasi-2D theory
(14) (dotted lines). Profiles are shifted along the y axis for the sake
of visibility. The insets show a zoom of the L/σ = 0.1 (left) and
L/σ = 0.2 (right). For L/σ = 0.1 the FMT result did not converge,
while for L/σ = 0.2 the FMT and quasi-2D results perfectly overlap
(even in the inset).

results for constant packing fraction to supplement and sub-
stantiate this discussion.

1. Inhomogeneous density profile

When studying the inhomogeneous density profile at
constant packing fraction for various wall separations, one
observes that the agreement between EDMD simulations and
the asymptotic theory [19] is much worse than what we have
seen for constant area density n0 (compare Figs. 4 and 14).
The first reason is that the profiles at constant ϕ at larger
accessible slit widths L are measured for much denser sys-
tems than the ones shown in Fig. 4 for constant area density.
One consequence of this is that at L = 0.6σ the profile is
not even perfectly parabolic. The second reason is that the
density of the two-dimensional reference fluid which we use
to determine C = g(σ+) is not well defined. Here, we used
the one with n2D = 6ϕ/πσ 2, but one could also argue that
n2D = 6ϕ(L + σ )/πσ 3 = n0 would be a reasonable choice.
This would lead to a larger curvature of the parabolic profiles
and thus certainly improve the agreement between computer
simulations and asymptotic theory in Fig. 14. This shows
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that a constant n0 is indeed the proper control parameter to
investigate the approach to the two-dimensional limit.

2. Structure factor

The convergence of the generalized structure factor toward
its two-dimensional counterpart for constant packing fraction
is qualitatively different than what we have discussed for
constant area density n0 (compare Figs. 11 and 15). The most
important difference between constant area density n0 and
packing fraction ϕ is the change in the order of convergence in
the in-plane structure factor, as has already been discussed in
the main text (see Sec. VI and Fig. 13). This observation only
holds for the in-plane mode, since the higher-order modes still
show a quadratic convergence (see Fig. 16). Also for these
modes, however, the range in which this asymptotic behavior
can be observed is significantly marginalized and valid only
up to L � 0.3σ.

One can also observe that the peak height of the in-plane
structure factor decreases when reducing the accessible slit
width, starting from L = 0.5σ. This is consistent with earlier
observations in the range 1.0 � L/σ � 2.0 in Refs. [12,27]
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FIG. 16. Differences between the GSF Sμν (q) for monodisperse
hard spheres at ϕ = 0.3 and the corresponding 2D limit. The differ-
ences are scaled by L−2.

where it was pointed out that at incommensurate packing the
peak height of the generalized structure factor indeed attains a
maximum. The agreement between FMT+OZ+PY and com-
puter simulations is still relatively good, but different from the
data shown in the main text clear deviations can be observed.
This observation can be explained with the higher density of
the samples, which directly affects the precision of the FMT
excess free energy F ex[ni], as defined in Eq. (3), since it is
approximated via a low-density expansion [41,42].

APPENDIX B: MICROSCOPIC DEMIXING

To explain the qualitatively different shape of the GSFs for
polydisperse hard spheres compared to monodisperse samples
at incommensurate packing, as visible in Fig. 6 we have intro-
duced in the main text the notion of microscopic demixing.
This effect describes the preferred pairing of similarly sized
spheres on a microscopic level, and should not be confused
with a macroscopic demixing transition [45].

The microscopic demixing can already be anticipated from
the snapshot in Fig. 7 clearly showing at L = 0.6σ the
tendency to combine two small spheres to fill the slit, as op-
posed to L = 0.9σ where on average a small sphere is rather
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FIG. 17. Radial distribution function g(r) for polydisperse (δ =
0.15) hard spheres at constant packing fraction ϕ = 0.4, calculated
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combined with a large sphere. We quantify this observation by
calculating the radial distribution function,

gab(r) =
〈

V

4πr2NaNb

∑
i∈Na, j∈Nb

δ(|Ri(t ) − R j (t )| − r)

〉
,

(B1)
for particles that are either smaller (s) or larger (l) than
σ , a, b ∈ {s, l}. Here, Na and Nb denote the total number
of particles of species a and b, respectively, and Ri(t ) =
(xi(t ), yi(t ), zi(t )) the particle positions. The radial distribu-
tion function clearly shows that at incommensurate packing
(L = 0.6σ ) the small and large particles tend to be coupled
[gss(r) and gll (r) have the highest peak], while at commen-
surate packing (L = 0.9σ ) the mixing term gsl(r) features the
highest peak (see Fig. 17). We believe that this demixing then
leads to the significant increase of the long-wavelength limit
of the structure factor, which finally induces the minimum at
qσ ≈ 4, as shown in Fig. 18. We emphasize that this effect
does not translate to the compressibility which actually shows
a minimum for incommensurate packing despite the simulta-
neous increase of S00(q) at small wave numbers as discussed
in Sec. VI.

APPENDIX C: PERTURBATIVE EXPANSION TO
CALCULATE COMPRESSIBILITY IN POLYDISPERSE

FLUIDS

It is well known that the long-wavelength limit of the struc-
ture factor of monodisperse bulk liquids is directly connected
to the isothermal compressibility [45],

lim
q→0

S(q) = kBT n3DχT . (C1)

This formula, however, does not hold anymore for polydis-
perse systems. Given a system with M different species it
has been derived that the isothermal compressibility can be

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

S
0
0
(q

)

qσ

L = 0.6 σ
L = 0.6 σ, δ = 0.10
L = 0.6 σ, δ = 0.05

L = 0.9 σ
L = 1.3 σ
L = 1.6 σ

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

1 2 3 4 5 6 7

S
0
1
(q

)

qσ

FIG. 18. GSF Sμν (q) for polydisperse (δ = 0.15) hard spheres at
constant packing fraction ϕ = 0.4 for small wave numbers qσ < 5.
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determined as [50,53],

[n3DkBT χT ]−1 = lim
q→0

xT S̃
−1

(q)x, (C2)

where [S̃(q)]i j = N−1〈ρ̃i(q)∗ρ̃ j (q)〉 denotes partial structure
factors for the individual species, i, j = 1, . . . , M, ρ̃i(q) are
the partial density modes, and xT = (x1, . . . , xM ) is the con-
centration vector with xi = Ni/N. Please note that the partial
structure factor [S̃(q)]i j and the partial densities ρ̃i should not
be confused with the modes of the generalized structure factor
Sμν (q) and the density modes ρμ(q) in the main text.

To apply a similar formalism to continuously polydis-
perse systems Berthier et al. [35] have derived a perturbative
expansion based on the moment-density fields εk (q) =∑N

n=1 εk
neiq·Rn , defined in terms of powers of the relative

diameter deviations εn = (σn − σ̄ )/σ̄ , with average particle
diameter σ̄ and the particle position Rn = (xn, yn, zn). Using
the moment structure factors,

[Ŝ(α)(q)]kl = N−1〈εk (q)∗εl (q)〉, k, l = 1, . . . , α, (C3)
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one can evaluate the order α of the expansion in the form,

[n3DkBT χ (α)(q)]−1 = mT
α Ŝ

−1
(α)(q)mα. (C4)

Here, we have defined the moment vector mT
α = (δ1, . . . , δα ),

with δk = ∑N
n=1 xnε

k
n . In particular we recover the structure

factor S(q) = n3DkBT χ (0)(q) from the zero-order term. The

compressibility can then be evaluated as χT = lim
q→0

χ (α)(q) for

high orders α.

The above expansion can directly be applied to S00(q) by
defining εk (q) = ∑N

n=1 εk
neiq·rn using the in-plane coordinates.

In this manuscript we have evaluated this expansion to second
order α = 2 which was reported in Ref. [35] to be applicable
up to dispersities of δmax = 0.3 which is significantly larger
than the value of δ = 0.15 considered in this work.
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