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Collective decision making in a biological motion group requires fast and robust transmission of information.
Typically, directional switching information propagation across the whole group obeys a linear dispersion law.
However, conventional dynamic collective motion models, such as the Vicsek model and the Couzin model
did not take into account ultrafast directional synchronous motions. In the present paper, a multiparticle model
is proposed based on inertial spin self-propel action, which can provide adequate description of such group
motion. By considering both spin mechanism and collision avoidance, the proposed self-propelled particle spin
model can nicely describe collective motion with fast directional switching. By analyzing the order parameter of
the group-velocity synchronization, a mechanism of group decision making is revealed, which is based on the
difference between two clusters of divergent leaders, showing a transition from the compromising phase (i.e.,
following the group average) to the preferred phase (i.e., aligning to a leader cluster). The finding provides new
insight to the decision-making process of followers when they face with divergent leaders in group motion.
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I. INTRODUCTION

Recently, the research topic of collective motions of natural
self-propelled entities, referred to as particles hereafter has at-
tracted wide attentions from biologists [1,2], physicists [3–5],
systems scientists [6], and control theorists [7,8]. One reason
is that different types of group behaviors are ubiquitous in
nature, such as bird flocks [9,10], human crowds [11,12],
fish schools [13,14], mammal herds [15], bacteria, and cell
colonies [16,17]. Particularly, biological particles survive
through coordination and collaboration, for instance, cattle
gathering to resist enemy attacks and bird flocking to complete
long-distance migration. The seemingly low-intelligent indi-
viduals with simple mutual interactions can accomplish many
complex missions. Today, artificial intelligence systems have
learned and benefited a lot from such swarm synergy motions,
including collective formation control of drones [18], sensor
network data fusion [19], cooperative operation of multirobot
teams [20], etc.

The diverse collective patterns generated by self-propelled
particles highly depend on interparticle interactions. In the
past couple of decades, some dynamic models were proposed
to describe such complex collective behaviors. Reynolds [1]
introduced a simulation-based model by recording the path
of each bird to describe birds flocking. His Boids model
can realize the behaviors of biological flocks or swarms ac-
cording to three heuristic rules: (i) Collision avoidance: Each
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simulated particle avoids collision with nearby particles; (ii)
velocity matching: each particle matches the average speed of
nearby particles to maintain consistency of motion; (iii) flock
centering: each particle moves as close as possible to nearby
particles. Vicsek et al. [3] then proposed a self-propelled
particle model, known as the Vicsek model today. Particles
in the Vicsek model are driven with a constant speed but
with different headings, which results in a kinetic transition
from a disordered state to an ordered one of the group with
increasing particle density or decreasing external noise inten-
sity. Subsequently, by considering both interparticle attraction
and repulsion, Couzin et al. [2] established a three-sphere
model to study the spatial dynamics of animal groups, such
as fish schooling and birds flocking, which can reproduce
three typical collective patterns, i.e., flocking, torusing, and
swarming. Later, Olfati-Saber [21] suggested an interparticle
attraction-repulsion-based dynamic model, which can gener-
ate an α-lattice collective migration with obstacle avoidance.
Caprini et al. have studied a system composed of purely
repulsive spherical self-propelled particles and discovered
spontaneous velocity alignment phenomenon in motility-
induced phase separation [22]. Following this research line,
they further revealed the role of the hidden velocity ordering
in forming of dense suspension in self-propelled disks [23].
Singh and Rabin [24] built a boundary-driven dynamical
model where each particle moves towards the farthest parti-
cle, resulting in a certain kinetic pattern of assembly along
a line. Furthermore, Vicsek and Zafeiris [25] proposed a
minimal multiagent system model according to relative dis-
tances between particles. Cucker and Smale [26] developed
a model in both discrete- and continuous-time domains, tak-
ing into account the interactions of particles associated with
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their spatial distances. Caprini and Marconi [27] and Szamel
and Flenner [28] investigated velocity correlations in self-
propelled particle systems. With the assistance of the minimal
model [25], Cheng et al. [29] showed the pattern transition
among four typical collective motion phases, i.e., crystal-like,
liquidlike, gaslike, and mill-liquid coexistence patterns. Chen
and Zhang [7], and Zhang and co-workers [30–32], discovered
a forming mechanism of collective circular motion for self-
propelled particle systems, thereby proposing some predictive
consensus protocols.

On the other hand, with the tremendous development of
sensor hardware technology, a great deal of effort has been
devoted to measuring the collective movements of a large
group of biological self-propelled particles. By using high-
resolution GPS devices, Nagy et al. [33] obtained real-time
data from tracks of a dozen of homing pigeons flying in flock
and proposed a hierarchical communication network model.
Through high-speed cameras to film starlings, Attananasi
et al. [34] measured how information is transmitted through a
flock of starlings, which is found analogous to the behavior of
a certain quantum phenomenon of liquid helium. As a result,
Cavagna et al. [35] proposed a self-propelled particle model,
which can more vividly describe the linear undamped propa-
gation mechanism of information flows in a starling flock than
the popular Vicsek model.

Motivated by the above observations, through extract-
ing some essential factors influencing collective motions,
this paper establishes a self-propelled particle model taking
into account both moving direction alignment and collision
avoidance. By enlarging the divergence of preferred moving
directions of two leader clusters, an appealing transition phe-
nomenon of the mass followers’ collective moving direction
has been found. The present paper sheds some light onto the
investigation of decision-making mechanisms for followers
with divergent leaders in group motions and helps refine our
understanding of the effective leadership of individuals due to
their swift information transmission abilities.

II. THE SELF-PROPELLED PARTICLE MODEL

In the current research on the collective behavioral char-
acteristics of biological groups, most models assume that
particles in the group make decision based on limited local
information, e.g., the Vicsek model [3]. Therein, the instant
individual velocity is calculated as

vi(t + �t ) = ρ

⎡
⎣∑

j∈Ni

v j (t )

⎤
⎦ + �vi(t ), (1)

where vi, Ni, and �vi denote the velocity, the neighborhood,
and the noise of particle i, respectively; �t is the sampling
period, and ρ(∗) := ∗/‖ ∗ ‖ is the normalization of a vector
∗, i = 1, 2, . . . , N .

Note that with different velocity-aligned updating rules
a multiparticle system can have various collective behav-
iors [2,3,36]. However, it is observed that the information
field intensity in whole starling flocks is undamped at all [34]
whereas in the Vicsek model the field keeps decreasing
along the information transmission route. Hence, according
to conservation law and the spontaneous symmetry breaking

theory, Cavagna et al. [35] proposed the following novel
continuous-time inertial spin model:

d�vi

dt
= 1

χ
�si × �vi,

d�si

dt
= �vi(t )

[
v2

0

∑
j

ni j �v j − η

v2
0

d�vi

dt
+ �ξi

v0

]
, (2)

d�ri

dt
= �vi(t ),

with external noise correlation,

〈�ξi(t ) · �ξ j (t
′)〉 = (2d )ηT δi jδ(t − t ′). (3)

In this model, �ri is the position of particle i; �vi is the
velocity (with a constant speed |�vi| = v0); �si is the spin of
each particle, which represents a generalized momentum,
connected to the instantaneous curvature of the particle’s tra-
jectory; χ is a generalized moment of inertia; η is a damping
coefficient; T is a generalized temperature; J is the strength of
the alignment force to neighbors. Moreover, the connectivity
matrix ni j describes the neighboring relationship, i.e., ni j = 1
means that j is a neighbor of i whereas ni j = 0 means not.

It is noted that, in the spin model (2), parameter η plays
an indispensable role in tuning the interparticle information
transmission. More precisely, a sufficiently small parameter η

means low damping, which yields fast and robust information
propagation through the entire group, whereas a sufficiently
large η implies attenuated information propagation.

The spin model (2) incorporates the physical concept
of spin into a dynamical model of bird flocks, which
well describes the information transmission between starling
flocks [34]. Inspired by this different continuous-time spin
model (2), a discrete-time spin model is proposed hereby for

numerical studies. By omitting the noise term �vi(t ) × �ξi

v0
of the

spin time-evolution equation (relatively low Gaussian noise
will be added later), it results in

si(t + �t ) = si(t )e−(λ �t ) + vi(t )μ
 jni jv j (t )�t . (4)

Here, the damping coefficient η, the generalized moment of
inertia χ , and the strength of alignment force J are absorbed
into parameters λ := η/χ and μ := J/v2

0 , respectively.
As shown in Fig. 1, the vector spin is always perpen-

dicular to the velocity plane, implying that the spin serves
as a rotator in changing the direction of the velocity. The
first equation about velocity in model (2) is an infinitesimal
rotation that leads to tiny finite rotations of velocity when it is
simulated with a short time interval.

Then, in the proposed spin model, the equation of velocity
is transformed to the following form:

vi(t + �t ) = ρ{R[vi(t ), κsi(t )�t]}, (5)

where κ = 1/χ is a constant and R[v, θ ] denotes the vector v
rotated by θ◦ . In addition, the collision probability between
particles is taken into account to tune their kinetics on the
basis of the spin models (4) and (5).

Now, by considering local neighbors, a group of N particles
is examined where each particle is described by a position vec-
tor xi(t ), a speed vector vi(t ) (with a constant speed |vi(t )| =
v0), and a spin vector si(t ).
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FIG. 1. (a) The spin model with collision avoidance. (b) Two-
dimensional schematic for the relation of spin, velocities, and
trajectories of two particles.

As shown in Fig. 1, since collision avoidance has the
highest priority here, particles are ensured to keep a preset
minimum distance ra > 0 between itself and its neighbors.
Thus, the particle velocity evolves as follows:

vi(t + �t ) = ρ{−
 j 
=i[x j (t ) − xi(t )]}. (6)

If no neighbors appear inside the circle of radius ra of a
particle, then the particle will attract other ones in a larger
circle with radius of ro > ra according to the proposed spin
model (4) and (5). Analogous to the Couzin model [2,36],
within the repulsion zone ra, the information is the parti-
cle position distance, preventing collisions between particles.
Within the circle of orientation of radius ro, the particles aligns
the current velocity by the protocol (4).

Often, some individuals in natural biological groups have
more information or are more dominant than others, such as
safe migration routes and new food or water sources [37,38].
Therefore, it is assumed that a small number of members have
a preferred direction d to somewhere whereas other followers
do not. All particles only know their directional preferences,
but they do not have knowledge about other particles’ direc-
tional preferences. Bearing in mind the net influence of both
its neighbor(s) Ni and its own direction preference di, the final
moving direction of particle i could be calculated by

vi(t + �t ) = ρ[vi(t ) + widi(t )] + �vi(t ), (7)

where the weight ωi ∈ [0, 1] and �vi is a Gaussian noise. By
tuning ω, one can change the influence of a leader’s preferred
direction on the collective motion of the whole group. More
precisely, ω = 0 means that the direction di has no influence
on the other particles, whereas ω > 0 implies that it will
influence the final direction decision. The closer the value of
ω is to 1, the greater the influence of the particle’s preference
will be.

To characterize the quality of information transmission, a
couple of order parameters are introduced.

First, the average velocity φ of all particles is defined as a
group synchronization order parameter,

φ = 1

Nv0

∣∣
N
i=1vi

∣∣, (8)

where φ = 0 means that the particles move randomly; con-
versely, φ = 1 implies that the whole group is in the same
order, so all particles move in the same direction. Note that
the synchronization order parameter φ only considers the fol-
lowers.

Denote the instant center c(t ) of the group by [25]

c(t ) = 1

N

N

i=1xi(t ). (9)

Then, the final collective direction d is calculated by d =
c(Tf �t ) − c[(Tf − T )�t], where T denotes the time interval
under consideration, and Tf denotes the total number of the
running steps. Meanwhile, the standard deviation σ is used
here to evaluate the degree of dispersion of data,

σ =
[

1

n − 1

n∑
i=1

(xi − x̄)2

]1/2

. (10)

Define a collection S := S1 ∪ S2 with S1 = {x| − 90◦ � x <

90◦} and S2 = {x|90◦ � x < 270◦}. Calculate the standard
deviations σ1 and σ2 of the sets S1 and S2, respectively,
and then σd := (σ1 + σ2)/2 would be used to represent the
concentrating tendency of preferred direction.

III. SIMULATION AND ANALYSIS

In the spin models (5)–(7), a damping term related to spin is
included, which reveals the direction information dissipation
of the starling group [34,35]. With an increasing proportion of
leaders and with different damping coefficients see Table I, the
convergence of the group in switching motion is a challenging
issue. To analyze it, the consensus state order φ is adopted to
quantify the information dissemination procedure about the
group direction.

When some leader clusters disagree about the preferred di-
rection, the followers need to decide which direction to move
along. The order parameter of the group direction �c(T )
is used as their final choice. In numerical simulations, both
the proportion and the direction of distinct leader clusters

TABLE I. Model parameters

Parameter Unit Symbol Values explored

Number of particles None N 40–600
Zone of repulsion Unit ra 0 and 1
Zone of orientation Unit ro 0–15
Sampling time Second �t 0.1
Moment of inertia Unit χ 0.1–10
Strength of the alignment Unit J 0 and 1
Damping coefficient Unit η 0–100
Speed Units v0 0.1–5
Greatest turning rate Degree θ 20–90
Weighting factor None ω 0 and 1
Proportion of leaders None p 0 and 1

Unit denotes the nondimensionality of the parameters in the model.
Their characteristic length scales are related to the specific organism
under study, e.g., the value of ra for insects is smaller than that for
mammal herds.
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FIG. 2. The evolution of group polarization φ along increasing
damping coefficient η for different sizes N of the group.

are changed, to reveal how group information transmission
influences the collective decision making of the group.

Specifically, consider a group of N particles with random
initial directions, zero initial spins si and sufficiently low ex-
ternal noise. Randomly pick a certain proportion p of particles
as the leaders with an identical preferred direction d. Other
parameters: χ = 1.25, J = 0.8, ra = 0.5, ro = 2, ω = 0.4,
v0 = 0.4, �t = 0.1, T = 50, and Tf = 5000, maximum one-
step tunable angle θ = 60◦.

Significantly, the directional change in the leaders affects
the spin kinetics of the nearby particles, leading to a direc-
tional switch of the whole group. As can be observed from
Fig. 2, the group polarization φ drops along ascending damp-
ing coefficient η. Another interesting phenomenon is observed
in Fig. 3: the group polarization φ increases with rising pro-
portion of the leaders, which implies that adding more leaders
helps weaken the adverse influence of damping coefficient η.
Moreover, the larger the group, the lower the proportion of the

FIG. 3. The evolution of group polarization φ along increasing
proportion p under different damping coefficients [η = 1 in panel
(a) and η = 15 in panel (b)] and with different sizes N of the group.

FIG. 4. Probability distribution for collective selection of group
direction �c(T ) of two divergent leader clusters L1 and L2. Panels
(a) and (b) illustrate the scenarios of balanced (|L1| = |L2| = 10)
and unbalanced (|L1| = 12, |L2| = 8) leader clusters. Here, the di-
vergent self-preferred moving directions �d := d2 − d1.

leaders is required to attain moving direction consensus as can
shown in the inset of Fig. 3(a). Still, the leader proportion p
needs to be increased to compensate the larger damping η. In
Figs. 2 and 3, each point is an average over 200 independent
runs.

However, the opinions of the leaders could not be al-
ways identical, and it often happens that different clusters
of leaders have distinct preferred directions due to their own
attractions or motivations. So, a new interesting question nat-
urally emerges: What is the impact of leaders’ divergence on
collective decision making of the mass followers? In other
words, which direction will the followers obey with increasing
divergence of the two different leader clusters? To understand
this, extensive numerical simulations have been conducted on
the dynamic model (5)–(7) by tuning two key parameters, i.e.,
the preferred direction and the proportion of leaders.

More precisely, as shown in Fig. 4, consider two sets of
randomly selected leader clusters L1 and L2. Parameters: N =
100, η = 1, d1 = 0◦, and d2 ∈ [0, 180]◦ with 10◦ intervals,
|L1| = |L2| = 10 [panel (a)], |L1| = 12, |L2| = 8 [panel (b)].
Other parameters are the same as Fig. 3. In Fig. 4, each point
is an average over 200 independent runs.

As shown in Fig. 4(a), a fascinating phenomenon is ob-
served that the group direction undergoes a transition from
a compromising phase (i.e., following the average) to a pre-
ferred phase (i.e., completely aligning to one leader cluster)
when the directional divergence �d := d2 − d1 surpasses a

014611-4



TRANSITION IN COLLECTIVE MOTION DECISION … PHYSICAL REVIEW E 106, 014611 (2022)

FIG. 5. Collective direction distribution when the divergence �d of the two leader clusters has reached 180◦. Here, |L1| = |L2| = 10).
(a) The evolution of normalized standard deviation σd of the collective moving direction d with increasing damping coefficient η. (b) Distri-
bution of the group directions with increasing values of η.

threshold d about 120◦. As shown in Fig. 4(b), it is found
that the probability of preferred direction depends on the sizes
of the two leader clusters as well. Since |L1| > |L2|, most
of the followers select the larger leader cluster |L1| in the
preferred phase, which implies that a larger leader cluster has
a greater influence on the followers. Counterintuitively, the
transition point is always around 120◦, regardless of the two
leader clusters being identical or not.

Now, another concern is what role the damping coeffi-
cient plays in such a transition. Let the divergent preferred
directions �d = 180◦. Here, a kernel density estimation
method [39] is used to calculate the probability densities il-
lustrating the distribution of the group directions over 1000
independent runs. Figure 5(a) shows that the normalized stan-
dard deviation σd of the collective moving direction d rises
with ascending damping coefficient η, which implies that
large η favors the fading of the directional concentrating ef-
fect. In Fig. 5(b), the two peaks of the curves denote the
emergence of bistable states of the self-propelled particle
system, which represents the most likely collective direc-
tions d. It is observed that the double-peak phenomenon
(or the bistable state) fades away, and the compromis-
ing tendency is thereby intensified with increasing damping
coefficient η.

IV. CONCLUSION

This paper investigates the moving direction decision-
making mechanism of self-propelled spin particle systems.
Inspired by the work of Attanasi et al. [34] and Cavagna
et al. [35], we have established an inertial spin model.
Through extensive numerical simulations, it is revealed that
the moving direction of a group of self-propelled spin parti-
cles undergoes a transition from a compromising phase to a
preferred phase by tweaking the divergence of the preferable
moving directions of two leader clusters. Interestingly, the
larger damping effect of the moving direction helps attenuate
the preference-switching transition phenomenon. This paper
can be expected to help pave the way from collective motion
dynamics theory to formation control or regulation appli-
cations of multiagent systems, such as multiple unmanned
systems, manufacturing robot swarms, wireless sensor net-
works, and so on.
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