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Information conduction and convection in noiseless Vicsek flocks
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Physical interactions generally respect certain symmetries, such as reciprocity and energy conservation, which
survive in coarse-grained isothermal descriptions. Active many-body systems usually break such symmetries
intrinsically, on the particle level, so that their collective behavior is often more naturally interpreted as a result
of information exchange. Here we study numerically how information spreads from a “leader” particle through
an initially aligned flock, described by the Vicsek model without noise. In the low-speed limit of a static spin
lattice, we find purely conductive spreading, reminiscent of heat transfer. Swarm motility and heterogeneity can
break reciprocity and spin conservation. But what seems more consequential for the swarm response is that the
dispersion relation acquires a significant convective contribution along the leader’s direction of motion.
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I. INTRODUCTION

Transfer of information, energy, or mass through complex
interacting networks is of ubiquitous interest in many scien-
tific disciplines. As examples think of the World Wide Web
and social media [1,2], epidemics [3–6], or heat conduction
and diffusion [7–9]. In particular, information, rather than
the elementary physical interactions transmitting it, is key to
groups of motile living agents, such as bird flocks [10,11] or
bacterial colonies [12,13]. To understand the behavior of such
far-from-equilibrium many-body systems is a main task of the
surging field of active matter [14–16]. Many new interesting
phenomena have been uncovered, including motility-induced
phase separation (MIPS) [17] and related forms of self-
organization [18,19] and pattern formation [20,21]. Such
studies could eventually lead to the development of novel
types of “smart (meta-)materials” [22,23]. Yet systematic
studies of the mechanisms of information spreading through
active matter systems are still scarce.

In this work, we therefore analyze the information spread-
ing in a two-dimensional Vicsek model (VM) [24], which
is a paradigmatic model of dry active matter (without mo-
mentum conservation in the solvent) [25,26]. It provides a
minimalistic description of active collective phenomena such
as the formation of bird flocks or insect swarms. The VM
resembles a magnet consisting of N spins, which describe
the orientations of the self-propelled particles. Their positions
advance at constant speed, while their orientations are subject
to mutual alignment interactions with their neighbors. Com-
pared to the limit of interacting lattice spins or also to the
case of digital information transport through disordered static
networks (frequently studied in network theory) the VM is ca-
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pable of more complex behavior. Its neighbor configurations
are neither regular nor static but constitute a dynamical graph
[27,28]. As a consequence, information in the VM spreads
not only by conduction but also by convection, hitchhiking
with the motile particles [6]. Moreover, the information about
particle positions and orientations is continuous, not digital.

In the following, we try to disentangle the various com-
plications, by first studying information spreading on a static
square lattice. For vanishing noise, this limit allows for an
exact solution, which simplifies the analysis and provides
good insight. Then we investigate the full deterministic (no
noise) VM with nonzero velocity. For both cases, we study
the information spreading for a scenario known as flooding in
network theory [28–31]: Starting in an orientationally ordered
state with a single “leader” particle that deviates from the
rest, we investigate how its perturbing effect spreads to the
others. So far, flooding dynamics was mostly studied for static
graphs; but see Ref. [28] for a more general approach. To
assess the spatiotemporal information spreading in the VM,
we numerically determine the corresponding dispersion rela-
tion. Naturally, the convective flooding due to particle motion
is found to dominate over conduction at higher speeds and
over long distances. But it also gives rise to a considerable
forward-backward symmetry breaking, rendering the disper-
sion relation spatially highly nonisotropic.

The paper is structured as follows: In Sec. II we introduce
the VM. The zero-speed limit of the VM is discussed in
Sec. III, which introduces the two flooding scenarios con-
sidered in this work: The firm leader with constrained spin
orientation, which eventually guides the flock into a new di-
rection; and the lax leader, which delivers an initial impulse
but afterwards relaxes freely, like all other spins. Finally, in
Sec. IV we consider the general case of nonvanishing particle
speeds, where the dispersion relation becomes ambiguous,
before we conclude in Sec. V.
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II. VICSEK MODEL

Since its introduction in 1995, many modifications of the
original VM have been discussed in the literature [32]. Here
we consider the deterministic discrete-time variant describ-
ing N particles self-propelling with constant speed v0 in two
dimensions with topological alignment interactions. The posi-
tion ri(t ) and velocity vi(t ) of ith particle obey the dynamical
equations

vi(t + 1) = v0�
[
vi(t ) + ∑

j �=ini j (t )v j (t )
]
, (1)

ri(t + 1) = ri(t ) + vi(t + 1), (2)

where �(v) ≡ v/|v| normalizes the velocity. The connectiv-
ity matrix ni j (t ) defines the interaction network. We assume
topological interactions: Each particle interacts with its Nint

nearest neighbors at time t . For these ni j (t ) = 1, while it
vanishes otherwise. We have tested that metric interactions,
where each particle interacts with all neighbors within a given
spatial distance, leads to qualitatively the same results (data
not shown). In contrast to the standard VM, we neglect the
noise.

Instead of using the particle velocities vi(t ) to characterize
the system state, one can equivalently describe it by the angu-
lar variables θi(t ), defined by vi(t ) = v0(cos θi, sin θi ). In this
language, Eq. (1) assumes the form [33]

θi(t + 1) = θi(t ) + 1

Ni(t )

∑
j �=i

ni j (t ) sin[θ j (t ) − θi(t )], (3)

where Ni(t ) ≡ v−1
0 |vi(t ) + ∑

j �=ini j (t )v j (t )| stems from the
normalization in Eq. (1).

We consider the situation where one of the particles (the
leader) in a completely polarized system suddenly changes
its direction and initiates a collective maneuver [10,34–36],
due to the spreading of information about its flight direction
through the flock [37,38]. To analyze the spreading of in-
formation in different directions with respect to the leader’s
velocity, it is useful to position it initially, at time t = 0, in
the center of the flock. In the next section, we investigate the
information transfer for the static spin lattice (v0 = 0), where
the information spreads only by conduction. The interplay
of conduction and convection, appearing for nonzero particle
velocity, is then addressed in Sec. IV.

III. ZERO-VELOCITY LIMIT OF THE VM

A. Linearized lattice VM and its continuous limits

To make contact with classical spin models, the particles
are placed on grid points ri of a two-dimensional square lattice
and interact only with their direct neighbors. In this limit, the
dynamics of the well-known XY model is restored. In the
following, we label the orientations θk of the individual spins
(or particles) by their positions i j in the lattice. If all spins on
the square lattice are well aligned, Eq. (3) can be expanded in
fluctuations around the aligned state as

θi j (t + 1) = 1
5 [θi j (t ) + θi−1 j (t ) + θi j−1(t )

+ θi+1 j (t ) + θi j+1(t )], (4)

where we assumed that the average orientation of the system is
0 and θi j � 1. In this limit, the periodic boundary conditions

for θi j do not need to be taken into account. An analogous
linear formulation of the low-velocity VM has recently been
employed [39] to calculate the total number of particles in a
Vicsek flock from the orientational diffusion coefficient of a
single particle.

Noteworthy, the same equation describes occupation prob-
abilities of the individual grid-points for a symmetric random
walk on a two-dimensional square lattice with equal probabil-
ities to stay at a given point or to jump to a neighboring point.
Unlike the standard Vicsek model, it thus conserves the total
amount of “information”

∑
i j θ (t ) unless some of the lattice

points serve as sources or sinks of information. Information
conservation would also be lost for less symmetric lattices,
breaking reciprocity of the interactions (for details, see the
Appendix).

Besides being exactly solvable, the importance of this sim-
plified lattice model for understanding of information transfer
in the VM is its similarity to other physical models such as
lattice models of ferromagnetism, where θi j (t ) describes spin
of the given grid point [40–44], the Google Search PageRank
algorithm [45,46], measuring the importance of a web page
by counting all links to it and weighting them by their quality,
the majority vote model, and, most importantly, lattice models
of heat conduction [47,48].

A central finding from the latter is that the heat flux is well
described by Fourier’s law implying that the local temperature
θ obeys the parabolic (diffusion)

∂tθ = D∇2θ (5)

with the diffusion coefficient D. However, this equation leads
to unphysical infinite propagation speed of heat [47,49], in the
sense that a change in the temperature at the origin leads to
infinitesimal changes in temperature far from the origin after
an infinitesimally short time. Another issue is that Eq. (5) in
general cannot describe the propagation of second sound, i.e.,
the thermal wave [8] encountered in low-temperature physics
[50]. The most popular and simplest generalization of Eq. (5)
which can describe both diffusive and wave-like transfer is the
hyperbolic equation

∂tθ + τ

2
∂2

t θ = τ

2
c2∇2θ, (6)

with maximum heat transfer velocity c and a characteristic
time τ . A standard derivation of this equation is based on
Cattaneo’s generalization of Fourier’s law [51,52].

Interestingly, it turns out that both these equations are spe-
cial limiting case of Eq. (4) [47,48]. Specifically, introducing
a lattice constant � and the time τ the signal needs to travel
between two lattice points, it can be rewritten as

θ (x, y, t + τ ) = 1
5 [θ (x, y, t ) + θ (x + �, y, t )

+ θ (x − �, y, t ) + θ (x, y + �, t )

+ θ (x, y − �, t )]. (7)

Now, taking the continuum limit τ → 0 and � → 0, while
keeping constant the ratio 5D ≡ �2/τ yields in the zeroth
order in τ the diffusion equation (5). On the other hand, taking
the limit while keeping constant the velocity c

√
5/2 ≡ �/τ

leads in the first order in τ to the hyperbolic equation (6).
These nonstandard definitions of speed and diffusion coef-
ficient result from the term θ (x, y, t ) on the right-hand side
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of Eq. (7), which is not present in a standard random walk.
The speed c, denoting the maximum speed of propagation in
Eq. (6), is smaller than the maximum speed of propagation
in the lattice model, v = l/τ . Identifying τc2/2 in Eq. (6)
with D, one can consider the parabolic equation (5) as a
limit of infinitely fast (τ = 0) signal transmission between
the neighboring lattice points. While this limit is often a
good approximation for heat conduction [8] it might not be
appropriate for biological agents with finite response time. A
general statement about which of the two continuum limits fits
better the description of the VM is not possible. It can heavily
depend on the quantity of interest and the chosen parameters.
Nonetheless, from our analysis below, it follows that the in-
formation spreading in the VM is approximately diffusive for
small speeds v0 and increasingly nondiffusive as v0 grows.

B. Firm and lax leaders

We now consider the following two specific flooding sce-
narios for the static VM (4). (1) In the firm leader scenario, the
leader’s orientation is held fixed. Measuring the angular vari-
ables θi j � 1 in units of the initial orientation of the leader, we
set θ00(t ) = 1 for all times. This amounts to a steady informa-
tion influx into the system. (2) In the lax leader scenario, the
orientation of the leader is set to 1 at time 0 but then evolves
according to Eq. (4). In both scenarios, all other particles are
initially aligned with the x axis, θi j (0) = 0 for i j �= 00. While
(1) can be interpreted as a flock following a leader, (2) might
describe a flock reacting to a sudden perturbation.

In the firm-leader scenario, the dynamical equation (4)
is most easily written and solved using the matrix form
θ(t + 1) = M0θ(t ) + θ(0), where the vector θ(t ) contains the
values of orientations at all grid points at time t , θi j (t ), and
M0 incorporates the interactions. It has vanishing entries for
the feedback onto the leader’s orientation, which is set by
θ(0), which has vanishing entries for all other particles. The
solution is θ(t ) = ∑t

i=0 Mi
0θ(0). In the lax leader scenario, the

dynamical equation is θ(t + 1) = Mθ(t ), and M incorporates
the interactions between all the grid points, as described by
Eq. (4), including the feedback onto the leader. The solution
is θ(t ) = Mtθ(0). Both solutions nicely demonstrate that due
to the linearity of the dynamics, the transmission of the in-
formation obeys the principle of superposition: The impact
onto θi j (t ) depends on the number of possible paths of length
t the signal may take from (0,0) to (i, j), namely, the sum-
mation induced by the matrix multiplication in Mt

0). And it
decays with time and distance due to the conservation en-
forced by the repeated normalization via the prefactor (1/5)t

in Mt
0.

In Fig. 1 we depict the information spreading in the
linearized lattice VM for both scenarios. As expected, the
information spreading quickly becomes isotropic, since dis-
cretizing the diffusion equation on a square lattice destroys
the radial symmetry only for short paths and affects only the
initial stage of the dynamics. The spreading for the firm leader
scenario, with a fixed source at the origin, eventually aligns
all particles to the leader. The rate of this approach decreases
with growing distance of the grid points from the leader, and
the saturation curves exhibit maximum slopes at intermediate
times.
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FIG. 1. Information spreading in the firm (a), (b) and lax (c), (d)
leader scenarios. (a), (c) The spatial spreading of the orientation θi j (t )
at different times over the distance d = √

i2 + j2, transverse (filled
blue markers) and diagonal (open red markers) relative to the leader.
(b), (d) The time evolution of the orientation for different grid points.

C. Signal speed

In general, there is no unique definition of the speed of
information spreading in the linearized lattice VM. The most
obvious definition v = l/τ = 1 refers to the signal transfer be-
tween neighboring lattice points [cf. Eqs. (4)–(7)]. It provides
the time d/v after which a grid point at distance d from the
leader starts to receive the information. Yet it is of limited use
because the strength of the received information is negligible
if the grid point is far from the leader and there are only a
few paths for the signal between the leader and the grid point.
For example, in the case of a single path the signal strength
received at time d/v is proportional to (1/5)d .

A more informative definition is obtained from the time
Tmax(d ) when the change of orientation induced by the leader
at distance d becomes maximal. The rate of change of orien-
tation of the grid points is measured by the time derivatives
θ̇i j (t ), which exhibit a clear maximum [cf. Figs. 1(b) and
1(d)]. One may thus identify Tmax(d ) with the time when
θ̇i j (t ) with

√
i2 + j2 = d is maximal. In Fig. 2(a) we show the

resulting dispersion relation d (Tmax) obtained from evaluating
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FIG. 2. (a) The dispersion relation for the linearized lattice VM
transverse (blue filled circles) and diagonal (red open circles) relative
to the leader. The solid line shows a fit d (t ) = atm with exponent
m = 0.48 and a ≈ 1.1. (b) The corresponding signal speed cs = ḋ as
function of the distance d to the leader.
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FIG. 3. (a) The dispersion relation for a generalized lattice VM
where each grid point interacts with all neighbors at distances up to
r lattice edges for three values of r. (b) The corresponding signal
speeds cs(d ) = ḋ , respectively.

the signal propagation on the horizontal and on the diagonal
axis with respect to the leader in the firm leader scenario. As
expected, the found information spreading is well described
by the diffusion relation d (Tmax) = √

4Deff Tmax. However, the
diffusion coefficient Deff = a2/4 ≈ 0.3, obtained by fitting
the data, is much different than the diffusion coefficient D =
0.2, predicted from the limiting process leading to Eq. (5). In
Fig. 2(b) we show the corresponding signal speed cs = ḋ (t ) ∝
1/

√
t ∝ 1/d . The results obtained for the lax leader scenario

are qualitatively the same (data not shown).
As an aside, we note that, while evaluating the evolution

of the maxima of θ̇i(t ) is a reasonable approach for studying
the signal spreading in the two flooding scenarios consid-
ered here, it is not suitable for more complex situations. A
more universally applicable proxy for signal speed can be
obtained by evaluating the connected acceleration correla-
tions [10]. For our specific setting with a single leader and
aligned initial state, the two approaches lead to the same
results.

To close this section, we investigate the information
spreading in a direct generalization of the linearized lattice
VM (4), where the individual grid points interact not only
with their nearest neighbors, but also with all grid points up
to a distance of r lattice edges from the leader. Consequently,
each grid point interacts with its Nint = 2r(r + 1) nearest
neighbors. The maximum speed of information propagation,
v, is determined just by distances between particles at the
circumference of the interaction zone, and thus it increases
linearly with r. On the other hand, the r dependence of the
speed cs, shown in Fig. 3, is sublinear as the signal maximum
is “slowed down” by the particles inside the interaction radius.
Interestingly, the curves for different r values cannot be col-
lapsed into a single master curve by multiplying each of them
by a constant factor. Our analysis suggests that such a collapse
is possible for long times only, with numerically obtained
scaling factors 1.565 and 2.105 yielding the best asymptotic
collapse of the curves for r = 1 to those for r = 2 and r = 3,
respectively. These factors are close to the factors 1.64 (r =
1 → 2) and 2.28 (r = 1 → 3) obtained from the diffusion
limit (5) of the individual lattice models as

√
Dr/D1 with Dr

denoting the diffusion coefficient obtained for the individual
values of r. Even though the diffusive scaling d = √

4Drt ,
predicted from Eq. (5), does not describe the data perfectly
(in particular the prefactor 4Dr is wrong), we take this as an
indication that the formula d = √

4Defft with Deff ∼ Dr is a

reasonable qualitative model for the spreading of information
over long time and large length scales.

To sum up, in the linearized static spin model, the informa-
tion spreads essentially diffusively. We next investigate how
the situation changes when we allow particles to translate
along their orientations.

IV. THE MOTILE CASE

A. The role of convection

Compared to equilibrium systems, active matter breaks
certain local symmetries such as momentum and energy con-
servation. It is not a priori obvious whether this fundamental
difference will lead to important effects on the information
spreading and swarm behavior or if it is largely irrelevant,
in practice. Differently from the lattice VM, the standard
VM does not place the particles onto a regular lattice, and
if so, this order would not be maintained for long. Notice
that this breaks two important symmetries, namely, reciprocity
and information conservation (see the Appendix). While the
disorder itself does not affect the diffusive information spread-
ing, the evolution of the neighborhood relations for v0 > 0
additionally allows for information convection. This situation
is thus very similar to a moving heat source with the main
difference that particles addressed by the leader tend to follow
it, while heated passive particles generally do not induce a
comparable flux.

Let us now derive a rough estimate for the particle speed
v0 at which convection becomes important. The maximum
conduction speed is given by the speed with which the signal
spreads due to the interactions, i.e., �int/�t . Here �t = 1 is
the discrete update time in the VM and �int = √

Nint/(πρ) =√
Nint/N is the average interaction radius, assuming a more

or less homogeneous density ρ = N/π after initiation inside
a unit circle. The speed of convection is given by the relative
speed of the individual particles on the order of v0. Conduc-
tion and convection should thus compete when v0 ≈ √

Nint/N .
Alternatively, as in Sec. III C, we could measure the speed of
signal propagation by the ratio di/Ti, where Ti is the time when
the signal sent at time 0 causes a maximum change θ̇i(t ) of
orientation at distance di, i.e., θ̇i(Ti ) ≡ maxt θ̇i(t ). As we find
below, the latter approach, which predicts a significantly lower
conduction speed, is more appropriate to describe the data,
yielding a correspondingly lower threshold velocity for the
onset of convective transport. (For our choice of parameters,
convection plays role already for velocities of about v0 = 0.01
while

√
Nint/N ≈ 0.16.)

Besides inducing convection, motility further complicates
the definition of a signal speed. Due to the relative motions
of the particles there is no a priori choice of the distance di

traveled by a signal. For this reason, we analyzed the speed of
information propagation using two different definitions of di.
First, the (average) initial distance |ri(0) − rL(0)| between the
particles and the leader, which is the initial position of particle
i at time 0, also encoded in the initial density ρ. Second, the
distance |ri(Ti ) − 1/N

∑
j rj(Ti )| between the particle i and

the position of the center (of mass) of the flock at the charac-
teristic “interaction time” Ti for conductive transport. We have
performed the analysis below for both these definitions of the
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distance and found no qualitative differences. Therefore, we
show only the results obtained for the former, in the following.

B. Numerical procedure

In the simulations, we place the leader always into the cen-
ter of a unit circle. Positions of all N = 1000 other particles
are picked randomly inside the circle. All particles interact
with their Nint = 24 nearest neighbors, corresponding to r = 3
in Fig. 3. Small density fluctuations in the initial condition
are found to induce strong noise in the measured functions
θi(t ) and θ̇i(t ). To be able to determine the overall trend from
these measurements, we averaged the resulting curves over
Nruns runs with different initial conditions. We also employed
two different smoothening procedures:

The average 〈·〉nn is calculated as follows. First, we collect
the data {di, θi(t ), θ̇i(t )}i=1,...,N from Nruns = 100 runs of the
simulation. Then we sort the data according to the distance di

to the origin at time 0. Finally, we calculate the smoothed vari-
ables 〈di〉nn, 〈θi(t )〉nn, and 〈θ̇i(t )〉nn by averaging di, θi(t ), and
θ̇i(t ) over Nav neighbors of the particle i, i.e., over the particles
j with Nav smallest distances |di − d j |. Since the dispersion
relation is a strictly monotonous function of time, one may
alternatively perform the averaging with respect to nearest
neighbors in time Ti, according to when the maximum signal
has arrived at particle i. In other words one can average over
the particles j with Nav smallest distances |Ti − Tj |. We have
tested that both averaging procedures lead to qualitatively the
same results. In the following, we show only those obtained
using the averaging 〈·〉nn over Nav spatially nearest neighbors.

C. Firm leader scenario

We now consider the firm leader scenario of Sec. III B,
where the leader’s orientation is fixed to ϕ at all times and
all other particles are initially aligned with the perpendicular
x axis and subsequently obey the dynamical equations (1) and
(2). Note that this condition implies that reciprocity between
the leader and the flock is maximally broken.

In Figs. 4(a) and 4(b) we show the resulting averaged
orientations, 〈θi(t )〉nn, and the averaged changes in the orien-
tation, 〈θ̇i(t )〉nn, as functions of the averaged distance 〈di〉nn.
To investigate the directional dependence of the information
spreading, we distinguish between two directions of signal
propagation. As the leader’s orientation points into the pos-
itive half-plane, we identify the particles with positive y
coordinates at time 0 as lying in the “positive direction” with
respect to the leader. The remaining particles are lying in the
“negative direction.” The results for 〈θi(t )〉nn and 〈θ̇i(t )〉nn for
the positive and negative directions are given in Figs. 4(c) and
4(d) and Figs. 4(e) and 4(f), respectively. As the leader carries
the source of information with it, particles lying in the positive
direction show a significantly larger change of orientation than
those in the negative direction. Furthermore, the leader affects
nearby particles more than more distant ones. This leads to
correspondingly stronger average direction changes 〈θ̇i(t )〉nn

in its vicinity. Consequently, upon traversing the flock, the
leader seems to drag around a cloud of “followers.” However,
since the interaction rule allows only imperfect alignments,
particles begin to realign with the less informed surroundings
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FIG. 4. Firm leader scenario. The average orientation, 〈θi(t )〉nn

and change in orientation 〈θ̇i(t )〉nn, as functions of the average dis-
tance 〈di〉nn at three different times: For the whole swarm (a), (b),
along the leader direction (c), (d), and along the negative leader di-
rection (e, f). Parameters used: N = 1000, v0 = 0.01, Nint = 24, ϕ =
π/4, Nruns = 100, Nav = Nruns.

after the leader has left their neighborhood. This is depicted
by the moving maxima of 〈θi(t )〉nn and 〈θ̇i(t )〉nn in Figs. 4(c)
and 4(d). In the negative direction, where the information
propagates by pure conduction, no such structure is visible.
The response of the swarm as a whole is dominated by the dy-
namics in positive direction. Repeating the described analysis
for v0 = 0, we found the same behavior as for the linearized
lattice VM in Sec. III.

In Fig. 5(a) we show the time evolution of the change of
orientation 〈θ̇i(t )〉N,Nruns averaged over all particles in the cho-
sen particle set (total system, positive direction, and negative
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FIG. 5. Firm leader scenario. (a) Time evolutions of the change
of direction averaged over the total system and the positive and
negative directions for v0 = 0.01 and v0 = 0, respectively. (b) The
corresponding ratio (8) as function of the particle speed. Other pa-
rameters as in Fig. 4.
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FIG. 6. Dispersion relation for the firm-leader scenario for pos-
itive (blue circles) and negative (red stars) directions and speeds
v0 = 0, 0.001, 0.01, 0.03 increasing from the upper left to the bottom
right panel. The black solid lines are fits of a〈Ti〉m

nn to the data for the
positive direction with m = 0.376, 0.417, 0.449, 0.451 correspond-
ing to the individual speeds. The slope of the data for speed v0 = 0.03
for the positive direction is ≈0.018 while the corresponding speed
of the leader projected to the positive direction is v0 sin ϕ ≈ 0.021.
Parameters as in Fig. 4, except for NAv = 10Nruns.

direction) and all simulations for v0 > 0 and v0 = 0. For v0 >

0, the average signal strength for the total system and particu-
larly in the positive direction continuously increases until the
leader approaches the edge of the system. This can be under-
stood as follows. The change of orientation of the individual
particles is largest when their orientation differs most from
the average orientation of their neighbors. A moving leader
constantly meets on its way in the positive direction particles
(almost) aligned with the x axis, leading to a steady increase of
the corresponding signal. Subsequently, at times t � 50 when
the leader has left the flock, 〈θ̇i(t )〉N,Nruns rapidly decreases,
and eventually it also changes sign. Since the leader mainly
affects nearby particles, more distant particles are much less
aligned with its orientation when it leaves. Therefore, particles
that aligned with the leader during its passage through the
flock begin to realign with the less affected particles after the
leader has left. In the negative direction, the signal strength
monotonously decreases, similarly as for v0 = 0 and the lin-
earized lattice VM.

To quantify the asymmetry between the positive and nega-
tive direction, we integrate the positive areas

�θ± =
∫ ∞

t0

〈θ̇i(t )〉±N,Nruns
�

(〈θ̇i(t )〉±N,Nruns

)
, (8)

beneath the corresponding curves in Fig. 5(a). Here + (−)
corresponds to the positive (negative) direction and �(·) de-
notes the unit step function. The ratio �θ+/�θ− is shown in
Fig. 5(b). As expected, it monotonously increases with the
particle speed v0 and particle density N/π .

The main result of this section are the dispersion relations
for four different velocities shown in Fig. 6. Regardless of v0,
the information initially spreads conductively, hence similarly
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FIG. 7. Lax leader scenario. (a), (b) The orientation, 〈θi(t )〉nn,
and the averaged change in the orientation, 〈θ̇i(t )〉nn, as functions
of the averaged distance 〈di〉nn for three different times averaged
over the overall system. (c) The ratio (8) of the integrated positive
changes in the orientation in the positive and negative directions as
functions of the particle speed for the firm and lax leader scenario.
(d) The dispersion relation for the positive and negative directions
for the firm and lax leader scenario. We used the same parameters as
in Fig. 4.

as in the linearized lattice VM, as diffusion beats convection
over short times and distances. With increasing velocity v0 >

0, the spreading in the positive direction becomes gradually
more convective at late times. The slope of the dispersion
relation converges to the velocity of the leader projected to
the positive direction, v0 sin ϕ. In the negative direction, the
spreading stays conductive regardless of v0. Even though the
particles in the negative direction are less affected by the
turning event induced by the leader, the dispersion relation
shows that the information reaches them faster than those in
the positive direction. This counterintuitive effect is a con-
sequence of the employed definition of Ti: The dispersion
relation follows from determining times maximizing θ̇i(t ). As
the leader moves away from the particles behind it, the rates of
change θ̇i(t ) of their orientations peak sooner than those in the
positive direction. This somewhat counterintuitive behavior is
reminiscent of observations of faster speeds for smaller pulses
[8] or propagation of second sound against the heat flow [53].

D. Lax leader scenario

The information spreading is somewhat different in the lax
leader scenario. For the same initial condition as in the preced-
ing section, the leader now adapts dynamically according to
Eqs. (1) and (2) to its neighbors for t > 0. It thereby virtually
loses the information passed on to them. The interaction with
the neighbors is thus more reciprocal than for the unwavering
firm leader, yet not entirely so, since the topological notion
of next neighbors is not necessarily fully reciprocal (see the
Appendix).

In Figs. 7(a) and 7(b) we depict again the average
orientation 〈θi(t )〉nn and the averaged change in the orientation
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〈θ̇i(t )〉nn for the lax leader scenario. The parameters are the
same as for the firm leader scenario in Fig. 4. Comparing
the results for the two scenarios, we find the following dif-
ferences: (1) the amplitudes of both 〈θi(t )〉nn and 〈θ̇i(t )〉nn are
much smaller and the time derivative in the averaged angle
converges to zero much faster, since the leader realigns with
the rest of the flock in the lax leader scenario. (2) The time
derivative 〈θ̇i(t )〉nn exhibits an excursion to negative values at
small distances to the leader, due to the feedback from the
flock, which requires a realignment of the leader and its neigh-
borhood with the “winning majority” of other particles in the
flock. At larger distances, the derivative returns to positive
values, as expected for a moderate realignment of the merely
slightly disturbed more distant particles. (3) There is again a
directional dependence of the response, as in the firm-leader
scenario. However, it is now much weaker, due to the mutual
information exchange.

In fact, for the parameters used in the figure, it is not
worthwhile to show the corresponding spatial distributions, as
they would be hardly discernible from those for the total sys-
tem in Fig. 7. The directional dependence of the information
spreading in the lax leader scenario becomes noteworthy only
for substantially larger speeds v0, as demonstrated in Fig. 7(c).
There we compare the ratio �θ+/�θ− of responses (8) in-
tegrated in the positive and negative directions between the
lax and firm leader scenarios. Because of weaker total signal
strength in the lax leader scenario, the changes of orientation
θ̇i(t ) of the individual particles peak sooner, leading to steeper
(but directionally barely distinguishable) dispersion relations;
cf. Fig. 7(d).

V. CONCLUSION

We studied transport of information about orientation of
a leader in the Vicsek model (VM) with topological in-
teractions. The two main mechanisms for propagation of
information are conduction and convection. We have shown
that the conductive aspect in the VM can well be understood
using a simplified, exactly solvable variant of the model,
where the individual particles are fixed at grid points of a
regular lattice. This static spin lattice model allows for an
analogy with heat transfer, which ceases to hold in the full
dynamic VM. Nonlinearity and heterogeneity then break the
underlying symmetries such as reciprocity and spin conserva-
tion. Yet this has no major practical consequences by itself.
The visible changes between the dynamic model and the spin
lattice are entirely dominated by the convective dynamics.

We considered two scenarios of information spreading
from a single misaligned leader particle. While the diffu-
sive or conductive spreading prevails over short times and
distances, the spreading over longer times and distances grad-
ually acquires a convective contribution, as the particle speed
increases. We quantified this intuitive conclusion by measur-
ing the dispersion relation. It was formulated for the timescale
at which the signal induces its largest change in orientation
of the particles at a given distance. The analysis revealed a
strong directional dependence of the information transfer for
the firm-leader scenario, in which the reciprocity of the mutual
information exchange is maximally violated. A significant
effect of convective information spreading is observed only

in the direction of the leader motion. In the wake zone behind
the leader, the spreading remains diffusive, regardless of the
speed.

While measuring the dispersion relation for zero speed of
the particles is a relatively straightforward task, the definition
of the distance over which the signal has propagated becomes
ambiguous for the motile swarm. Nevertheless, we found that
different length definitions lead to qualitatively close results.

Besides this ambiguity in the definition of the dispersion
relation, which might deserve further analysis, our findings
raise several questions. First, while some preliminary runs
seemed to confirm the expectation that the inclusion of noise
in the VM would yield qualitatively similar results, one could
wish to study this issue more extensively, in particular with re-
gard to the stability of the flocking transition; i.e., under which
conditions can a leader move induce an ordering transition
or the breakup of a flock? Further, many natural interaction
networks are more heterogeneous than our flocks, contain-
ing, e.g., certain hierarchical structures [54,55] or distance-
and density-weighted interactions [24]. Moreover, it might be
interesting to consider a more realistic modification of the
standard VM where the orientation of a particle under con-
sideration would have a stronger weighting than the average
orientation of its neighbors. This would yield a more persis-
tent motion and might impact the information propagation.
We took first steps in this direction in a follow-up study to the
present work [56]. There we investigate information spreading
in a 2D VM with time-delayed metric interactions [57] and
also address the pertinence of the notion of linear response
[58–60] and its relation to information propagation. Next, it
might be interesting to connect information spreading in ac-
tive matter with corresponding results in other research fields,
such as network theory or epidemiology. Especially in the
latter, the effects of network heterogeneity on the spreading of
diseases is a widely studied aspect [6,61–63]. Finally, it would
seem interesting to pursue the question how the interaction
rules in the VM can be optimized to facilitate information
transfer.
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APPENDIX: BREAKING OF INFORMATION
CONSERVATION IN THE LINEARIZED VM

As discussed in Sec. III, the interaction rule in the lin-
earized lattice VM,

θi j (t + 1) = 1

Ni j (t )

∑
〈(i j),(kl )〉

θkl (t ), (A1)

where the sum goes over all neighbors (kl ) of (i j) includ-
ing (i j) itself, and Ni j = ∑

〈(i j),(kl )〉 denotes the number of
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neighbors, conserves the total information content

θtot (t ) ≡
∑

i j

θi j (t ). (A2)

While the linearized Vicsek interaction rule yields recipro-
cal interactions if the interaction network is regular, it can
render nonreciprocal interparticle interactions for irregular
interaction networks, e.g., if the particle density of the sys-
tem is inhomogeneous in space. The conservation condition
θ̇tot (t ) = 0 will then be broken. For a closed system, the re-
verse also holds: If the conservation is broken, this indicates
the presence of some nonreciprocal interactions. As an il-
lustrative example, consider the following closed interaction
network consisting of three particles. Particle 1 and 3 inter-
act solely with particle 2, which interacts with both 1 and
3. Assuming the initial condition θ1(0) = 1 and θ2,3(0) = 0,
then θ1(1) = 1/2, θ2(1) = 1/3, θ3(1) = 0. We thus see that
θtot (0) = 1 > θtot (1) = 5/6. If we instead consider the initial

condition θ2(0) = 1 and θ1,3(0) = 0, we find θtot (0) = 1 <

θtot (1) = 3/2. These examples manifest a more general find-
ing that θtot (t ) decreases when the information flows from a
less to a more connected region, and vice versa. In this case,
reciprocity is broken since the normalization Ni j of neighbor-
ing particles varies. Beyond the linear regime, the situation
is more complicated as the normalization Ni j depends on the
angular variables.

Similarly, also for topological interactions, the informa-
tion content is not conserved. While each particle interacts
with exactly the same number of neighbors (i.e., Ni j =
const), density gradients may induce unilateral interactions.
As an example, consider a closed system of four particles
with topological interactions with two nearest neighbors.
Let the particles 1, 2, and 3 reciprocally communicate with
each other, while the distant particle 4 adjusts its direc-
tion to that of particles 2 and 3 without influencing them.
Assuming the initial condition θ2(0) = 1 and θ1,3,4(0) =
0, we find θ1,...,4(1) = 1/3 and thus θtot (0) = 1 < θtot (1) =
4/3.
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