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The Derjaguin-Landau-Verywey-Overbeek (DLVO) theory has been a remarkably accurate framework for the
characterization of macromolecular stability in water solvent. In view of its solvent-implicit nature neglecting
the electrostatics of water molecules with non-negligible charge structure and concentration, the precision of the
DLVO formalism is somewhat puzzling. In order to shed light on this issue, we derive from our earlier explicit
solvent formalism [S. Buyukdagli et al., Phys. Rev. E 87, 063201 (2013)] a solvent-augmented contact value
theorem and assess the contribution of solvent molecules to the interaction of charged membranes. We find
that in the case of hydrophobic membranes with fixed charges embedded in the membrane surface, the nearly
exact cancellation of various explicit solvent effects of substantially large magnitude but opposite sign keeps
the intermembrane pressure significantly close to the double-layer force of the DLVO theory. Then, in the case
of hydrophilic surface charge groups within the aqueous region, due to the spatial separation of the membrane
substrate from the location of the fixed charges where the nonlocal dielectric response of the structured solvent
is sharply localized, the interfacial field energy and the contact charge densities remain unaffected by the explicit
solvent. As a result, the hydration of the lipid head groups suppresses the signature of the solvent molecules from
the membrane interaction force.

DOI: 10.1103/PhysRevE.106.014608

I. INTRODUCTION

From nano- to microscale, the equilibrium of macro-
molecules in aqueous milieu is set by the electrostatic
coupling of their omnipresent bound charges. From the sta-
ble configuration of like-charged membrane assemblies [1]
and densely wrapped DNA molecules around histones [2]
to the cohesion of cement paste [3] and colloidal suspen-
sions [4], the electrostatic balance of various biological
and chemical systems is mainly regulated by the action
of short-range attractive van der Waals (vdW) [5–10] and
longer-range repulsive double-layer forces [11,12]. The com-
petition between these opposing forces is precisely at the
basis of the Derjaguin-Landau-Verywey-Overbeek (DLVO)
theory.

Although the DLVO formalism has been a significantly
efficient tool to characterize the macromolecular stability
in water solvent, its theoretical framework includes certain
approximations [13–15]. The first limitation of the DLVO
formalism stems from its inclusion of the attractive vdW
forces, and the repulsive double-layer forces obtained from
the Poisson-Boltzmann (PB) theory in an additive fashion.
This additivity assumption limited to low macromolecular
charges and high salt concentrations has been relaxed by field-
theoretic techniques such as one-loop-level weak-coupling
(WC) approaches [16–19] and electrostatic strong-coupling
theories [20–22].

In the characterization of the double-layer forces, the relax-
ation of the fixed surface charge assumption underlying the
original DLVO formalism has been another significant step
forward. The first incorporation of the surface protonation

reactions into the PB theory by Ninham and Parsegian has
greatly improved our understanding of the surface force ex-
periments [23]. Subsequent works have clarified the generality
of the pH-regulated surface charge condition with respect
to the constant surface charge constraint [24], generalized
the charge regulation formalism to hydrogel films [25] and
polymer brushes [26], and extended the theory beyond the
mean-field (MF) electrostatic regime [27,28]. In Ref. [29],
we also integrated the charge regulation mechanism into a
unified electrohydrodynamic theory of ion transport and poly-
mer translocation through silicon nitride pores. A consistent
review of the literature on charge regulation can be found in
Refs. [30,31].

The additional limitation of the DLVO approach resides
in its solvent-implicit nature common to the classical for-
mulation of electrostatic interactions. In order to relax the
assumption of local dielectric response characterizing the
solvent-implicit framework, earlier works incorporated struc-
tured dielectric permittivity functions into the electrostatic
equations of state [32,33]. Then, within the field-theoretic
formulation of electrolyte solutions, explicit solvent has been
included in Refs. [34,35] as point dipoles treated on an
equal footing with the salt charges. By generalizing the
point-dipole models of Refs. [34,35] to solvent molecules
with finite size, we developed a field-theoretic formulation
of nonlocal electrostatics able to map from the intramolec-
ular solvent structure to inhomogeneous dielectric response
[36–38]. Within the framework of this nonlocal PB (NLPB)
formalism, we showed that the inclusion of the extended
solvent charge structure directly gives rise to the inhomoge-
neous dielectric permittivity profiles revealed by atomic force
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FIG. 1. Schematic depiction of the phospholipid membrane of
width d confining s species of monovalent salt ions with bulk con-
centration ρib, and dipolar solvent molecules of length b = 1 Å and
reservoir concentration ρsb = 55 M. The fixed surface charges −Q of
lateral separation distance l are located at the distance p from their
wall.

microscopy (AFM) experiments [39] and explicit solvent sim-
ulations [40,41].

The most profound effect brought by this nonlocal dielec-
tric response of structured solvents is a total dielectric void
in the vicinity of charge sources. Namely, the aforementioned
works revealed that moving away from the membrane at z = 0
(see Fig. 1), the relative dielectric permittivity function εeff (z)
assumed to be uniform by the PB theory (εeff (z) = εw ≈ 78)
actually rises from the vacuum permittivity εeff (0) = 1 at the
location of the fixed charges to the bulk water permittivity
εeff (z) → εw over a few molecular dimensions [see Fig. 2(a)]
[36–41].

The corresponding dielectric void at the solvent-membrane
interface has a radical consequence on macromolecular in-
teractions. Namely, the absence of this dielectric decrement
in the solvent-implicit PB formalism implies that the latter
underestimates the interfacial electric field E (0) ∝ ε−1

eff (0) by
a factor of εw [see Fig. 2(b)]. This means that the attrac-
tive component Pel = −εeff (0)E2(0)/2 of the double-layer
force associated with the interfacial field energy is also un-
derestimated by the DLVO formalism by the same factor.
Considering that the corresponding error induced by the as-
sumption of local dielectric response is nearly of two orders
of magnitude, the experimentally corroborated accuracy of the
DLVO theory is somewhat puzzling [14,15].

In order to shed light on this peculiarity, we carry out a
solvent-explicit characterization of the complex mechanisms

responsible for the precision of the DLVO formalism funda-
mental to our understanding of the macromolecular stability
in biological and industrial systems. To this aim, we assess
directly the contribution of the explicit solvent molecules
to macromolecular interactions between charged membranes.
This result is the main achievement of our work. In Sec. II,
we first extend our earlier explicit solvent model [36] to the
case of interfacial membrane charges penetrating the elec-
trolyte region by a finite hydration length. In Sec. III, within
the framework of this explicit solvent model considered in
the MF regime of low membrane charges and monovalent
salt, we derive a solvent-augmented contact value theorem
explicitly including the contribution of the solvent molecules
to the intermembrane force. In Sec. IV, using this generalized
contact value theorem, we investigate the effect of the solvent
electrostatics on the intermembrane interactions.

In the case of hydrophobic surface charge groups embed-
ded in the membrane substrate, we find that various explicit
solvent effects of large magnitude but opposite sign cancel
each other out. This drives the net intermembrane pressure
significantly close to the double-layer force of the DLVO
formalism. Then, in hydrophilic membranes carrying charged
groups within the aqueous zone, the spatial separation of the
nonlocal dielectric response region at the polar heads from
the membrane surface suppresses explicit solvent effects on
the individual electrostatic and entropic pressure components.
The limitations of our model, and its potential improvements
and applications are elaborated in Sec. V.

II. EXPLICIT SOLVENT THEORY

The composition of the charged system is depicted in
Fig. 1. The liquid is confined between two membrane walls
of separation distance d . Each membrane wall carries a total
of N discretely spaced anionic surface charges −Q of lateral
separation distance l and fixed distance p from their wall.
The location of the surface charges along the x and y axis of
the discrete lattice will be indicated by the indices n and m,
respectively.

The electrolyte is composed of dipolar solvent molecules
and s species of salt ions modeled as point charges (see Fig. 1).
The rotation of the solvent molecules about their center of
mass (CM) is characterized by the polar angle ϕ between
their dipole vector and the z axis. The confined ions and
solvent molecules are in chemical equilibrium with a bulk
reservoir located at the ends of the intermembrane region. The
ions of the species i have valency qi and reservoir concen-
tration ρib. Then, each solvent molecule is an overall neutral

FIG. 2. (a) Effective dielectric permittivity (32) and (b) ratio of the NLPB and PB fields in a salt-free liquid. (c) Potential profile and (d) salt
excess obtained from the PB theory (solid curves) and the NLPB formalism (dashed curves).
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finite-size dipole composed of a positive and a negative termi-
nal charge. The terminal charges of a given solvent molecule
are separated by the fixed distance b = 1 Å. The solvent
concentration in the reservoir is set to the bulk water con-
centration ρsb = 55 M. The bulk dielectric permittivity of the
water solvent corresponding to these numerical values follows
from the Debye-Langevin equation as εw ≈ 78.3 [36].

A. Field theoretic partition function

The dielectric permittivity function of the system reads

ε(r) = εm[θ (−z) + θ (z − d )] + ε0θ (z)θ (d − z), (1)

where εm and ε0 = 1 are the relative dielectric permittivity of
the membrane and vacuum, respectively. Moreover, the charge
density operator is

ρ̂c(r) =
s∑

i=1

qi

Ni∑
j=1

δ3(r − Ri j ) +
Ns∑

k=1

T̂ (r; uk,�k )

− Q
N∑

n=1

N∑
m=1

[δ3(r − rnm) + δ3(r − r′
nm)], (2)

where we defined the mobile ion coordinate Ri j , and the
charge structure factor T̂ (r; uk,�k ) of the solvent dipoles with
the CM coordinate uk and solid angle �k . In Eq. (2), we also
introduced the coordinates of the surface charges defined as

rnm = snm + pûz ; r′
nm = snm + (d − p)ûz, (3)

with the indices 1 � n, m � N and the discrete lateral coordi-
nate snm = (n − 1)l ûx + (m − 1)l ûy.

The canonical partition function of the system reads

Zc =
s∏

i=1

Ni∏
j=1

∫
d3Ri j

Ns∏
k=1

∫
d2�k

4π
d3uk e−βEc−βEn . (4)

In Eq. (4), we defined the electrostatic interaction energy

βEc = 1

2

∫
d3rid3r′ρ̂c(r)vc(r, r′)ρ̂c(r′) (5)

including the Coulomb Green’s function vc(r, r′) defined
in terms of its inverse, v−1

c (r, r′) = −(kBT/e2)∇ · ε(r)∇δ3

(r − r′), where kB is the Boltzmann constant, T = 300 K
the liquid temperature, and e stands for the electron charge.
Moreover, we introduced the total steric energy of the charged
particles,

βEn =
s∑

i=1

Ni∑
j=1

Vn(Ri j ) +
Ns∑

k=1

Vs(uk,�k ), (6)

with the ionic and solvent on-site potentials Vn(Ri j ) and
Vs(uk,�k ), respectively.

At this point, we carry out a Hubbard-Stratonovich trans-
formation to convert the exponential of the electrostatic
interaction energy in Eqs. (4)–(5) into a functional integral
over the fluctuating electrostatic potential φ(r). Then, in order
to account for the chemical equilibrium between the ions and
the solvent molecules in the intermembrane region and the
reservoir, we pass from the canonical to the grand canonical

partition function defined as

ZG =
s∏

i=1

∞∑
Ni=1

λ
Ni
i

Ni!

∞∑
Ns=1

λNs
s

Ns!
Zc. (7)

Evaluating the geometric series in Eq. (7), the partition func-
tion takes the functional integral form

ZG =
∫

Dφ e−βH [φ]. (8)

In Eq. (8), the Hamiltonian functional reads

βH[φ] = kBT

2e2

∫
d3r ε(r)[∇φ(r)]2 −

s∑
i=1

λiζi − λsζs

+ iQ
N∑

n=1

N∑
m=1

[φ(rnm) + φ(r′
nm)], (9)

where the one-body partition functions of the ions and the
solvent molecules coupled to the fluctuating background po-
tential φ(r) are, respectively,

ζi =
∫

d3re−Vn (r)+iqnφ(r), (10)

ζs =
∫

d2�

4π
d3u e−Vs (u,�)+i

∫
d3r′T̂ (r′;u,�)φ(r′ ). (11)

B. Electrostatic equation of state

We derive here the MF equation of state satisfied by
the average potential. Evaluating the saddle-point condition
δH[φ]/δφ(r) = 0, passing from the complex to the real po-
tential via the transformation φ(z) → iφ(z), and specifying
the structure factor of the dipolar solvent molecules charac-
terized by the length vector b,

T̂ (r′; u,�) = δ3(r′ − u − b/2) − δ3(r′ − u + b/2), (12)

the electrostatic equation of state follows as a three-
dimensional integrodifferential equation,

kBT

e2
∇r · ε(r)∇r +

s∑
n=1

λnqne−Wn (r)−qnφ(r)

+ λs

∫
d2�

4π

{
e−Ws (r−b/2,b)e−φ(r)+φ(r−b)

− e−Ws (r+b/2,b)e−φ(r+b)+φ(r)
}

− Q
N∑

n=1

N∑
m=1

δ2(r‖ − snm)[δ(z − p) + δ(z − d + p)].

(13)

Equation (13) generalizes the solvent-explicit NLPB equa-
tion previously derived for continuously distributed interfacial
charges on the membrane surface [36] to the case of discretely
distributed lipid head groups located within the liquid. At
this point, by introducing the continuously distributed surface
charge approximation, we reduce the dimensionality of the
problem. To this aim, we pass from the discrete to the contin-
uous lateral coordinate snm → s, and impose in Eq. (13) the
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resulting transformation

N∑
n=1

N∑
m=1

δ2(r‖ − snm) → σs

∫
d2s δ2(r‖ − s) = σs, (14)

where we introduced the surface charge density σs = l−2 and
the position vector r‖ = xûx + yûy along the membrane sur-
faces. Finally, taking into account the translational symmetry
φ(r) = φ(z) associated with the continuous distribution of the
interfacial source charges, the extended NLPB Eq. (13) takes
the one-dimensional form

kBT

e2
∂zε(z)∂ (z)φ(z) +

s∑
n=1

qnρi(z) + ρs+(z) − ρs−(z)

= σsQ[δ(z − p) + δ(z − d + p)]. (15)

In Eq. (15), ρi(z) stands for the local number density of the
salt ions of the species i, and ρs+(z) and ρs−(z) correspond
to the number densities of the positive and negative terminal
charges of the solvent dipoles, respectively. The functional
form of these number densities are

ρi(z) = ρibe−qiφ(z)θp(z), (16)

ρs+(z) = ρsbθp(z)
∫ b3(z)

−b2(z)

dbz

2b
e−φ(z)+φ(z−bz ), (17)

ρs−(z) = ρsbθp(z)
∫ b3(z)

−b2(z)

dbz

2b
e−φ(z−bz )+φ(z), (18)

with the dipolar projection bz = b cos ϕ onto the z axis,
the steric function θp(z) = θ (z)θ (d − z) including the Heav-
iside step function θ (x), and the integral bounds b2(z) =
min{b, d − z} and b3(z) = min{b, z} taking into account the
hard membrane walls impenetrable by the mobile solvent
charges. The explicit derivation of the particle densities in
Eqs. (16)–(18), and the calculation of the integration bound-
aries associated with the impenetrable wall condition are
explained in Appendix A 1.

From now on, we consider a 1:1 salt solution, and take
s = 2 and q± = ±1. Moreover, we set Q = 1. The NLPB
Eq. (15) becomes for 0 < z < d

∂2
z φ(z) − εwκ2

i sinh[φ(z)]

− κ2
s

∫ b3(z)

−b2(z)

dbz

2b
sinh[φ(z) − φ(z − bz )]

= 2εw

μ
[δ(z − p) + δ(z − d + p)] (19)

whose numerical solution is explained in Appendix B. In
Eq. (19), we introduced the Debye-Hückel (DH) screening
parameter κ2

i = 8π�wρib quantifying the spatial range of the
electrostatic shielding induced by the salt ions, and the solvent
screening parameter κ2

s = 8π�Bρsb setting the range of the
dielectric screening induced by the dipolar solvent molecules
[42]. Moreover, the right-hand side (r.h.s.) of Eq. (19) includes
the Gouy-Chapman (GC) length defined as μ = 1/(2π�wσs),
with the Bjerrum length in vacuum �B = e2/(4πε0kBT ) ≈ 55
nm and in water �w = �B/εw ≈ 7 nm.

III. SOLVENT-AUGMENTED CONTACT
VALUE THEOREM

In this section, we derive a solvent-explicit contact value
theorem relating the intermembrane pressure to the surface
value of the mobile charge densities. At the electrostatic MF
level, the grand potential corresponds to the Hamiltonian (9)
evaluated with the solution of the NLPB Eq. (15). Accounting
for the planar symmetry, the grand potential reads

β�mf

S
= −

∫ d

0

dz

8π�B
[φ′(z)]2

−
∫ d

0
dz{ρ+(z) + ρ−(z) + ρs(z)}

− σs[φ(p) + φ(d − p)], (20)

where the CM density of the solvent molecules explicitly
calculated in Appendix A 1 is

ρs(z) = ρsb

∫ b1(z)

−b1(z)

dbz

2b
ns(z, bz ). (21)

In Eq. (21), we used the auxiliary function b1(z) =
min{b, 2z, 2(d − z)}, and the conditional probability

ns(z, bz ) = e−φ(z+bz/2)+φ(z−bz/2). (22)

The inner pressure follows from the variation of the grand
potential (20) with respect to the membrane separation dis-
tance, i.e., Pin = −δ�mf/δ(Sd ). The detailed evaluation of
this variation is explained in Appendix C. Subtracting from
the inner pressure its bulk limit corresponding to the osmotic
pressure of the ions and solvent molecules acting on the outer
membrane walls, i.e., Pout = 2ρib + ρsb, the net intermem-
brane pressure Pnet = Pin − Pout follows as

Pnet = Pion + Psol + Pel. (23)

In Eq. (23), the osmotic pressure components associated with
the ionic and solvent entropy excesses are

βPion =
∑
i=±

[ρi(d ) − ρib], (24)

βPsol = ρs+(d ) + ρs−(d ) − ρsb, (25)

and the electrostatic pressure reads

βPel = σs
∂φ(d − p)

∂d
+ φ′(d−)2

8π�B
. (26)

It is noteworthy that the solvent pressure (25) involves the
separate contact density of the terminal charges rather than
the CM density of the solvent molecules.

The solvent-explicit contact value identity in Eq. (23) is
the main result of this paper. In Sec. IV, this result will be
compared with the PB pressure [14]

P(PB)
net = P(PB)

ion + P(PB)
el (27)

to characterize explicit solvent effects on macromolecular
interactions. We note that in Eq. (27), the ionic entropy pres-
sure P(PB)

ion and the electrostatic pressure P(PB)
el follow from

Eqs. (24) and (26) by replacing the potential φ(r) with the
solution of the standard PB equation.
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FIG. 3. (a) Intermembrane pressure (23) of the NLPB formalism (solid curves) and its solvent-implicit PB counterpart (27) (circles).
(b) Repulsive pressure component (25) associated with the entropy of the solvent charges and (c) its sum with the attractive electrostatic
pressure (30). (d)–(f) Repulsive ionic entropy pressure Pion in Eq. (24) (solid curves) and its implicit solvent counterpart P(PB)

ion (circles). The
tail length is p = 0. The salt concentrations are indicated in the legends.

IV. SOLVENT EFFECTS ON THE INTERACTION
OF CHARGED MEMBRANES

Here, using the solvent-augmented contact value identity
(23), we probe the explicit solvent effects on the membrane
pressure. To this aim, we investigate separately the case of
the surface charge groups located on the membrane surface
(p = 0) and within the liquid (p > 0).

The interaction forces in Eq. (23) will be characterized in
terms of the dimensionless pressure components

P̃α = Pα

2π�wσ 2
s

(28)

for α = {net, ion, sol, el}. Moreover, in order to speed up the
relaxation algorithm used for the solution of the integrodif-
ferential equation (19), we will consider the low membrane
charge density σs = 0.01 e/nm2 and moderate salt concentra-
tions ρ+b � 0.1 M corresponding to the linear DH regime of
weak electrostatic potentials.

A. Hydrophobic charge groups (p = 0)

In the case of vanishing tail length p = 0 correspond-
ing to polar head groups located on the membrane surface,
or hydrophobic charge groups partially depleted by water,
the electrostatic boundary conditions (BCs) follow from the
NLPB Eq. (19) as

φ′(0+) = 4π�Bσs ; φ′(d−) = −4π�Bσs. (29)

Hence, in the same limit p → 0 where φ′(d+) = 0 and
∂dφ(d − p) = φ′(d−), the electrostatic component (26) of the
pressure (23) simplifies to

βPel = −2π�Bσ 2
s . (30)

One notes that the solvent-explicit electrostatic attraction
force (30) is stronger than the PB prediction [14]

βP(PB)
el = −2π�wσ 2

s (31)

by the large factor Pel/P(PB)
el = �B/�w = εw ≈ 78.3. The un-

derestimation of the electrostatic interaction force by the PB
theory can be explained by accounting for the spatial structure
of the effective dielectric permittivity quantifying the inhomo-
geneous dielectric screening ability of the liquid. The latter
can be obtained from the vanishing salt limit of the electric
field as [36,37]

εeff (z) = lim
κi→0

4π�Bσs

φ′(z)
. (32)

Figures 2(a)–2(b) display the effective permittivity (32) to-
gether with the ratio of the NLPB and PB fields. One sees
that as a result of the interfacial dielectric void caused by the
nonlocal dielectric response of the explicit solvent liquid, a pe-
culiarity equally observed in AFM experiments [39] and MD
simulations [40,41] but neglected by the PB theory, the surface
field in Eq. (29) exceeds the PB field φ′

PB(0+) = 4π�wσs by
the factor φ′(0)/φ′

PB(0) = �B/�w = εw [43]. This enhances
the magnitude of the electrostatic pressure (26) set by the
interfacial field by the same factor.

In Figs. 3(a)–3(f), we reported the net pressure (23)
and its components (24)–(26) (solid curves), and their
implicit-solvent counterparts in Eq. (27) (circles) versus the
intermembrane distance at various salt concentrations indi-
cated in the legends. Figure 3(a) shows that in accordance with
the agreement of the DLVO theory with the repulsive regime
of surface force measurements [14,15], the PB pressure re-
mains significantly close to the solvent-explicit pressure, i.e.,
P(PB)

net ≈ Pnet.
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Considering that the electrostatic attraction force (30) in
the explicit solvent is almost two orders of magnitude larger
than its solvent-implicit counterpart (31), the quasioverlap of
the PB and NLPB predictions for the net pressure is puzzling.
Below, we show that this seemingly perturbative contribution
of the solvent molecules to the intermembrane pressure origi-
nates from the cancellation of various explicit solvent effects
opposing each other.

First, Fig. 3(b) indicates that the large magnitude of the
attractive electrostatic pressure P̃el ≈ −78.3 caused by the
interfacial dielectric screening deficiency (dashed curve) is
largely compensated by the strongly repulsive osmotic pres-
sure component Psol associated with the entropy excess of
the solvent molecules (solid curves). However, one also notes
that this solvent entropy excess suppressed by salt screen-
ing (ρ+b ↑ Psol ↓) cannot exactly cancel out the amplification
of the bare electrostatic pressure by the nonlocal dielectric
response. Consequently, Fig. 3(c) shows that the explicit
solvent-dressed electrostatic pressure remains more attractive
than its implicit solvent counterpart, i.e., Pel + Psol < P(PB)

el .
Moreover, unlike the PB-level electrostatic pressure (31)
unaffected by salt, the magnitude of this attractive force is sig-
nificantly amplified by salt addition, i.e., ρ+b ↑ [Pel + Psol] ↓.

Interestingly, Fig. 3(a) shows that the enhancement of the
explicit solvent-dressed electrostatic attraction by salt screen-
ing is not reflected in the net pressure curves; one notes that
at large salt concentrations, the NLPB pressure is marginally
less repulsive than the PB pressure. In order to understand
this peculiarity, we now focus on Figs. 2(c)–2(d). Therein, the
comparison of the solid and dashed curves shows that the re-
duced interfacial dielectric permittivity of the explicit solvent
amplifies the surface potential and the interfacial salt excess.
Figures 3(d)–3(f) indicate that this leads to the enhancement
of the salt-induced repulsive pressure of osmotic origin, i.e.,
Pion > P(PB)

ion . As this enhancement compensates almost ex-
actly for the salt-driven amplification of the solvent-dressed
attractive force in Fig. 3(c), i.e.,

Pion − P(PB)
ion ≈ −(

Pel + Psol − P(PB)
el

)
, (33)

solvent molecules appear to bring a perturbative contribution
to the net interaction force displayed in Fig. 3(a).

At this point, we note that our model does not account for
the charge structure and the finite size of the ions and the polar
heads. However, we emphasize that the ionic Pauling radii
of monovalent charges are typically an order of magnitude
smaller than the intermediate to large distance regime of Fig. 3
where the pressure components of substantial magnitude and
the mechanism driving their mutual compensation are still in
effect [14,44]. Therefore, although the neglected finiteness
of the ion size may quantitatively alter our results, our con-
clusions are not expected to be qualitatively affected by this
approximation. This point is further elaborated in Sec. V.

The present MF analysis neglects as well the effect of
the electrostatic correlations between the ions and the sol-
vent molecules on the interfacial charge partition. Indeed,
the presence of the solid membranes responsible for the
nonuniform dielectric and Debye screening induces repul-
sive image charge and ionic solvation forces depleting the
ions and solvent molecules from the surface [17,20,38,45–
48]. Thus, these effects expected to reduce the repulsive ionic

and solvent pressure components in Fig. 3 may increase the
deviation between the PB and NLPB pressures in Fig. 3(a).
However, our earlier theoretical analysis and solvent-implicit
MC simulations of inhomogeneous liquids indicate that steric
interactions enhance the interfacial particle densities [49,50].
Thus, the additional incorporation of the hard-core effects
into the present formalism may partially cancel out the afore-
mentioned repulsive forces of electrostatic origin. Therefore,
comparisons of our theoretical predictions with the explicit
solvent simulations of the present liquid model will be needed
to assess accurately the significance of the features neglected
in our formalism.

B. Hydrophilic charge groups (p > 0)

In the case of partially hydrophobic polar groups, or equiv-
alently fixed charges embedded on the membrane surface, we
showed that the apparent consistency of the PB-level descrip-
tion of intermembrane interactions stems from the mutual
cancellation of various solvent-induced effects of opposite
sign. Here, we extend this analysis to the case of hydrophilic
polar groups, or fixed surface charges penetrating the liquid by
an arbitrary length p. In the specific case of finite tail length
(p > 0) where the surface charge groups are located within
the electrolyte, the BCs associated with the NLPB Eq. (19)
are

φ′(0+) = φ′(d−) = 0, (34)

φ′(z+
c ) − φ′(z−

c ) = 4π�Bσs, (35)

with zc = {p, d − p}. Using the BCs (34)–(35) in Eq. (26), the
electrostatic pressure takes the form

βPel = σs

2
{φ′[(d − p)+] + φ′[(d − p)−]}. (36)

Figure 4 displays the net pressure profile and its com-
ponents at various tail lengths p. One sees that as the tail
length rises, the repulsive force Psol associated with the solvent
entropy decays rapidly, while the magnitude of the attrac-
tive electrostatic pressure Pel and the repulsive ionic entropy
pressure Pion (solid curves) amplified by the nonlocal dielec-
tric response drop to their PB limit (circles). Due to this
hydration-driven suppression of the explicit solvent effects on
the individual force components, the net intermembrane force
displayed in Fig. 4(a) quickly converges to the PB pressure.

In Fig. 5, we illustrate the alteration of the individual force
components by the tail length p at the fixed intermembrane
distance d = 15 Å. In accordance with Fig. 4, the plots in-
dicate that the increase of the tail length causes the uniform
and rapid decay of the solvent-driven osmotic force Psol, and
the convergence of the remaining force components to their
PB limit. As a result, Fig. 5(a) shows that the moderate
repercussion of the nonlocal dielectric response on the net
interaction force disappears rapidly over the short penetration
length p ≈ 0.1 Å.

With the aim to shed light on the mechanism behind the
removal of the explicit solvent effects on the individual force
components by the full hydration of the surface charge groups,
in Fig. 6, we reported the profile of the average potential, the
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FIG. 4. (a) Net membrane pressure (23), (b) solvent-induced pressure (25), (c) electrostatic pressure (36), and (d) ionic entropy pressure
(24) at various tail lengths p of the surface charge groups. The salt concentration is ρ+b = 0.5 M. Solid curves: NLPB formalism. Circles: PB
formalism.

interfacial field, the salt excess, and the solvent excess density

�ρs(z) = ρs+(z) + ρs−(z) − ρsb
b2(z) + b3(z)

2b
. (37)

We first focus on the repulsive osmotic pressure compo-
nents. Figures 6(a) and 6(c)–6(d) show that the penetration
of the surface charge groups into the liquid moves the explicit
solvent-enhanced potential region and the corresponding peak
of the particle densities (solid curves) away from the solid
membrane surface. The corresponding splitting of the mem-
brane wall and the zone governed by the nonlocal dielectric
response drives the surface potential and the contact charge
densities fixed by the latter towards their PB limit (dashed
curves). As a result, the ionic and solvent pressures in
Figs. 4(b) and 4(d) set by these contact charge densities are
reduced by the full hydration of the polar groups down to their
PB value.

In order to understand the decay of the attractive electro-
static pressure in Fig. 4(c) by hydration, we note that the use
of the potential symmetry φ(d − z) = φ(z) together with the
BC (35) allows us to recast Eq. (36) as

βPel = −σs[φ
′(p+) − 2π�Bσs]. (38)

FIG. 5. (a) Net membrane pressure (23) (main plot) and ionic en-
tropy pressure (24) (inset), (b) solvent-induced pressure (25), (c) bare
electrostatic pressure (36), and (d) solvent-dressed electrostatic force
versus the tail length p at the membrane separation distance d = 15
Å and salt concentration ρ+b = 0.5 M. Solid curves: NLPB formal-
ism. Dashed curves: PB formalism.

The interfacial field profile in Fig. 6(b) shows that as the sur-
face charge groups penetrate the liquid, due to the interaction
of the polar heads with the salt solution on their two sides,
the electric field peak φ′(p+) reduced by almost a factor of
two drops towards the value of 2π�Bσs. However, as p → ∞,
the field φ′(p+) remains weakly above this limit value such
that their difference in Eq. (38) tends to the PB value of the
electrostatic pressure. This explains the rapid convergence of
the electrostatic force in Fig. 4(c) to its PB limit.

At this point, we note that the relaxation of the fixed
surface charge condition at the basis of our theory would
provide a significant extension of the present model. As dis-
cussed in Sec. I, the surface protonation effects governing the
macromolecular charge dynamics from low to moderate pH
conditions have been intensively studied by MF approaches
[23–25,29] and correlation-corrected theories [26–28]. We
emphasize that due to the solvent-explicit nature of our for-
malism, this extension will require the coupling of the solvent
component of our electrolyte model to the protonation reac-
tions in an explicit fashion.

The steric and hydration interactions between the sur-
face charges of the adjacent membrane walls are additional
features relevant to the case of hydrophilic polar groups stud-
ied herein. Previous explicit solvent simulations showed that
these effects can bring a repulsive contribution to the inter-
membrane interactions [51–53]. It should, however, be noted
that the incorporation of these features into the present formal-
ism will necessitate the inclusion of surface specific effects
regulating the level of the hydration experienced by the charge
groups.

V. CONCLUSIONS

The consistent characterization of macromolecular in-
teractions in water solvent is an essential step towards
understanding the stability of biological systems. In this paper,
we derived the first contact value theorem explicitly including
the contribution of structured solvent molecules to the inter-
membrane force. Within this solvent-explicit framework, we
analyzed at the MF level the effect of solvent electrostatics on
the interaction of charged membranes carrying hydrophobic
and hydrophilic surface charge groups.

In the case of hydrophobic membranes characterized by
polar head groups embedded in the membrane surface, the
interfacial dielectric screening deficiency originating from the
nonlocal dielectric response of the explicit solvent amplifies

014608-7



SAHIN BUYUKDAGLI PHYSICAL REVIEW E 106, 014608 (2022)

FIG. 6. (a) Interfacial electrostatic potential and (b) field, and excess of (c) salt ion and (d) solvent charge at different tail lengths p
indicated in (a). The solid curves are from the NLPB theory, and the dashed curves in (a) and (c) correspond to the PB formalism. The insets in
(c)–(d) display the plots of the main figures at a closer distance from the membrane wall. The salt concentration and the membrane separation
distance are ρ+b = 0.5 M and d = 15 Å in all figures.

the surface field and the attractive electrostatic force set by
the latter by a factor of εw ≈ 78.3. However, the resulting
amplification of the interfacial potential associated with this
surface field also increases the interfacial salt and solvent
charge excesses, and enhances the corresponding osmotic re-
pulsive forces. Due to the almost exact cancellation of these
effects with substantial magnitude but opposite sign, the role
of the explicit solvent in membrane interactions appears to be
negligible.

For hydrophilic membranes, the penetration of the polar
head groups into the liquid shifts the explicit solvent-enhanced
interfacial field and potential, and the resulting peak of the
salt and solvent densities away from the membrane surface.
This reduces the attractive pressure component, and the re-
pulsive osmotic pressures set by the contact particle densities
separately to their implicit solvent limit. As a result, the full
hydration of the fixed surface charge groups drives the net in-
termembrane pressure to the double-layer force of the DLVO
formalism.

In the present study, we carried out a solvent-explicit analy-
sis of the mechanisms behind the experimentally corroborated
accuracy of the solvent-implicit DLVO theory. This point is
the main achievement of our work. As with any approach,
our formalism has limitations that can be gradually relaxed
by future works.

First, we investigated the predictions of the solvent-
augmented contact value theorem within the DH regime of
weakly charged membranes and strong salt. Future works can
extend our analysis to the nonlinear GC regime of dilute salt
[54] or even relax the present MF approximation by including
charge correlations [38].

An additional system feature neglected in our formalism is
the finite ion size. As our explicit solvent theory includes the
salt charges and the solvent molecules on an equal footing,
the characteristic ion size relevant to our model is the Pauling
radius corresponding to the bare radius of the salt charges
without their hydration shell. The typical Pauling radii for
monovalent ions are on the order of 1 Å [14,44]. It should be
noted that the corresponding ion sizes are an order of magni-
tude smaller than the intermediate to large distance branch of
the pressure curves in Fig. 3 where the large magnitude of the
pressure components and the complex mechanism responsible
for their mutual cancellation remain intact. Indeed, the finite
ion size setting the closest approach distance of the ions to
the membrane surface is expected to increase the distance

scale of the pressure curves in Fig. 3 by a few Pauling radii.
Therefore, the introduction of the finite Pauling radii alone is
not expected to alter qualitatively the predictions of Sec. IV A.
Although comparisons with numerical simulations of dipolar
liquids are certainly required to confirm these points, we em-
phasize that the present formalism, and its point-dipole and
implicit solvent versions neglecting the finite ion size have
been able to reproduce with reasonable accuracy experimental
trends driven by salt charges, such as the salt-induced dielec-
tric decrement in bulk electrolytes [55], the salt dependence of
the differential capacitance of low-permittivity materials [45],
and the ion conductivity of strongly confined α-hemolysin
channels and solid-state nanopores [56]. It should be also
added that the incorporation of the spherical charge distribu-
tion of the salt ions would break the planar symmetry of the
system, requiring the analysis of the model via the solution
of the full three-dimensional integrodifferential Eq. (13). This
formidable task of tremendous technical complexity is beyond
the scope of the present work.

We also emphasize that in Figs. 4–6, the significantly small
values of the characteristic penetration lengths p are expected
to be quantitatively affected by the consideration of additional
system features neglected in our model, such as the finite size
of the polar heads, and the ion size effect elaborated above.
It should, however, be noted that our comprehensive study
provides the first insightful conclusion on the removal of the
explicit solvent effects upon the full hydration of the surface
charge groups. Thus, this relevant result is the main achieve-
ment of Sec. IV B, and the analysis presented therein should
not be considered as an attempt to identify with quantitative
precision the critical hydration lengths where explicit solvent
effects dissipate.

Future works should incorporate into the present model
additional relevant features of confined charged liquids, such
as the formation of hydrogen bonds between the water
molecules, the incompressibility of the water solvent, the
surface protonation driving the dynamics of the macromolec-
ular charges in the low to moderate pH regime [23–31],
electrostatic correlations inducing repulsive solvation and
image-charge forces [46,47], and hydrophobic image-dipole
interactions [38]. In particular, via the introduction of the
ionic polarizability within the Drude oscillator model, we
are currently working on the relaxation of the point charge
approximation. This work will be presented in a separate
paper. A thorough confrontation of our theoretical predictions
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with solvent-explicit MD simulations will be equally needed
to asses the significance of the aforementioned effects on the
electrostatic stability of macromolecules.

Before concluding, it is noteworthy that unlike the surface
salt excess of the PB theory reduced by salt addition to the
reservoir [solid curves in Fig. 2(d)], the interfacial salt ex-
cess in the explicit solvent liquid is strongly amplified by
the increment of the bulk salt concentration (dashed curves).
This peculiarity responsible for the salt-induced enhancement
of the deviation between the ionic PB and NLPB pressures
in Figs. 3(d)–3(f) may have a substantial effect on the ion
conductivity of nanofluidic devices. Therefore, we would like
to probe the role played by explicit solvent on nanoconfined
charge transport in a future work.

APPENDIX A: DERIVATION OF THE CHARGE DENSITIES

We derive here the local densities of the charged particles,
and the orientational probabilities of the surface and solvent
dipoles.

1. Salt ions

The MF-level salt ion density follows from the thermo-
dynamic relation ρi(r) = −δ ln ZG/δVi(r) ≈ δ(βH )/δVi(r) as
ρi(r) = λie−Vi (r)+iqiφ(r). Noting that the bulk region r → ∞
is characterized by vanishing potentials Vi(r) = φ(r) = 0, the
ion fugacity follows as λi = ρib. Passing to the real potential
via the transformation φ(r) → iφ(r), accounting for the pla-
nar symmetry φ(r) = φ(z), and imposing the steric constraint
associated with the ion confinement in the intermembrane
region, the density of the salt ions becomes

ρi(z) = ρibθp(z)e−qiφ(z), (A1)

with the auxiliary function

θp(z) = θ (z)θ (d − z). (A2)

2. Solvent particles

In order to derive the solvent number density, we define
the steric solvent potential in Eq. (11) as Vs(u,�) = Vs,+(r +
b/2) + Vs,cm(r) + Vs,−(r − b/2), where the potentials Vs(r)
with i = {±, cm} act on the terminal charges and the CM
of the molecule. Using the thermodynamic identity ρsi(r) =
δ(βH )/δVs,i(r), imposing the plane symmetry together with
the impenetrability of the membrane walls, and introducing
the dipolar projection variable bz = b cos ϕ, the number and
charge densities of the solvent molecules follow as

ρs(z) = ρsb

∫ b1(z)

−b1(z)

dbz

2b
ns(z, bz ), (A3)

ρs+(z) = ρsbθp(z)
∫ b3(z)

−b2(z)

dbz

2b
ns(z − bz/2, bz ), (A4)

ρs−(z) = ρsbθp(z)
∫ b2(z)

−b3(z)

dbz

2b
ns(z + bz/2, bz ), (A5)

with the conditional probability

ns(z, bz ) = e−c+φ(z+bz/2)+c−φ(z−bz/2), (A6)

and the auxiliary functions

b1(z) = min{b, 2z, 2(d − z)}, (A7)

b2(z) = min{b, d − z}, (A8)

b3(z) = min{b, z}. (A9)

APPENDIX B: RELAXATION ALGORITHM
FOR THE SOLUTION OF THE NLPB EQ. (19)

We introduce here a relaxation algorithm for the numerical
solution of the NLPB Eq. (19) on a one-dimensional discrete
grid. The 2N + 1 nodes of the grid will be labeled by the
index n defined in the interval 1 � n � 2N + 1. To this aim,
we pass from the continuous variable z to the discrete lattice
coordinate zn = δ(n − 1), with the grid spacing defined as
δ = d/(2N ). Using the finite difference definition of deriva-
tives, Eq. (19) can be cast in the following discrete form

φn = 1

2

{
φn+1 + φn−1 − ri sinh φn

− rs

j3(n)∑
j=− j2(n)

sinh[φn − φn− j+1]

}
. (B1)

In Eq. (B1), the potential values on the lattice nodes
are defined as φn ≡ φ(zn). Moreover, we introduced the
coefficients rs = δ3κ2

s /(2b) and ri = δ2εwκ2
i , the functions

j2 = min(nb, 2N − n + 2) and j3(n) = min(nb, n), and the
index nb = int(b/δ + 1).

Equation (B1) should be solved recursively by injecting at
the first iterative step a guess potential profile into the r.h.s.,
and using the output solution as the updated input potential
at the next iterative step. This cycle should be continued
until numerical convergence is achieved. The key require-
ment for convergence is the injection of an adequate guess
potential at the first iterative step. We found that the standard
solvent-implicit PB solution can be used as an input poten-
tial exclusively if (i) Eq. (B1) is evaluated by starting at the
midpore at z = d/2 and moving to the membrane surface at
z = 0, and (ii) the input potential is updated not only at the
end of each iterative cycle but also at each node n of the grid
during the cycle.

During the execution of the relaxation scheme, the poten-
tial values at z > d/2 can be obtained by exploring the mirror
symmetry φ(z) = φ(d − z) implying

φn>N+1 = φ2N−n+2. (B2)

Moreover, on the membrane surface at n = 1, the r.h.s. of
Eq. (B1) requires the value of φ0. This can be determined by
using the discrete form of the BCs (29) and (34). For p = 0,
the discretization of the BC (29) gives

φ0 = φ2 − 4δεw

μ
. (B3)
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Then, for p > 0, the BC (34) yields φ0 = φ2. Finally, we note
that the discretization of the BC (35) yields

φnp = 1

2
(φnp+1 + φnp−1) − δεw

μ
. (B4)

Thus, at n = np, one should use for p > 0 Eq. (B4) instead of
Eq. (B1).

APPENDIX C: DERIVATION OF THE SOLVENT-EXPLICIT
CONTACT VALUE THEOREM (23)

In this Appendix, we present the derivation of the solvent-
explicit contact value theorem (23). To this aim, we first
note that at the MF level, the thermodynamic potential of the
system corresponds to the Hamiltonian (9) evaluated with the
solution of the saddle-point Eq. (15). Taking into account the
planar symmetry, the MF grand potential reads

β�mf

S
= −

∫ d

0

dz

8π�B
[φ′(z)]2

−
∫ d

0
dz{ρ+(z) + ρ−(z) + ρs(z)}

− σsQ−[φ(p) + φ(d − p)]. (C1)

The pressure acting on the inner membrane walls cor-
responds to the variation of the thermodynamic potential
(C1) with respect to the intermembrane distance, i.e., Pin =
−δ�mf/δ(Sd ). Using the Leibniz rule, this yields

Pin = −1

S

∫ +∞

−∞
dz

δ�mf

δφ(z)

∂φ(z)

∂d
+ φ′(d−)2

8π�B
+

s∑
i=1

ρi(d )

+ σsQ−
∂φ(d − p)

∂d
+ ρs(d ) +

∫ d

0
dz ∂dρs(z). (C2)

We first note that as the average potential φ(z) satisfies the
saddle-point condition δ�mf/δφ(z) = 0, the first term on the
r.h.s. of Eq. (C2) vanishes. Then, Eqs. (A3) and (A7) show
that as a result of the steric constraint at the impenetrable wall,
the contact density of the solvent molecules corresponding to
the fifth term on the r.h.s. of Eq. (C2) vanishes as well, i.e.,

b1(d ) = 0 and ρs(d ) = 0. Consequently, the inner pressure
(C2) simplifies to

Pin =
s∑

i=1

ρi(d ) + σsQ−
∂φ(d − p)

∂d
+ φ′(d−)2

8π�B

+
∫ d

0
dz ∂dρs(z). (C3)

In order to evaluate the integral term in Eq. (C3), we note
that according to Eqs. (A3) and (A7), ∂dρs(z) �= 0 if b1(z) =
2(d − z), which holds if 2(d − z) < 2z and 2(d − z) < b, or
z > d/2 and z > d − b/2. Since b < d , the derivative ∂dρs(z)
is therefore finite only in the interval d > z > d − b/2. This
remark allows us to express the integral term of Eq. (C3) as∫ d

0
dz ∂dρs(z) (C4)

= ρsb

∫ d

0
dz θ (z − d + b/2)∂d

∫ 2(d−z)

−2(d−z)

dbz

2b
ns(z, bz )

= ρsb

b

∫ d

d−b/2
dz

{
e−φ(d )+φ(2z−d ) + e−φ(2z−d )+φ(d )

}
, (C5)

where the second equality followed from the use of Eqs. (A3)
and (A6), and the Leibniz integral rule. Finally, introducing
in Eq. (C5) the change of variable z → d − bz/2, after some
algebra, one can recast the integral as the sum of the solvent
charge densities (A4)–(A5), i.e.,∫ d

0
dz ∂dρs(z) = ρs+(d ) + ρs−(d ). (C6)

Substituting Eq. (C6) into Eq. (C3), and subtracting from
the latter the bulk pressure Pout = ∑

i ρib + ρsb, the net in-
termembrane pressure P = Pin − Pout follows in the form of
the solvent-explicit contact value theorem corresponding to
Eq. (23) in the main text, i.e.,

βP = σsQ−
∂φ(d − p)

∂d
+ φ′(d−)2

8π�B

+
s∑

i=1

[ρi(d ) − ρib] + ρs+(d ) + ρs−(d ) − ρsb. (C7)
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